
226 Book reviews

yaws, the Erlang-based web server. Background knowledge about web services is assumed,

and a number of concepts and configuration possibilities are explained comparing and

contrasting with PHP et al. The reader might find a bit confusing, strange, or even frustrating

that some very simple things are illustrated with basic examples, and right afterwards more

interesting and advanced pieces are left to the readers’ own extrapolation capabilities. The

overall sensation is that it is hard to tell if the writer wants us to follow the book as a

hands-on tutorial or manual, since we will find ourselves lacking basic information at some

points; but at the same time the amount of source code in examples is so prolific that it is

hard to resist the temptation to try and do it oneself.

The book is very ambitious in that it mentions every aspect about web services that one

may think of, but in many cases after a few thoughts the author leaves us with one of

the most repeated sentences in the volume: “beyond the scope of this book.” However, a

great point in its favour is the great amount of time and effort that the author has devoted

to actually research and select complementary sources of information, which he points to

the reader. In Chapter 4, the reader is presented with the first full example, which puts all

previously examined pieces together. From then on, we see a series of examples of good

practice, again especially focused on explaining key differences with other frameworks such

as PHP+Apache. Beside useful pointers to external resources for further information and

material, a clear explanation on how to interact with Amazon S3 service is also presented.

Although the first part of the book is heavily oriented to REST-services, Chapter 6 is

devoted to websockets, a sort of TCP-socket-like behaviour over HTTP, which represent the

opposite philosophy to REST, thus complementing the content so far.

The rest of the book shows specific examples of how to do specific but very common

tasks (content upload and streaming, for instance), including a discussion of HTTP client

alternatives to be used for testing purposes (CURL, https, etc.). Last but not least, a nice full

OTP-flavoured example is included in the last chapter, which in a way is one of the barriers

for readers who are not so familiar with web services: a reader cannot see the whole picture

until the end, and chapters do not seem to follow a cohesive storyline, they just cover different

aspects, which again bring to mind the dichotomy between manual and book.

This book was reviewed in e-book format, which was unfortunately not a very polished

edition. Some figures were too small to be read in a 6-inch e-reader, and the verbatim font

used for source code sections was not only poorly formatted but also its greyscale colour was

too faint to read at times.

Overall, this is a nice book which provides easy reading for professionals, experts in the

web-services world that have come across Erlang and want to see that the same things they are

used to can be done with Erlang and Erlang-based tools in a very simple and quite similar way

to what they already know. It is definitely a volume this reviewer would recommend to read

in a digital format, preferably with Wi-Fi capabilities, such is the number of online resources

and references that have been meticulously researched and kindly presented. However, this

is not a volume for those seeking the basic knowledge to implement a web service, because

neither does it give an introduction to what Erlang is capable of nor is it a reference book.

LAURA CASTRO

University of A Coruña

Pearls of Functional Algorithm Design, by Richard Bird, Cambridge Uni-

versity Press, September 2010, £35.00, US $ 60.00. ISBN: 978052151338

(hardback), 286pp

doi: 10.1017/S095679681200041X

When I first started learning Haskell, I did so by adapting a Sudoku implementation into

dealing with partial Latin Squares. That implementation was from a Functional Pearl by

https://doi.org/10.1017/S095679681200041X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200041X


Book reviews 227

Richard Bird, which was not only clearly written – especially for a complete beginner to the

language – but also went on to discuss program design, and how to derive a more efficient

version of a function from an initial specification.

This Functional Pearl can now be found in Richard Bird’s book Pearls of Functional

Algorithm Design. Prevalent throughout this book is the theme of deriving a working, efficient

implementation of an algorithm from an initial simple definition. These derivations take the

form of utilising the laws of functional programming to calculate a new version.

For those who are unaware, Functional Pearls are elegant, instructive examples of functional

programming. Richard Bird has written many such Pearls – many of which have appeared in

this journal – and this book contains 30 of them. About a third of these are new, and those

that have previously appeared elsewhere have been polished and improved.

The algorithms and derivations in this book are implemented in the purely functional

language Haskell. However, the Pearls do not always use what can be characterised as

“typical” Haskell; for example, the very first Pearl “The smallest free number” uses an

implementation of the list difference operator “(\\)” that differs slightly in some cases from

the definition in the Haskell Report. As such, this needs to be kept in mind when reading

this book.

That said, only basic understanding of Haskell is required to be able to read and

comprehend the Pearls in this book (the book even provides an introduction to some more

advanced aspects of Haskell programming such as utilising the QuickCheck library for testing

of functions). It is not necessarily a light reading, and the tone is more formal and academic

than the blog posts in which programming techniques are often found today. However, for

those that make the effort there is indeed something of beauty to be found in the pages of

this book.

For the most part, each Pearl can be read in isolation (though several Pearls are linked).

Typically they discuss – and reference – an interesting algorithmic challenge/problem, most of

which would probably be unknown to a more practical-oriented programmer as opposed to a

computer science researcher. As such, they are not only interesting in the approach taken but

also in the breadth and scope that Richard Bird has used to find examples for these Pearls.

That said, some examples – such as the aforementioned Sudoku Pearl – would be

more recognisable to the general programming community. Two of the more interesting

Pearls cover how two different ways of implementing a specification for string matching

lead respectively to the well-known Boyer–Moore and the Knuth–Morris–Pratt algorithms.

The approach taken in this book of design by calculation may not always be followed

in everyday programming, but it is a useful technique in a programmer’s toolkit. Pearls

of Functional Algorithm Design provides an excellent guide into this method of algorithm

development.

IVAN LAZAR MILJENOVIC

Canberra, Australia

Ivan.Miljenovic@gmail.com

https://doi.org/10.1017/S095679681200041X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200041X



