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The equations of electrostatic drift kinetics are observed to possess a symmetry
associated with their intrinsic scale invariance. Under the assumptions of spatial
periodicity, stationarity, and locality, this symmetry implies a particular scaling of the
turbulent heat flux with the system’s parallel size, from which its scaling with the
equilibrium temperature gradient can be deduced under some additional assumptions.
This macroscopic transport prediction is then confirmed numerically for a reduced model
of electron-temperature-gradient-driven turbulence in slab geometry. The system realises
this scaling through a turbulent cascade from large to small perpendicular spatial scales.
The route of this cascade through wavenumber space (i.e. the relationship between
parallel and perpendicular scales in the inertial range) is shown to be determined by a
balance between nonlinear-decorrelation and parallel-dissipation timescales. This type of
‘critically balanced’ cascade, which maintains a constant energy flux despite the presence
of parallel dissipation throughout the inertial range (as well as order-unity dissipative
losses at the outer scale) is expected to be a generic feature of plasma turbulence. The
outer scale of the turbulence, on which the turbulent heat flux depends, is determined by
the breaking of drift-kinetic scale invariance due to the existence of large-scale parallel
inhomogeneity (the parallel system size).

Keywords: fusion plasma, astrophysical plasmas, plasma dynamics

1. Introduction

In many plasmas, energy is injected into the system on some large, system-specific
macroscale (the ‘outer scale’). In order for such a system to reach a steady state, this
energy must be dissipated. The usual route to this dissipation in kinetic plasmas is via a
turbulent cascade of this energy to fine scales in both position and velocity space, where it
is eventually thermalised by collisions (the ‘inner scale’). Given that there is often a large
separation between these inner and outer scales (such as in, e.g. astrophysical systems,
where energy is often injected by magnetohydrodynamic (MHD) instabilities), many

† Email address for correspondence: toby.adkins@physics.ox.ac.uk

https://doi.org/10.1017/S0022377823000600 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5028-8047
https://orcid.org/0000-0001-9720-4357
https://orcid.org/0000-0003-4421-1128
mailto:toby.adkins@physics.ox.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377823000600&domain=pdf
https://doi.org/10.1017/S0022377823000600


2 T. Adkins, P.G. Ivanov and A.A. Schekochihin

studies of plasma turbulence are able to consider the dynamics of this turbulent cascade
separately from the specific mechanisms of injection, simply assuming that there is some
energy arriving from large scales that needs to be processed (see, e.g. Schekochihin et al.
(2009) and references therein).

There are, however, a variety of plasma systems for which such a scale separation
is not a priori obvious. This is often due to the existence of gradients associated with
an equilibrium (whether gravitational or magnetic) that, thermodynamically speaking,
provide sources of free energy for unstable, microscale perturbations that can engender a
turbulent cascade well below the usual macroscopic outer scale. In fact, the most (linearly)
unstable perturbations in such systems often occur at the smallest scales. This is the
case in tokamaks, in which the turbulent heat and particle transport is dominated by
the (microscale) instabilities driven by the gradients of the plasma pressure between the
inner core of the tokamak and its edge. The most important of these instabilities are the
ion-temperature gradient (ITG) (see, e.g. Waltz 1988; Cowley, Kulsrud & Sudan 1991;
Kotschenreuther et al. 1995a) and electron-temperature gradient (ETG) ones (see, e.g. Liu
1971; Lee et al. 1987; Dorland et al. 2000; Jenko et al. 2000). The relationship between
the macroscopic scales associated with the plasma equilibrium and the microscopic scales
on which turbulent fluctuations grow – and how the interaction between these two scales
determines the heat and particle transport properties of the confined plasma – remains a
topic of active research and great consequence.

In this paper, we consider electrostatic, drift-kinetic plasma turbulence – applicable to
many regimes of tokamak operation – with a particular focus on the connection between
its macroscopic transport properties and microscale dynamics. In the presence of constant
perpendicular equilibrium gradients, it is observed that the equations of electrostatic drift
kinetics possess a symmetry associated with their intrinsic scale invariance, in both the
collisionless and collisional limits. We then show that this symmetry implies a particular
scaling of the turbulent heat flux with equilibrium-scale quantities, in particular the
parallel system size, provided one can assume spatial periodicity, stationarity (that the
system has reached a statistical steady state), and locality (that the heat flux is independent
of the system’s perpendicular size, as it should be for any valid local model of plasma
turbulence, provided its perpendicular size is large enough). This macroscopic transport
prediction is then confirmed numerically in the context of an electron-scale, collisional
model of electrostatic turbulence driven by the ETG instability in slab geometry. The
choice to focus on ETG-driven turbulence was motivated, in part, by the fact that, despite
significant recent progress (see, e.g. Ren et al. 2017; Hatch et al. 2019; Parisi et al. 2020;
Guttenfelder et al. 2021, 2022; Chapman-Oplopoiou et al. 2022; Parisi et al. 2022; Field
et al. 2023), the saturation of such turbulence remains significantly less well-understood
than its ITG cousin.

Further consideration of the microscale dynamics of our system of equations reveals that
this heat flux scaling is enabled by a critically-balanced, Kolmogorov (1941) style cascade
of energy from large to small spatial scales. The (approximately) constant flux of energy is
that which survives the parallel dissipation present at the largest scales due, in our model,
to thermal conduction. The existence of this parallel dissipation is also shown to play a key
role in determining the saturated state of the system, limiting the cascade of free energy
in wavenumber space. The outer scale of the turbulence is found to be determined by
the breaking of the drift-kinetic scale invariance due to the existence of some large-scale
parallel inhomogeneity, viz., the parallel system size, rather than by the smallest scales
on which the ETG instability’s growth rate peaks. It is thus the largest scales that are the
most important in determining the saturated amplitudes to which the fluctuations grow,
and the resultant turbulent transport. This is the first detailed demonstration of a critically
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balanced cascade in a temperature-gradient-driven plasma system since Barnes, Parra &
Schekochihin (2011) proposed such a cascade for ITG turbulence.

The rest of this paper is organised as follows. In § 2, the scaling of the turbulent heat
flux with parallel system size is derived from considerations of the scale invariance of
the electrostatic drift-kinetic system of equations. Our model system of fluid equations is
introduced in § 3, and the aforementioned heat flux scaling is verified in § 4. The dynamics
of the inertial range are considered extensively in § 5, including the free-energy budget
(§ 5.1), the existence of a constant-flux cascade and dynamical critical balance (§ 5.2), the
nature of the outer scale (§ 5.3), the two-dimensional (2D) (k⊥, k‖) spectra (§ 5.4), and the
perpendicular isotropy in wavenumber space (§ 5.5). Lastly, we summarise our results and
generic conclusions in § 6, and discuss the limits of their applicability to plasma systems in
which finite-Larmor-radius (FLR) or electromagnetic effects are thought to be important.

2. Electrostatic drift-kinetic scale invariance

For systems adequately described by electrostatic drift kinetics, the heat flux through
some volume V is given by

Q =
∑

s

Qs, Qs = n0sT0s

∫
d3r
V

(vE·∇x)
δTs

T0s
, (2.1)

where ∇x is the (radial) direction of the equilibrium gradients, n0s and T0s are the
equilibrium density and temperature, respectively, of species s, δTs is the corresponding
temperature perturbation [see (A17)], and

vE = c
B0

b0 × ∇φ, (2.2)

is the E × B drift velocity due to the perturbed electrostatic potential φ, B0 and b0
being the magnitude and direction of the equilibrium magnetic field, respectively. In what
follows, Lns and LTs denote the characteristic scale lengths associated with the gradients of
the equilibrium density and temperature, respectively, while the equilibrium energy scale
of species s is set by its thermal speed vths = √

2T0s/ms, with ms being the particle mass.
In appendix A, we show that, for constant perpendicular equilibrium gradients, the

electrostatic, drift-kinetic system of equations is invariant under a particular one-parameter
transformation. Under this transformation, the perturbed temperature and electrostatic
potential transform as, for any λ,

δT̃s = λ2δTs(x/λ2, y/λ2, z/λ2/α, t/λ2), φ̃ = λ2φ(x/λ2, y/λ2, z/λ2/α, t/λ2). (2.3)

Here, x, y and z are the radial, binormal and parallel coordinates, respectively, the tildes
indicate the transformed fields, and α = 1, 2 in the collisionless and collisional limits,
respectively. We have assumed that the collisional limit corresponds to the case where the
frequency of the perturbations ω is comparable to rate of thermal conduction, but much
smaller than νss′ , the characteristic collision frequency between species s and s′, viz., ω ∼
(k‖vths)

2/νss′ � νss′ , as in Braginskii (1965) (where k‖ is the characteristic wavenumber of
the perturbations along the direction of the equilibrium magnetic field). Mathematically,
the existence of the symmetry (2.3) is a consequence of the scale invariance of electrostatic
drift kinetics: in the absence of finite-Larmor-radius effects associated with ρs – the
Larmor radius of species s, manifest in the gyroaverages and the resultant Bessel functions
appearing in gyrokinetics (see, e.g. Abel et al. 2013) – there is no intrinsic perpendicular
scale in the system, with nothing to distinguish any perpendicular scale from any other.
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Under (2.3), and noting the presence of the perpendicular derivative in (2.2), the heat
flux (2.1) transforms as

Q̃s = λ2Qs. (2.4)

Now suppose that our original solutions for δTs and φ were periodic in x, y and z with
domain sizes Lx, Ly, and L‖, respectively. Then, the transformed solutions δT̃s and φ̃ are
still periodic in x, y and z, except with domain sizes λ2Lx, λ2Ly, and λ2/αL‖, implying that

Q̃s(λ
2Lx, λ

2Ly, λ
2/αL‖, t/λ2) = λ2Qs(Lx, Ly, L‖, t). (2.5)

The heat flux will, of course, depend on other parameters of the system, e.g. equilibrium
gradients and collisionality. These, however, remain unchanged under the transformation
(by construction), and so we did not write them explicitly in (2.5). In a strongly
magnetised (gyrokinetic) plasma, structures generated by the turbulent fluctuations are
ordered comparable to the equilibrium scales in the parallel direction (k−1

‖ ∼ L‖ ∼ LTs ),
but remain microscopic in the perpendicular direction (k−1

⊥ ∼ ρs). This means that, as the
perpendicular domain size L⊥ (ordered as L⊥ ∼ Lx ∼ Ly ∼ ρs) is increased, there must
come a point at which the turbulence, and the resultant heat flux, become independent of
the perpendicular domain size; if this were not the case, then the heat flux would diverge
as L⊥/ρs → ∞, implying that drift kinetics is not a valid local model of the plasma.
We thus assume that the heat flux is independent of the perpendicular domain size, viz.,
independent of Lx and Ly. We also assume that the heat flux is independent of time, in
the sense that it has been able to reach a statistical steady state. Then, given that λ can be
chosen arbitrarily, (2.5) directly implies that

Qs ∝ Lα
‖ , (2.6)

where once again α = 1, 2 in the collisionless and collisional limits, respectively.
Physically, L‖ can be thought of either as a measure of a quantity analogous to the
connection length 2πqR in tokamak geometry (where q is the safety factor and R the major
radius) or, in the absence of any other gradients, as a proxy for the temperature-gradient
scale length. The latter follows from dimensional analysis: without loss of generality,

Qs

QgBs
=
(

L‖
LTs

)α

G
(

ν∗s,
Lns

LTs

,
R

LTs

, . . .

)
, (2.7)

where QgBs = n0sT0svths(ρs/LTs)
2 is the ‘gyro-Bohm’ heat flux, G is an unknown

function, ν∗s = (LT/vths)
∑

s′ νss′ is the normalised collisionality, and ‘. . . ’ stands for other
equilibrium parameters on which the heat flux can depend, normalised, wherever a scale is
required, using the temperature-gradient scale length LTs . If the dependence of G on these
other parameters can be ignored in (2.7) – due either to the absence of other gradients
in, e.g. slab geometry, or the system being driven far above marginality where such
dependences are typically weak – then the scaling of the heat flux with LTs follows directly
from its dependence on L‖.

This is perhaps a surprising result. Under the assumptions that the system is spatially
periodic, that it is able to reach a statistical steady state (stationarity), and that the heat flux
is independent of the system’s perpendicular size, as it should be for any valid local model
of a plasma (spatial locality), the scale invariance of electrostatic drift kinetics enforces
the scaling (2.6), which is a non-trivial prediction about the scaling of the heat flux with
equilibrium parameters. The key physics question, then, is how the system organises itself
in order to obey this scaling. Namely, it has to find a way to process the free energy injected
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by the equilibrium gradients at a steady rate (stationarity) and to choose a spatial scale
independent of L⊥ (locality). In the remainder of this paper, we investigate a particular
example of a system that should exhibit this scaling, being derived in an asymptotic limit
of electrostatic drift kinetics, and find that a critically balanced, Kolmogorov (1941)-style
cascade of energy from large to small spatial scales is the dynamical means by which the
formal constraint imposed by (2.3) is realised.

3. Collisional fluid model

Fluid models are capable of providing remarkable insight about the dynamics of more
general physical systems, while retaining the advantage of being (comparatively) simple
to handle both numerically and analytically (e.g. Cowley et al. 1991; Newton, Cowley &
Loureiro 2010; Ivanov et al. 2020; Ivanov, Schekochihin & Dorland 2022). The ITG and
ETG instabilities in tokamaks rely on destabilisation mechanisms that are fundamentally
fluid (i.e. they are not resonant instabilities) and, even in kinetic regimes, they tend to
be described adequately by fluid closures (Hammett & Perkins 1990; Hammett, Dorland
& Perkins 1992; Dorland & Hammett 1993; Hammett et al. 1993; Beer & Hammett
1996; Snyder, Hammett & Dorland 1997). Here we consider an electron-scale, collisional
(ν∗e � 1) fluid model of electrostatic turbulence driven by the electron-temperature
gradient. Despite its simplicity, we expect that many of the results reported below are
qualitatively applicable to more general turbulent plasma systems.

We take the local plasma equilibrium to be that of conventional slab gyrokinetics
(see, e.g. Howes et al. 2006). The (homogeneous) equilibrium magnetic field is in the
b0 = ẑ direction; perturbations to both its direction and magnitude are assumed negligible,
consistent with the electrostatic limit. The electric field is then related to the electrostatic
potential φ by E = −∇φ, and has no mean part. The equilibrium profile of the electron
temperature T0e varies radially, with the scale length

L−1
T ≡ L−1

Te
= − 1

T0e

dT0e

dx
, (3.1)

which is assumed to be constant over the domain of the system. The equilibrium gradients
of density and ion temperature are assumed to be negligibly small. The omission of an
equilibrium density gradient means that our system will be unstable for any finite L−1

T ;
the resultant dynamics can thus be considered to apply to a plasma driven strongly above
marginality (unlike the cases considered in, e.g. Guttenfelder et al. 2021, Hatch et al. 2022,
Chapman-Oplopoiou et al. 2022 and Field et al. 2023, where a strong dependence of the
heat flux on the equilibrium density gradient was identified).

3.1. Moment equations
With this local equilibrium, we derive, in appendix B, evolution equations for the density
(δne), parallel velocity (u‖e), and temperature (δTe) perturbations of the electrons:

d
dt

δne

n0e
+ ∂u‖e

∂z
= 0, (3.2)

νei

c1

u‖e

vthe
= −vthe

2
∂

∂z

[
δne

n0e
− ϕ +

(
1 + c2

c1

)
δTe

T0e

]
, (3.3)
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d
dt

δTe

T0e
+ 2

3
∂

∂z
δqe

n0eT0e
+ 2

3

(
1 + c2

c1

)
∂u‖e

∂z
= −ρevthe

2LT

∂ϕ

∂y
. (3.4)

Let us discuss what these equations represent.
Equation (3.2) is the familiar continuity equation. It describes the advection of the

density perturbation by the E × B motion (2.2) of the electrons,

d
dt

= ∂

∂t
+ vE·∇⊥= ∂

∂t
+ ρevthe

2
{ϕ, . . .} , ϕ = eφ

T0e
, (3.5)

and their compression or rarefaction due to the perturbed electron flow u‖eb0 parallel to
the equilibrium magnetic-field direction.

This flow velocity is determined (instantaneously) from a balance between the
electron–ion frictional force – proportional to the electron–ion collision frequency νei [see
(B4)] and appearing on the left-hand side of (3.3) – and the forces on the right-hand side of
(3.3): the parallel pressure gradient, the electrostatic part of the parallel electric field, and
the collisional ‘thermal forces’ (Braginskii 1965; Helander & Sigmar 2005), proportional
to c2/c1, that arise due to the velocity dependence of the collision frequency associated
with the Landau collision operator [see (A4)]. The order-unity constants c1, c2 and c3
[the latter appearing in (3.6)] arise from the inversion of said operator, and depend on
the magnitude of the ion charge Z [see (B38)]: – e.g. for Z = 1, c1 ≈ 1.94, c2 ≈ 1.39 and
c3 ≈ 3.16, in agreement with Braginskii (1965).

The temperature perturbation in (3.4) is advected by the local E × B flow (2.2), again
according to (3.5), and is locally increased (or decreased) by compressional heating
(or rarefaction cooling) due to u‖e, as well as by the perturbed parallel collisional heat
flux,

δqe

n0eT0e
= −c3

v2
the

2νei

∂

∂z
δTe

T0e
, (3.6)

caused by the gradient of the temperature perturbation along the equilibrium magnetic
field direction. The term on the right-hand side of (3.4) is the familiar linear drive
(advection of the equilibrium temperature profile by the perturbed E × B flow) responsible
for extracting free energy from the equilibrium temperature gradient L−1

T , defined in (3.1).
Finally, the electron-density perturbation is related to the non-dimensionalised potential

ϕ via quasineutrality:

δne

n0e
= −τ̄−1ϕ, τ̄ = τ

Z
, (3.7)

where τ = T0i/T0e is the ratio of the ion to electron equilibrium temperatures. This
describes an adiabatic ion response at electron scales: at scales much smaller than their
Larmor radius ρi, ions can be viewed as motionless rings of charge, and their density
response is Boltzmann.

Given (3.3), (3.6) and (3.7), we can contract our system to two evolution equations
written entirely in terms of the electrostatic potential and temperature perturbations:

∂

∂t
τ̄−1ϕ − c1v

2
the

2νei

∂2

∂z2

[(
1 + 1

τ̄

)
ϕ −

(
1 + c2

c1

)
δTe

T0e

]
= 0, (3.8)
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d
dt

δTe

T0e
+ 2

3
c1v

2
the

2νei

∂2

∂z2

{(
1 + 1

τ̄

)(
1 + c2

c1

)
ϕ −

[
c3

c1
+
(

1 + c2

c1

)2
]

δTe

T0e

}

= −ρevthe

2LT

∂ϕ

∂y
. (3.9)

Note that, due to the Boltzmann density response (3.7), the advection term in (3.8) has
vanished, leaving a purely linear relationship between ϕ and δTe. The only nonlinearity
left in the system is thus the advection of δTe by the E × B flow in (3.9). Note that we find
finite-amplitude nonlinear saturation in our numerical simulations despite this absence
of any nonlinearity in (3.8); see § 5.5 for further discussion. If finite magnetic drifts
(associated with an inhomogeneous equilibrium magnetic field) are included in our model,
however, we find that simulations fail to saturate; this is discussed in § 6 and appendix C.

3.2. Scale invariance
Given that (3.8) and (3.9) were derived in an asymptotic subsidiary limit of drift kinetics
(see appendix B.3), they are necessarily invariant under the transformation (2.3) with α =
2, and must therefore exhibit the scaling (2.6) of the heat flux with parallel system size –
this is confirmed numerically in § 4.2.

Physically, this scale invariance is a consequence of the fact that (3.8) and (3.9) are valid
within the wavenumber range (see appendix B.1),

√
βe � k‖LT � 1, βe

λei

LT
� k⊥ρe � λei

LT
, (3.10)

i.e. at perpendicular scales much smaller that those at which electromagnetic effects
become important (the ‘flux-freezing scale’; see Adkins et al. 2022), but much larger than
those on which one encounters the effects of electron thermal diffusion due to the finite
Larmor motion of the electrons (Hardman et al. 2022; Adkins 2023) – both of these bring
in a special perpendicular scale that would break the drift-kinetic scale invariance1 . In
other words, (3.8) and (3.9) describe physics on scales

k‖LT ∼ √
σ , k⊥ρ⊥ ∼ 1, ρ⊥ = ρe

σ

LT

λei
, (3.11)

where σ is, formally, some arbitrary constant satisfying

βe � σ � 1. (3.12)

The fact that it should be arbitrary follows from the fact that there is no special scale
within the wavenumber ranges (3.11). Our normalisation of perpendicular and parallel
wavenumbers in (3.8)–(3.9) will thus also be arbitrary, up to the definition of σ .

3.3. Collisional slab ETG instability
Let us now summarise briefly the linear stability properties of the system of equations
(3.8)–(3.9). Linearising and Fourier-transforming these equations, one obtains the

1Implicit in (3.10) is the assumption that the electron inertial scale de = ρe/
√

βe is smaller than the ion Larmor
radius ρi; this is only the case if βe � me/mi, which is well-satisfied in most systems of interest. Should de lie on the
large-scale side of ρi (i.e. βe � me/mi), the lower bound in (3.12) must be replaced with

√
me/mi.
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dispersion relation:

ω2 +
[

1 + τ̄ + 2
3

(
1 + c2

c1

)2

+ 2
3

c3

c1

]
iω‖ω

−
[

2
3
(1 + τ̄ )

c3

c1
ω‖ +

(
1 + c2

c1

)
iω∗eτ̄

]
ω‖ = 0, (3.13)

where we have introduced the characteristic parallel and perpendicular frequencies

ω‖ = c1

(
k‖vthe

)2

2νei
, ω∗e = kyρevthe

2LT
. (3.14)

These are, respectively, the rate of parallel thermal conduction and the drift frequency
associated with the electron-temperature gradient. Note that the dispersion relation
(3.13) is quadratic in the frequency ω because the parallel velocity u‖e is determined
instantaneously in terms of the other fields, by (3.3), unlike in collisionless ETG theory
(Adkins et al. 2022).

If we consider the limit of long parallel wavelengths, viz.,

ω‖ � ω � ω∗e, (3.15)

then the balance of the first and last terms in (3.13) gives us

ω2 =
(

1 + c2

c1

)
iω‖ω∗eτ̄ ⇒ ω = ±1 + isgn(ky)√

2

(
1 + c2

c1

)1/2 (
ω‖|ω∗e|τ̄

)1/2
.

(3.16)
We recognise this as the collisional slab ETG (sETG) instability (Adkins et al. 2022), a
cousin of the collisionless sETG (Lee et al. 1987).

The minimal set of equations that elucidate this process physically can be obtained from
(3.2)–(3.4) under the ordering (3.15): using (3.7) to express the density perturbations in
terms of the electrostatic potential, we have:

∂

∂t
τ̄−1ϕ = ∂u‖e

∂z
,

νei

c1
u‖e = −

(
1 + c2

c1

)
v2

the

2
∂

∂z
δTe

T0e
,

d
dt

δTe

T0e
= −ρevthe

2LT

∂ϕ

∂y
. (3.17)

In this limit, the instability works as follows. Suppose that a small perturbation of
the electron temperature is created with ky �= 0 and k‖ �= 0, bringing the plasma from
regions with higher T0e to those with lower T0e (δTe > 0), and vice versa (δTe < 0). This
temperature perturbation produces alternating hot and cold regions along the equilibrium
magnetic field. The resulting perturbed temperature (and, therefore, pressure) gradients
drive electron flows – determined instantaneously by the balance between the pressure
gradient and collisional drag – from the hot regions to the cold regions [the second
equation in (3.17)], giving rise to increased electron density in the cold regions [the
first equation in (3.17)]. By quasineutrality, the electron density perturbation gives rise
to an exactly equal ion density perturbation, and that, via the Boltzmann response (3.7),
creates an electric field that produces an E × B drift that in turn pushes hotter particles
further into the colder region, and vice versa [the third equation in (3.17)], reinforcing the
initial temperature perturbation and thus completing the feedback loop required for the
instability.
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(a) (b)

FIGURE 1. The growth rate of the collisional sETG instability: these are solutions to (3.13)
for τ = Z = 1, normalised to ω∗e. Panel (a) is a contour plot of the positive growth rates
(Imω > 0) in the (ky, k‖) plane; panel (b) shows cuts of the growth rate at constant kyρ⊥, plotted
as a function of k‖LT/

√
σ . The normalisations ρ⊥ and σ are defined in (3.11). The stability

boundary (3.18) is indicated by grey dashed line in (a).

At short enough parallel wavelengths, the collisional sETG instability is quenched
by rapid thermal conduction that leads to the damping of the associated temperature
perturbation. To see this, we relax the assumption (3.15) and consider the exact stability
boundary of (3.13), determined by the requirement that, assuming ω to be purely real, the
real and imaginary parts of (3.13) must vanish individually. The resultant equations can be
straightforwardly combined to yield

(
ω‖
ω∗e

)2

=
3
2

(
1 + c2

c1

)2

τ̄ 2

(1 + τ̄ )
c3

c1

[
1 + τ̄ + 2

3

(
1 + c2

c1

)2

+ 2
3

c3

c1

]2 . (3.18)

This is a curve ky ∝ k2
‖ in wavenumber space, plotted as the grey dashed line in figure 1(a).

Above this line, corresponding to the limit ω‖ � ω∗e, all modes are purely damped due to
rapid thermal conduction, as in figure 1(b).

At any given ky, the maximum growth rate of the collisional sETG is, therefore, reached
when

ω‖ ∼ ω ∼ ω∗e, (3.19)

which is a balance between dissipation (through conduction) and energy injection due to
the background temperature gradient. Indeed, maximising the growth rate from (3.13) with
respect to ω‖, one finds γmax = C(τ, Z)ω∗e, where C(τ, Z) is a constant formally of order
unity, e.g. C(1, 1) ≈ 0.094 (cf. the maximum values in figure 1b). The increase of the
maximum growth rate of the sETG instability with the perpendicular wavenumber, ω∗e ∝
ky, can only be checked by the effects of the electron perpendicular thermal diffusion due
to finite electron Larmor motion, which, as discussed in § 3.2, occurs outside the range of
wavenumbers in which (3.8)–(3.9) are valid [see (3.11)], meaning that the instability grows

https://doi.org/10.1017/S0022377823000600 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000600


10 T. Adkins, P.G. Ivanov and A.A. Schekochihin

Lx/ρ⊥ Ly/ρ⊥ L‖
√

σ/LT Nx Ny N‖ 2(ρ⊥/ρe)
2ν⊥/νei Nν

Baseline 40 40 20 191 191 31 0.00050 2
Higher-resolution 40 40 20 383 383 63 0.00015 2

TABLE 1. The parameters used in the ‘baseline’ and ‘higher-resolution’ simulations. Both
simulations had τ = Z = 1.

fastest at the smallest perpendicular scales. The consequences of the intrinsic reliance of
the collisional sETG on dissipative physics will be discussed in a nonlinear setting in § 5.1.

4. Numerical verification of scale invariance
4.1. Numerical setup

In what follows, the system (3.8)–(3.9) is solved numerically in a triply periodic box of size
Lx × Ly × L‖ using a pseudo-spectral algorithm. Numerical integration is done in Fourier
space (Nx, Ny and N‖ are the number of Fourier harmonics in the respective directions) with
the nonlinear term calculated in real space using the 2/3 rule for de-aliasing (Orszag 1971).
We integrate the linear terms implicitly in time using the Crank–Nicolson method, while
the nonlinear term is integrated explicitly using the Adams–Bashforth three-step method.
This integration scheme is similar to the one implemented in the popular gyrokinetic code
GS2 (Kotschenreuther, Rewoldt & Tang 1995b; Dorland et al. 2000).

Perpendicular hyperviscosity is introduced in order to provide an ultraviolet
(large-wavenumber) cutoff for the instabilities, achieved by the replacement of the time
derivative on the left-hand sides of (3.8) and (3.9) with

∂

∂t
+ (−1)Nν ν⊥ (ρ⊥∇⊥)2Nν , (4.1)

where ν⊥ is the ‘hypercollision’ frequency and Nν � 2. With this change, our
equations now depend only on the following dimensionless parameters: the perpendicular
and parallel box sizes Lx/ρ⊥, Ly/ρ⊥ and L‖

√
σ/LT , the hyper-collision frequency

2(ρ⊥/ρe)
2Nν ν⊥/νei, and the power of the hyperviscous diffusion operator Nν . Convergence

scans in Nx, Ny, and the perpendicular box size Lx = Ly = L⊥ were carried out on a
baseline simulation (see table 1) to ensure that the chosen resolution adequately captured
the dynamics, and to verify that L⊥ was large enough so that it did not significantly affect
the simulation results, as was required for the arguments of § 2.

We have also found that our results do not depend on the specific details of the
hyperviscosity, viz., on the values of ν⊥ and Nν . It can be viewed as a numerical tool
that allows us to capture the dynamics of the system within a finite simulation domain
and resolution, and is not intended to model a specific physical process. Ultimately,
(4.1) is a stand-in for the physical sinks of energy that exist at higher perpendicular
wavenumbers. The fact that our results end up being independent of hyperviscosity is,
however, significant. The addition of (4.1) breaks the scale invariance associated with
the transformation (2.3), similarly to the way in which FLR effects would break the
drift-kinetic scale invariance in the context of gyrokinetics, a point that we shall revisit
in § 6. One could thus question the inevitability of obtaining the scaling of the heat flux
(2.6) in our system of equations with the modification (4.1). Furthermore, the fact that
the growth rate of the sETG instability peaks at a perpendicular scale determined by
the hyperviscosity – since (3.8) and (3.9) contain no intrinsic perpendicular wavenumber
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FIGURE 2. Time traces of the instantaneous heat flux from simulations in which L‖
√

σ/LT
was varied from 15 to 55, normalised to (ρ⊥/ρe)QgBe.

cutoff – may also be a cause for concern, as the most unstable perpendicular scale is often
thought to play a central role in determining turbulent transport. Both of these concerns
can be dispelled by the realisation that the arguments of § 2 did not rely on the details
of the state of the system at small perpendicular scales; indeed, the behaviour of the heat
flux is determined by the parallel system size L‖, which is manifestly an equilibrium-scale
quantity. In § 5.2, we will show that this is a consequence of the fact that the outer scale is
central in (dynamically) determining the transport and that this outer scale turns out to be
independent of hyperviscosity.

4.2. Scan in L‖/LT

In order to test the dependence of the turbulent heat flux on L‖ predicted by (2.6), we
performed a series of simulations in which L‖

√
σ/LT was varied between 15 and 55 at

fixed parallel resolution (viz., fixed ratio of L‖
√

σ/LT to N‖), while keeping all other
parameters the same as in the baseline simulation (see table 1). Each simulation was
run to long enough times for it to reach saturation and stay in a statistically stationary
state for a while, as can be seen from the time traces of the instantaneous heat fluxes
plotted in figure 2. That such a stationary state exists confirms one of the assumptions
necessary for (2.6)2 , the other assumption, also confirmed numerically, being that this
state is independent of Lx and Ly.

In figure 3, we plot the time average of the turbulent heat flux – as defined in (2.1) for
s = e, and normalised to (ρ⊥/ρe)QgBe, where QgBe = n0eT0evthe(ρe/LT)2 is the (electron)
‘gyro-Bohm’ flux. It is clear that the simulation data agrees extremely well with the
theoretical scaling (2.6). This agreement, however, should not be a cause for complacency:

2Refining our consideration beyond this assumption of stationarity, we observe that the characteristic timescale of the
fluctuations of the instantaneous heat flux increases with the parallel system size – this is manifest in figure 2, where the
simulations with larger L‖

√
σ/LT exhibit higher-amplitude, longer-timescale fluctuations. The origin of this trend can be

understood as follows. Relaxing the assumption of stationarity, instead of (2.6), we have, from (2.5), Q̃s(λ
2/αL‖, t/λ2) =

λ2Qs(L‖, t). If Qs exhibits fluctuations on some characteristic timescale τ , then, if we assume that that both solutions
must be periodic with the same period, the corresponding timescale for the transformed heat flux will be τ̃ = λ2τ . Given
that the parallel system sizes for both solutions are related by L̃‖ = λ2/αL‖, it follows that τ ∝ Lα

‖ . This dependence was
confirmed numerically for the set of simulations shown in figure 2.
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FIGURE 3. The scaling of the turbulent heat flux with L‖/LT , normalised to (ρ⊥/ρe)QgBe
and plotted against logarithmic axes. The points are the simulation data, while the theoretical
prediction [see (2.6)] is shown by the dashed black line. A logarithmic fit to the data gives the
slope of 2.02.

though these results suggest that (2.6) correctly predicts the transport, we would like to
understand how the system manages this, i.e. how it contrives to satisfy the assumptions
underpinning the prediction (2.6). To explain this, we shall consider the dynamics in the
inertial range. This is the subject of the following section.

5. Inertial-range dynamics

To ensure that we had sufficient numerical resolution to resolve adequately the dynamics
of the inertial range, we conducted a ‘higher-resolution’ simulation (see table 1), on
which we shall now focus. Due to the computational demands introduced by the higher
resolution, this simulation was run only up to 5000 (ρe/ρ⊥)2νeit/2; this was sufficient to
ensure that the heat flux had converged to a well-defined average value (see figure 4).

5.1. Free-energy budget
Magnetised plasma systems containing small perturbations around a Maxwellian
equilibrium nonlinearly conserve free energy, which is a quadratic norm of the magnetic
perturbations and the perturbations of the distribution functions of both ions and electrons
away from the Maxwellian (see, e.g. Abel et al. 2013). In the system of equations that we
are considering, the (normalised) free energy reduces to the form

W
n0eT0e

=
∫

d3r
V

[
1

2τ̄

(
1 + 1

τ̄

)
ϕ2 + 3

4
δT2

e

T2
0e

]
. (5.1)

The free energy is a nonlinear invariant, i.e. it is conserved by nonlinear interactions, but
can be injected into the system by equilibrium gradients and is dissipated by collisions. It
is straightforward to show from (3.8) and (3.9) (with the hyperviscosity (4.1) appended)
that the free-energy budget is

1
n0eT0e

dW
dt

= ε − D‖−D⊥, (5.2)
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FIGURE 4. Turbulent heat flux in the higher-resolution simulation (see table 1), normalised
to (ρ⊥/ρe)QgBe. The upper and lower show, respectively, the instantaneous and (rolling)
time-averaged heat fluxes in solid black. The dashed horizontal line in the lower panel is the
average value – as calculated over the entire time interval – while the transparent grey region
around this value shows the error bar associated with the mean, calculated by means of a
moving window average. The time-averaged heat flux converges to within the final error bar
by (ρe/ρ⊥)2νeit/2 ∼ 2000.

where

ε = 1
LT

∫
d3r
V

3
2

δTe

T0e
vEx, vEx = −ρevthe

2
∂ϕ

∂y
, (5.3)

is the energy-injection rate from the equilibrium temperature gradient, and

D‖ = c1v
2
the

2νei

∫
d3r
V

{[(
1 + 1

τ̄

)
∂ϕ

∂z
−
(

1 + c2

c1

)
∂

∂z
δTe

T0e

]2

+ c3

c1

(
∂

∂z
δTe

T0e

)2
}

, (5.4)

D⊥ = ν⊥

∫
d3r
V

[(
ρ

Nν

⊥ ∇Nν

⊥ ϕ
)2 + 3

2

(
ρ

Nν

⊥ ∇Nν

⊥
δTe

T0e

)2
]

, (5.5)

are the dissipation rates due to (parallel) thermal conduction and (perpendicular)
hyperviscosity, respectively. The corresponding one-dimensional (1D) perpendicular
wavenumber spectrum of the energy injection is

εk(k⊥) = 2πk⊥

∫ ∞

−∞
dk‖

3
2

Re
〈
iω∗eϕ

∗
k
δTek

T0e

〉
, (5.6)

while those of the parallel and perpendicular dissipation are

D‖k(k⊥) = 2πk⊥

∫ ∞

−∞
dk‖

〈
ω‖

[
c1

∣∣∣∣
(

1 + 1
τ̄

)
ϕk −

(
1 + c2

c1

)
δTek

T0e

∣∣∣∣
2

+ c3

∣∣∣∣δTek

T0e

∣∣∣∣
2
]〉

,

(5.7)

D⊥k(k⊥) = 2πk⊥

∫ ∞

−∞
dk‖

〈
(k⊥ρ⊥)2Nν ν⊥

(
|ϕk|2 + 3

2

∣∣∣∣δTek

T0e

∣∣∣∣
2
)〉

. (5.8)
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(a) (b)

FIGURE 5. (a) The 1D perpendicular spectra of the energy injection (5.6) (solid red), parallel
dissipation (5.7) (dashed blue) and perpendicular dissipation (5.8) (dotted blue), normalised to
(ρe/LT)2νei/2. The location of the outer scale is shown by the black dot. The rate of parallel
dissipation is significant at the largest scales, while perpendicular dissipation takes over at the
smallest scales. (b) The cumulative perpendicular wavenumber integrals of the quantities plotted
in (a), as well as the nonlinear energy flux (5.9) (solid black line). The latter is approximately
constant in the inertial range, displaying only an order-unity variation, due to the finite simulation
domain.

In (5.6), the asterisk denotes complex conjugation, and the angle brackets an ensemble
average. Note that when analysing the output of simulations, we consider ensemble
averages to be equal to time averages over a period following saturation and the
establishment of a statistical steady state (e.g. after (ρe/ρ⊥)2νeit/2 ∼ 2000 in figure 2).

Plotting the injection and dissipation spectra (5.6)–(5.8) in figure 5(a) allows us to
make a series of important observations. The first, and unsurprising, one is that the
perpendicular dissipation due to hyperviscosity is dominant only at the very smallest
scales, where D⊥k peaks. This confirms the assertion made in § 4.1 that it can be viewed
as a sink of energy that exists at higher perpendicular wavenumbers and has no significant
effect on the dynamics. The outer scale – at which energy is primarily injected into the
turbulence and which we define as corresponding to the perpendicular wavenumber where
the maximum of (5.6) is achieved3 – appears to be independent of hyperviscosity, being
localised on much larger scales, where D⊥k is negligible. The arguments of § 3.2 leading
to the heat-flux scaling (2.6) relied on the scale invariance of the drift-kinetic system,
which, as we have discussed previously, is broken by the introduction of hyperviscosity.
The fact that the energy injection is both independent of hyperviscosity and localised at
the largest scales supports the prediction of (2.6) that the heat flux should be determined
by the inviscid dynamics at scales where scale-invariant drift kinetics is valid.

Considering scales that are larger than the injection scale, it is clear from figure 5 that the
parallel dissipation D‖k is dominant there, peaking on scales comparable to the outer scale.
This is because the existence of the collisional sETG instability depends intrinsically on

3In standard turbulence literature, the outer scale is often defined to be the integral scale of the 1D perpendicular
energy spectrum (5.11), viz., ko

⊥ ≡ ∫∞
0 dk⊥ Eϕ

⊥(k⊥)/
∫∞

0 dk⊥ k−1
⊥ Eϕ

⊥(k⊥). However, given that, physically, we are
interested in the outer scale as the scale at which the free energy is predominantly injected, the choice to maximise
(5.6) seems to be better motivated physically.
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the presence of thermal conduction (see § 3.3), which is a dissipative effect. Indeed, the
maximum growth rate (3.19) occurs where the rates of thermal conduction and energy
injection are comparable, ω‖ ∼ ω∗e. Thus, in order to inject energy, the system has to
dissipate a finite fraction of it. The energy that survives this dissipation then cascades
to small scales through a constant-flux inertial range. This can be seen in figure 5(b),
where we plot the cumulative perpendicular wavenumber integrals of (5.6), (5.7), and
(5.8), as well as the nonlinear energy flux, which can be inferred from the difference
between injection and dissipation:

Γ (k⊥) =
∫ k⊥

0
dk′

⊥
[
εk′(k′

⊥) − D‖k′(k′
⊥) − D⊥k′(k′

⊥)
]
. (5.9)

Both the injection and parallel-dissipation rates reach an approximate plateau at scales
smaller than the outer scale and are much larger than the nonlinear energy flux, which is
approximately constant in the inertial range, displaying an order-unity variation due to the
finite width of the latter in our numerical simulations. The remainder of § 5 is devoted
to characterising the dynamics in the inertial range in order to explain how the system
organises itself to maintain a constant-flux cascade to small scales despite the presence of
significant (parallel) dissipation.

5.2. Constant flux and critical balance in the inertial range
The results of the previous section suggest that our fully developed electrostatic turbulence
organises itself into a state wherein there is a local cascade of the free energy (5.1)
that carries the injected power from the outer scale, through an inertial range, to the
(perpendicular) dissipation scale. This injected power is the (order-unity) fraction of ε

that survives the parallel dissipation at larger scales, viz., ε − D‖, which, for brevity, we
shall call ε in the scaling arguments that follow.

The only nonlinearity in our equations is the advection of the temperature fluctuations
by the fluctuating E × B flows in (3.9). Therefore, we take the nonlinear cascade time to
be the nonlinear E × B advection time:

t−1
nl ∼ k⊥vE ∼ ρevthek2

⊥ϕ̄ ∼ Ωe(k⊥ρe)
2ϕ̄. (5.10)

Here and in what follows, ϕ̄ refers to the characteristic amplitude of the electrostatic
potential at the scale k−1

⊥ . Formally, ϕ̄ can be defined by

ϕ̄2 =
∫ ∞

k⊥
dk′

⊥ Eϕ

⊥(k′
⊥), Eϕ

⊥(k⊥) ≡
∫ ∞

−∞
dk‖ 2πk⊥

〈|ϕk|2
〉
, (5.11)

where Eϕ

⊥(k⊥) is the 1D perpendicular spectrum of ϕ, ϕk is the spatial Fourier
transform of the potential, and the angle brackets denote an ensemble average. The
corresponding quantities for the temperature perturbations, δT̄e, ET

⊥(k⊥), and δTek, are
defined analogously.

Assuming that any possible anisotropy in the perpendicular plane can be neglected (an
assumption that will be verified in § 5.5), a Kolmogorov-style constant-flux argument leads
to a scaling of the amplitudes in the inertial range:

t−1
nl

δT̄2
e

T2
0e

∼ ε = const ⇒ ϕ̄
δT̄2

e

T2
0e

∼ ε

Ωe
(k⊥ρe)

−2. (5.12)

We are using the δTe/T0e part of the free energy (5.1) because, as we noted earlier, in
(3.8)–(3.9), δTe/T0e is the only field that is advected nonlinearly whereas ϕ is ‘sourced’ by
the temperature perturbations through the second term on the left-hand side of (3.8).
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To estimate the size of the electrostatic potential, we therefore balance the two terms in
(3.8), yielding

ϕ̄ ∼ ω‖
ω

δT̄e

T0e
, (5.13)

which should hold at every scale. This implies that the potential and temperature
perturbations will be comparable in magnitude and have the same wavenumber scaling
throughout the inertial range if we posit, scale by scale, that

t−1
nl ∼ ω ∼ ω‖. (5.14)

This is the conjecture of critical balance, whereby the characteristic time associated with
parallel dynamics along the field lines is assumed comparable to the nonlinear advection
rate t−1

nl at each perpendicular scale k−1
⊥ , as in Barnes et al. (2011) and Adkins et al.

(2022). The original rationale for this conjecture comes from the causality argument
proposed in the context of MHD turbulence (Goldreich & Sridhar 1995; Boldyrev 2005;
Schekochihin 2022): two points along a field line can only remain correlated with one
another if information can propagate between them faster than they are decorrelated by
the (perpendicular) nonlinearity; in MHD, this information is carried by Alfvén waves
(similarly, it can be carried by other waves in different plasma and hydro-dynamical
systems; see Cho & Lazarian 2004, Nazarenko & Schekochihin 2011 and Adkins et al.
2022). In our system, the parallel dynamics are dissipative, with the relevant timescale
being set by the parallel conduction rate ω‖. Since there is no mechanism to preserve
the parallel coherence of structures created by perpendicular mechanisms (via injection
due to the sETG instability, or nonlinear cascade), one expects them to break up in
the parallel direction to as fine scales as the system will allow, i.e. structures for which
ω‖ � t−1

nl should be immediately decorrelated by the nonlinearity and broken up into
shorter pieces in the parallel direction. The limiting factor for this parallel refinement
is that if structures reach parallel scales such that ω‖ � t−1

nl , they are wiped out by heat
conduction. As a result, the ‘dissipation ridge’ (the line of critical balance) ω‖ ∼ t−1

nl will
form a natural locus for turbulent structures. This is a version of critical balance that is
appropriate for a system where parallel dissipation is present everywhere [which may also
be true for collisionless plasmas, where ω‖ is instead the Landau (1946) damping rate4]. In
§ 5.1, we saw that the actual amount of parallel dissipation that happens in the inertial
range is small – free energy chooses to stay just shy of the dissipation region (ω‖ >

t−1
nl ) and instead cascade, at an approximately constant rate, along the dissipation ridge

(ω‖ ∼ t−1
nl ).

Combining (5.12), (5.13) and (5.14), we find the following scaling of the amplitudes in
the inertial range:

ϕ̄ ∼ δT̄e

T0e
∼
(

ε

Ωe

)1/3

(k⊥ρe)
−2/3. (5.15)

Then, recalling (5.11), the 1D perpendicular energy spectra in the inertial range are:

Eϕ

⊥(k⊥) ∼ ET
⊥(k⊥) ∼ ϕ̄2

k⊥
∝ k−7/3

⊥ . (5.16)

4Although it remains to be seen whether the dominant effect in enforcing (5.14) is plain linear dissipation or its
suppression via stochastic echos (Schekochihin et al. 2016; Adkins & Schekochihin 2018).
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(a) (b)

FIGURE 6. The 1D (a) perpendicular (5.11) and (b) parallel (5.18) spectra, normalised to their
value at the outer scale. The spectra of the electrostatic potential are plotted in blue, those of the
temperature perturbations are in red. The predicted inertial-range scalings (5.16) and (5.19) are
shown by the dashed black lines. The location of the outer scale (see § 5.3) is indicated by the
black dot. In (a), this is calculated from the maximum of (5.6), while in (b), it is calculated from
the maximum of the 1D parallel spectrum of the energy injection, defined analogously to (5.6).

Using (5.10) and (5.15), the critical balance (5.14) translates into the following
relationship between parallel and perpendicular scales in the inertial range:

k‖λei ∼ Ω1/3
e ε1/6

ν
1/2
ei

(k⊥ρe)
2/3. (5.17)

If we define the 1D parallel spectrum

Eϕ

‖ (k‖) ≡
∫ ∞

0
dk⊥ 2πk⊥

〈|ϕk|2
〉
, (5.18)

and the corresponding temperature spectrum ET
‖ (k‖) analogously, (5.17) and (5.15) imply

the following inertial-range scaling of amplitudes with parallel wavenumbers:

ϕ̄ ∝ k−1
‖ ⇒ Eϕ

‖ (k‖) ∼ ET
‖ (k‖) ∼ ϕ̄2

k‖
∝ k−3

‖ . (5.19)

These simple scaling arguments are vindicated by simulation data. The 1D spectra (5.11)
and (5.18) for both ϕ and δTe are plotted in figure 6. They follow quite well the predicted
scalings (5.16) and (5.19), respectively, below the outer scale and up to the wavenumbers
at which the spectra begin to steepen due to perpendicular dissipation.

We shall return to these inertial-range scalings in § 5.4, where we will study the full 2D
spectra of the turbulence and provide further support for the argument that the cascade
follows the dissipation ridge (the line of critical balance), but first let us demonstrate how
the simple scaling theory developed above allows one to recover – now on physically
motivated dynamical grounds – the scaling of the heat flux (2.6) that was previously
inferred from a formal scaling symmetry of our equations.
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5.3. Outer scale and scaling of heat flux
From (3.19), we know that, for a given ky, the most unstable collisional sETG modes satisfy

ω‖ ∼ ω∗e ∼ kyρe
vthe

LT
, (5.20)

and thus grow at a rate ∼ ω∗e ∝ ky. This means that the linear instability will be
overwhelmed by nonlinear interactions in the inertial range, because their characteristic
rate increases more quickly with perpendicular wavenumber: from (5.10) and (5.15),

t−1
nl ∼ Ωe

(
ε

Ωe

)1/3

(k⊥ρe)
4/3. (5.21)

The outer scale is then the scale at which these two rates are comparable: balancing (5.21)
and (5.20), we get

Ωe(ko
⊥ρe)

2ϕ̄o ∼ ωo
‖ ∼ ω∗e ⇒ ϕ̄o ∼ (ko

⊥LT)−1, ko
yρe ∼ (ko

‖)
2LTλei, (5.22)

where the superscript ‘o’ refers to outer-scale quantities. Thus, we have two relationships
between ko

⊥, ϕ̄o and ko
‖, but in order to determine the outer-scale quantities uniquely, we

need a third constraint. Given that our system (3.8)–(3.9) is scale invariant, there is no
special (microscopic) perpendicular scale that can be used to fix ko

y . Then, assuming that
the heat flux is independent of the perpendicular system size, the only remaining physically
meaningful length scale that can set the outer scale is the parallel system size L‖. The same
should be true for more general systems described by electrostatic drift kinetics, as the
scaling (2.6) would suggest and as we shall discuss shortly.

Assuming, then, that the outer scale is indeed set by the parallel system size, we find
from (5.22) that

ko
‖L‖ ∼ 1 ⇒

(
LT

ρ⊥

)
ϕ̄o ∼ (

ko
⊥ρ⊥

)−1
, ko

⊥ρ⊥ ∼
(

LT

L‖
√

σ

)2

, (5.23)

where ρ⊥ and σ are defined in (3.11), and the magnitude of σ only matters for the purposes
of normalising amplitudes and wavenumbers in plots. Figure 7 shows that these theoretical
predictions agree very well with the data from the scan in L‖/LT that was presented in
§ 4.2.

Let us now estimate the energy flux that is injected by the collisional sETG instability
at the outer scale (5.23): using its definition (5.3), and ignoring any possibility of a
non-order-unity contribution from phase factors, we have, from (5.13), (5.22) and (5.23),

ε ∼ ωo
∗eϕ̄

o δT̄o
e

T0e
∼ vtheρ

2
e

L3
T

(ko
⊥ρe)

−1 ∼ vtheρ
2
e L2

‖
λeiL4

T
. (5.24)

Recalling (2.1), the combination of (5.24) and (5.22) yields the following expression for
the turbulent heat flux:

Qe ∼ n0eT0eεLT ∼ QgBe
LT

λei

(
L‖
LT

)2

∝ L2
‖

L3
T

, (5.25)

where once again QgBe = n0eT0evthe(ρe/LT)2 is the ‘gyro-Bohm’ flux. Unsurprisingly, this
reproduces the scaling with L‖ given by (2.6) for α = 2 [cf., also, (2.7) for G = LT/λei].
Note that, apart from the inevitable dimensional factors, the L‖ scaling determines (the
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(b)(a)

FIGURE 7. (a) The scaling of the perpendicular outer scale ko
⊥ (defined as the peak wavenumber

of the energy injection (5.6)) with L‖/LT . (b) The scaling of the amplitude of the electrostatic
potential ϕ̄o [defined as the amplitude of ϕ at k⊥ = ko

⊥, via (5.11)] with the perpendicular outer
scale. The black points are the simulation data, while the theoretical predictions (5.23) are shown
by the black dashed lines. A logarithmic fit to the data gives the slopes of −1.99 and −0.95 in
(a) and (b), respectively.

nontrivial part of) the dependence of the turbulent heat flux on the temperature gradient,
as we anticipated following (2.6). The fact that our equations (3.8) and (3.9) are invariant
under the same transformation as drift kinetics (2.3) means that obtaining this scaling was,
in a sense, a foregone conclusion. That being said, in arriving at (5.25) via this alternative
route, we have been able to elucidate the dynamical origin of this scaling, viz., that it
is consistent with a critically balanced, constant-flux nonlinear cascade of free energy
to small perpendicular scales. This conclusion is not exclusive to the collisional model
considered in this paper. Starting from (5.10), one can construct an entirely analogous
theory for the turbulence driven by the collisionless sETG instability, obtaining a result
equivalent to (5.25), which reproduces the scaling (2.6), this time for α = 1 (see Adkins
et al. 2022).

Let us discuss the significance of our finding that the outer scale is fixed by the
assumption that ko

‖L‖ ∼ 1. Such a choice goes back to the work by Barnes et al. (2011),
who conjectured, and numerically verified, that the outer scale of electrostatic, gyrokinetic
ITG turbulence in tokamak geometry was set by the connection length L‖ ∼ qR. While
in their case, like ours, this was the only scale that could be reasonably viewed as the
characteristic system size (the spatial inhomogeneity of the magnetic equilibrium), there
was also another, seemingly more physically intuitive, justification available for its role
in determining the large-scale cutoff for the ITG turbulence: one could assume that any
turbulent structures correlated on parallel scales longer than the connection length would
be damped in the stable (‘good-curvature’) region on the inboard side of the tokamak.
Thus, one could believe that the operative reason for the significance of L‖ ∼ qR was
the presence of large-scale dissipation, rather than, as we have now concluded, just the
breaking of scale invariance – in our case, by the finiteness of a periodic box in the parallel
direction5 . A practical implication of this conclusion for more realistic systems appears

5Our system does of course also have parallel dissipation via heat conduction, at the rate ∼ ω‖, but ω‖ decreases
with increasing parallel scale and, at any rate, does not break scale invariance, so cannot set ko

‖ .
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to be that any long-scale parallel inhomogeneity should be sufficient to set ko
‖, without the

need for it to be tied to an energy sink – this could matter for the analysis of turbulence
in, e.g. edge plasmas (Parisi et al. 2020, 2022) or in stellarators (Roberg-Clark, Plunk &
Xanthopoulos 2022), where magnetic fields have parallel structure on scales shorter than
the connection length.

5.4. Two-dimensional spectra
To provide a more detailed description of the critically balanced cascade (and to provide
more evidence that it is indeed a critically balanced cascade), it is interesting to consider
the 2D spectra:

Eϕ

2D(k⊥, k‖) = 2πk⊥
〈|ϕk|2

〉
, (5.26)

ET
2D(k⊥, k‖) = 2πk⊥

〈|δTek/T0e|2
〉
. (5.27)

Unlike in § 5.2, we can no longer assume that Eϕ

2D ∼ ET
2D; this was true only for

the ‘integrated’ 1D spectra dominated by the wavenumbers where the critical-balance
conjecture (5.14) was assumed satisfied, and the two fields thus had the same scaling
(5.13) for ω ∼ ω‖. With this in mind, we will first consider the spectrum of the temperature
perturbations, from which the spectrum of the potential perturbations can then be inferred
via (5.13).

We consider two wavenumber regions, above and below the ‘critical-balance line’
(5.17):

ET
2D(k⊥, k‖) ∼

{
k−a

‖ kb
⊥, k‖ � k2/3

⊥ ,

k−c
⊥ kd

‖, k‖ � k2/3
⊥ ,

(5.28)

where a, b, c, and d are positive constants to be determined. Here, and in what follows,
whenever our expressions appear to be dimensionally incorrect, this is because we have
implicitly chosen to normalise our wavenumbers to the outer scale k‖/ko

‖ → k‖, k⊥/ko
⊥ →

k⊥ so as to reduce notational clutter. To determine the scaling exponents, we follow the
general scheme, which, for MHD turbulence, was laid out by Schekochihin (2022) (see his
appendix C).

Evidently, the scalings in the two regions in (5.28) must match along the boundary
k‖ ∼ k2/3

⊥ , giving

a + d = 3
2(b + c). (5.29)

If a > 1 and d > −1, k‖ ∼ k2/3
⊥ will be the energy-containing parallel wavenumber at a

given k⊥. The 1D perpendicular spectrum is, therefore,

ET
⊥(k⊥) =

∫
dk‖ ET

2D(k⊥, k‖) ∼
∫ k2/3

⊥

0
dk‖ k−c

⊥ kd
‖ ∼ k−c+2(1+d)/3

⊥ . (5.30)

This must match the scaling (5.16) of the 1D perpendicular spectrum derived from the
constant-flux conjecture, implying that

c = 2
3(1 + d) + 7

3 . (5.31)

Two further constraints follow from imposing boundary conditions as k‖ or k⊥ → 0
at constant k⊥ or k‖, respectively. The scaling of the spectrum as k⊥ → 0 (in the region
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k‖ � k2/3
⊥ ) can be determined purely kinematically: the low-k⊥ asymptotic behaviour of a

homogenous 2D-isotropic field must be k3
⊥, implying that

b = 3. (5.32)

This is a fairly standard result6 (see, e.g. appendix A of Schekochihin et al. 2016).
Finally, the scaling as k‖ → 0 (in the region k‖ � k2/3

⊥ ) follows from causality. Indeed,
in § 5.2, we argued that fluctuations become decorrelated for ω‖ � t−1

nl because they
cannot communicate across parallel distances ∼ k−1

‖ , but such k‖ are also too small for
the fluctuations to be erased by thermal conduction. Therefore, the parallel spectrum at
k‖ � k2/3

⊥ must be the spectrum of a 1D white noise:

d = 0. (5.33)

Combining (5.32) and (5.33) with (5.29) and (5.31), we find

a = 9, c = 3. (5.34)

This gives us the following scalings for the 2D spectrum of the temperature perturbations7:

ET
2D(k⊥, k‖) ∼

{
k−9

‖ k3
⊥, k‖ � k2/3

⊥ ,

k−3
⊥ k0

‖, k‖ � k2/3
⊥ .

(5.35)

Turning now to the 2D spectrum of the potential perturbations, analogously to (5.28),
the conditions (5.29) and (5.31) are unmodified – the spectrum must still be continuous
along k‖ ∼ k2/3

⊥ , and match the scaling of the 1D perpendicular spectrum that follows from
the constant-flux conjecture, which is the same for both the potential and temperature
perturbations. Similarly, the scaling of the spectrum as k⊥ → 0 (in the region k‖ � k2/3

⊥ )
will once again be k3

⊥ by the same kinematic argument, implying (5.32). From (5.29) and
(5.31), we again have a = 9. However, the causality argument that led to the white-noise
scaling (5.33) at k‖ � k2/3

⊥ now no longer holds, because ϕ is not directly decorrelated by
the nonlinearity. Instead, it inherits its scaling from δTe/T0e via the balance (5.13), viz.,

Eϕ

2D ∼ ω2
‖

ω2
ET

2D ∼ k4
‖k−3

⊥
ω2

, (5.36)

6Though not one that can be taken for granted. For example, Hosking & Schekochihin (2022) (see also appendix C
of Schekochihin 2022) showed that a k1

⊥ scaling could emerge instead through a balance between turbulent diffusion
at large scales and the nonlinear ‘source’ that would otherwise give rise to the k3

⊥ scaling. Let us estimate the rate
of turbulent diffusion in our system. The dominant contribution to the turbulent-diffusion coefficient D will be from
k⊥ ∼ k3/2

‖ , which, at any given k‖, plays the role of the energy-containing scale. Then D ∼ v2
Etnl ∼ ω̃‖/k̃2

⊥, where have

used the critical-balance condition (5.14), and the tildes denote quantities evaluated at k̃⊥ ∼ k3/2
‖ � k⊥, where k⊥ is

the wavenumber at which turbulent diffusion is acting. The rate of turbulent diffusion at this wavenumber will thus
be k2

⊥D ∼ ω̃‖(k⊥/k̃⊥)2 � ω‖. Turbulent diffusion is, therefore, negligible, and so we are justified in adopting the k3
⊥

scaling. Note that the survival of the k3
⊥ scaling is a noteworthy feature of our system, where the dynamics at k‖ � k2/3

⊥
are dominated by parallel dissipation due to thermal conductivity and do not produce significant turbulent diffusion –
unlike waves, which, e.g. in reduced hydrodynamics (RMHD), do (Schekochihin 2022).

7Schekochihin et al. (2016) obtained, by a similar method, an analogous result for long-wavelength electrostatic ITG
turbulence (which, in this approach, is no different for ETG). Specifically, they found that a = 5 and c = 11/3 – this
was a consequence of the fact that they considered collisionless turbulence, for which the critical-balance condition is
ω‖ ∼ k‖vthe ∼ t−1

nl implying that k‖ ∼ k4/3
⊥ .
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FIGURE 8. A contour plot of the logarithm of the 2D spectrum (5.27) of the temperature
perturbations in the (k⊥, k‖) plane, normalised to its value at the outer scale. The line of critical
balance is shown as the dashed black line, while the outer scale is shown by the black dot. The
horizontal dotted line shows the upper bound on the parallel-wavenumber cuts plotted in the
right panels of figure 9. Similarly, the vertical dotted lines show the lower and upper bounds on
the perpendicular-wavenumber cuts plotted in the right panels of figure 10.

where we have used ω‖ ∝ k2
‖ and the second expression in (5.35). Now, in the region

k‖ � k2/3
⊥ , we expect thermal conductivity in the temperature equation to be subdominant

to the nonlinear rate, and so estimating ω ∼ t−1
nl ∝ k4/3

⊥ in (5.36), we find that

d = 4, c = 17
3 . (5.37)

This gives us the following scalings of the 2D spectrum of the potential fluctuations:

Eϕ

2D(k⊥, k‖) ∼
{

k−9
‖ k3

⊥, k‖ � k2/3
⊥ ,

k−17/3
⊥ k4

‖, k‖ � k2/3
⊥ .

(5.38)

The full 2D spectrum of the temperature perturbations is plotted in figure 8. The
organisation of the system about the critical-balance line is manifest here. Cuts of the
2D spectra (5.26) and (5.27) at constant k‖ and k⊥ are shown in figures 9 and 10,
respectively, for both potential and temperature perturbations, showing good agreement
with the theoretical scalings (5.35) and (5.38). The white-noise spectra at k‖ � k2/3

⊥ , in
particular, are another confirmation of the causal nature of the critical balance.

The extraordinarily steep parallel-wavenumber scaling of the 2D spectra (5.35) and
(5.38) in the region k‖ � k2/3

⊥ can also be viewed as further evidence for the version
of critical balance proposed following (5.14). In terms of timescales, this wavenumber
constraint corresponds to ω‖ � t−1

nl , and thus to a region of dominant thermal conduction
that attempts to erase parallel structure created by the turbulence. The k‖ scaling in
this region proves to be so steep that the free-energy sink due to parallel dissipation
is ineffective: the free energy cannot be nonlinearly transferred into this region in an
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(a)

(b)

FIGURE 9. Cuts of the 2D spectra of (a) the electrostatic potential and (b) the temperature
perturbations at constant k‖, normalised to (ρ⊥/LT)2. The colours indicate the value of k‖LT/

√
σ

for a given cut. The left panels show the entire spectrum plotted as a function of k⊥ρ⊥. The right
panels show selected cuts for k‖LT within the inertial range, with k⊥ rescaled according to the
critical-balance relation (5.17). The black dashed lines show the theoretical scalings (5.38) and
(5.35) in (a), and (b), respectively. The spectra show reasonable agreement with theory at both
small and large perpendicular scales, despite the effects of hyperviscosity being present at the
smallest scales.

efficient way, and instead cascades towards higher perpendicular wavenumbers along the
critical-balance line, eventually encountering perpendicular dissipation, introduced, in our
model, through hyperviscosity. Parallel dissipation thus acts not as a sink for the cascade,
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(a)

(b)

FIGURE 10. Cuts of the 2D spectra of (a) the electrostatic potential and (b) the temperature
perturbations at constant k⊥, normalised to (ρ⊥/LT)2. The colours indicate the value of k⊥ρ⊥
for a given cut. The left panels show the entire spectrum plotted as a function of k‖LT . The right
panels show selected cuts of the spectrum for k⊥ρ⊥ within the inertial range, with k‖ rescaled
according to the critical-balance relation (5.17). The black dashed lines show the theoretical
scalings (5.38) and (5.35) in (a) and (b), respectively. There is very good agreement with theory,
especially at k‖ � k2/3

⊥ , where the scalings extend well beyond the inertial range to higher k⊥ρ⊥,
as can be seen from the left panels – this is because the causality argument is not sensitive to the
precise details of the decorrelation physics.

but instead creates the aforementioned ‘dissipation ridge’, constraining the cascade of
energy in wavenumber space to be along the critical-balance line k‖ ∼ k2/3

⊥ .
One could dismiss this feature as being a peculiarity of our collisional model, given

that the dissipative nature of collisional sETG instability (3.16) is hard-wired into it by
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construction. However, this picture might not be entirely dissimilar from what is observed
in more generic systems of plasma turbulence: e.g. Hatch et al. (2011) observed an overlap
of the spatial scales of energy injection and dissipation in electrostatic, ion-scale toroidal
gyrokinetic simulations, as did Told et al. (2015) in the context of Alfvénic turbulence. The
same behaviour could also be relevant in the context of kinetic ETG-driven turbulence.
The growth rate of the collisionless sETG instability is limited by the parallel streaming
rate ω‖ ∼ k‖vthe (see, e.g. Adkins et al. 2022), which is also the rate of Landau damping;
viewed in the context of the current discussion, this suggests, perhaps, that Landau
damping could play a dissipative role similar to that of the thermal conduction in
determining the way in which the system organises itself in order to support a constant-flux
cascade of energy to small scales. Then, the rates of either parallel streaming or thermal
conduction appearing in the critical balance ω‖ ∼ ω ∼ t−1

nl can also be interpreted as
being there because they are the rates of parallel dissipation, rather than of the parallel
propagation of information, limiting any further refinement of the parallel scale of the
turbulent structures.

5.5. Perpendicular isotropy
Throughout §§ 5.2 to 5.4, our theoretical deductions were carried out under the assumption
that kx ∼ ky ∼ k⊥. This assumption of perpendicular isotropy is not obviously true and
must be tested. Indeed, the maximum sETG growth rate (3.19) is at kx = 0, and so
the outer-scale energy injection is predominantly into the so-called ‘streamers’: highly
anisotropic (kx � ky) structures that can be identified in real space by their alternating
pattern of horizontal bands stretched along the radial (x) direction (Cowley et al. 1991).
In the context of ITG-driven turbulence, it is often assumed (and usually confirmed
numerically) that these streamers are broken apart by zonal flows (see Barnes et al. (2011)
and references therein), restoring isotropy at the outer scale; isotropy in the inertial range
is then assumed as well. In ETG-driven turbulence, however, the role of zonal flows is
less obvious (see, e.g. Dorland et al. 2000; Jenko et al. 2000; Colyer et al. 2017), and
the existence of an isotropic state far from guaranteed – indeed, the real-space snapshots
shown in figure 11 suggest that the system is in fact dominated by streamer-like structures
on the largest scales, and there is little zonal-flow activity. Qualitatively, this is quite
similar to what ETG turbulence has been reported to look like in gyrokinetic simulations
(Joiner et al. 2006; Candy et al. 2007; Roach et al. 2009; Guttenfelder & Candy 2011).

To assess how isotropic the saturated state is, in particular in the inertial range, we plot
the 2D spectra

ET(kx, ky) =
∫ ∞

−∞
dk‖

〈|δTek/T0e|2
〉
, (5.39)

ET(k⊥, θ) = k⊥

∫ ∞

−∞
dk‖

〈|δTek/T0e|2
〉
, (5.40)

in figure 12. Here and in what follows, θ = tan−1(ky/kx) is the polar angle in the
perpendicular wavenumber plane. In both Cartesian and polar representations, we see that
the spectrum is approximately isotropic with respect to the perpendicular wavevectors:
at scales sufficiently smaller than the outer scale (viz., in the inertial range) contours of
constant ET are either circles, in the case of (5.39), or horizontal lines, in the case of
(5.40). The spectra of the potential perturbations, defined analogously to (5.39) and (5.40),
display a similar isotropy. Thus, despite the fact that the largest scales are anisotropic due
to the existence of streamers and the lack of vigorous zonal flows to break them apart,
isotropy is restored in the inertial range.
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(a) (b)

FIGURE 11. Real-space snapshots of (a) the electrostatic potential and (b) the temperature
perturbations from the higher-resolution simulation at (ρe/ρ⊥)2νeit/2 = 3000 (see table 1). The
coordinate axes are as shown, while the red and blue colours correspond to regions of positive
and negative fluctuation amplitudes. The turbulence does not appear to be isotropic on the large
scales that are visible in these plots (streamers are manifest), but turns out to be isotropic in the
inertial range (see figure 12).

(a) (b)

FIGURE 12. Contour plots of the 2D spectra of the temperature perturbations, normalised to
(ρ⊥/LT)2: (a) in Cartesian coordinates, with the radial and poloidal wavenumbers plotted on the
horizontal and vertical axes, respectively; contours of constant ET(kx, ky) (5.39) (black dashed
lines) are approximately circular away from the origin, where injection is localised and the
presence of streamers is manifested by the spectral power being shifted towards ky > kx; (b)
in polar coordinates, with θ = tan−1(ky/kx) and k⊥ρ⊥ plotted on the horizontal and vertical
axes, respectively; contours of constant ET(k⊥, θ) (5.40) (black dashed lines) are approximately
horizontal far away from k⊥ρ⊥ � 1, where injection is localised.
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The observed lack of zonal-flow activity is linked to the fact that there is nothing on
electron scales to give zonal flows privileged status. This makes ETG turbulence quite
unlike its ITG cousin on ion scales, where one encounters the modified adiabatic electron
response (see, e.g. Hammett et al. 1993; Abel & Cowley 2013):

δni

n0i
= δne

n0e
= ϕ′, (5.41)

where ϕ′ is the non-zonal component of the (non-dimensionalised) electrostatic potential.
Indeed, (5.41) has been found to be crucial for capturing essential zonal-flow physics
(Rogers, Dorland & Kotschenreuther 2000; Ivanov et al. 2020, 2022). Physically, this can
be explained by the fact that (5.41) reserves a special status for zonal flows, in that it allows
there to be non-trivial nonlinear interactions between the zonal flows and ϕ′ through the
electrostatic E × B nonlinearity contained in the convective derivative (3.5) of the density
perturbation. However, as we discussed in § 5.2, the adiabatic ion response (3.7) causes
the nonlinearity in the electron continuity equation (3.8) to vanish identically. Crucially,
this means that the system lacks any nonlinearity capable of generating 2D secondary
instabilities that are responsible for the generation of zonal flows and destruction of
streamer structures (Hasegawa & Mima 1978; Hasegawa & Wakatani 1983; Terry &
Horton 1983; Diamond et al. 2005; Ivanov et al. 2020; Zhu, Zhou & Dodin 2020). A
further consequence of this is that the model system (3.8)–(3.9) proves to be incapable
of generating zonal flows even on longer timescales than those over which the observed
isotropisation occurs, unlike what was observed in, e.g. Colyer et al. (2017) and Tirkas
et al. (2023).

6. Summary and discussion

We have considered the transport properties of electrostatic, drift-kinetic plasma
turbulence, with a particular focus on the connection between its macroscopic transport
properties and microscale (inertial-range) dynamics. In the presence of constant
perpendicular equilibrium gradients, it has been observed that the equations of
electrostatic drift kinetics possess a symmetry associated with their intrinsic scale
invariance, in both the collisionless and collisional limits. Under the assumptions of spatial
periodicity, stationarity, and locality, this symmetry has been shown to imply a particular
scaling (2.6) of the heat flux Qs with the parallel system size L‖, viz., Qs ∝ L‖ (or ∝ L2

‖,
in the collisional limit), with the dependence on the equilibrium temperature gradient
following from dimensional analysis (in the absence of other equilibrium gradients). This
macroscopic transport prediction was then confirmed numerically in an electron-scale,
collisional fluid model of electrostatic turbulence driven by the electron-temperature
gradient. A critically balanced, constant-flux cascade of energy from some large, outer
scale – at which energy is effectively injected by the (collisional) slab ETG instability
– to small scales was then shown to be the microscale dynamics consistent with these
macroscopic transport properties. This is one of only two extant numerical demonstrations
of the existence of such a state in gradient-driven turbulence of this kind – the other being
Barnes et al. (2011), for gyrokinetic ITG turbulence.

Two key observations can be made from our results: (i) the effects of dissipation
associated with parallel thermal conduction play a key role in determining the saturated
state of the turbulence, limiting the cascade of free energy in parallel wavenumbers by
clamping it to the ‘dissipation ridge’, or line of ‘critical-balance’, in wavenumber space
(Landau damping could play an analogous role in the collisionless limit); (ii) the outer
scale of the turbulence is determined by the breaking of drift-kinetic scale invariance due
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to the existence of some long-scale parallel inhomogeneity – in our case, this was the finite
size of our periodic box. In more realistic plasma systems like the tokamak, this could be
the connection length L‖ ∼ qR, or some shorter scale associated with inhomogeneities in
the equilibrium magnetic field, such as in the tokamak edge or in stellarators.

These results demonstrate that the details of the (parallel) plasma equilibrium play a
central role in determining the microscopic outer scale for the turbulence, and thus the
saturated amplitudes to which turbulent fluctuations will grow, which in turn determine
the observed macroscopic transport properties. The fact that turbulence in gradient-driven
systems appears to behave similarly to those in which energy is injected by explicitly
large-scale processes is encouraging from the perspective of theory, as it suggests
that existing insights into, and experience of, the latter can be applied to the former,
significantly less well-studied case.

Though the implications of drift-kinetic scale invariance were investigated here in a
reduced model of ETG-driven turbulence, they nevertheless have implications for more
realistic plasma systems due to strong constraints placed on the system by the resultant
symmetry of the governing equations. Indeed, it must be stressed that while the physical
regimes covered by the reduced model are limited in scope – lacking dynamics associated
with, e.g. gradients of the plasma density or equilibrium magnetic field, kinetic effects,
etc. – the scaling (2.6) of the heat flux suffers from no such limitations since it follows
directly from the scale invariance of the electrostatic drift-kinetic system of equations.
The existence of this scaling, however, is predicated on the adoption of the drift-kinetic
limit. Restoring FLR effects by reverting to the (electrostatic) gyrokinetic equation will
evidently break the scale invariance, as the scales k⊥ ∼ ρ−1

s will now appear explicitly in
the equations through the Bessel functions (see, e.g. Abel et al. 2013). Apart from some
interesting exceptions (Parisi et al. 2020, 2022), the general effect of these Bessel functions
is to provide a cutoff for instabilities at large perpendicular wavenumbers, restricting the
region of instability on the ultraviolet side and providing a sink of energy (dissipation)
beyond the wavenumbers where the sETG growth rate peaks. The constant-flux arguments
of § 5 assumed that there was sufficient separation between the outer scale and these
dissipation regions in order to allow an inertial range to develop at the intermediate scales.
Should such a separation exist, the system will effectively be drift-kinetic in the inertial
range and, crucially, at the outer scale, where our results will continue to apply, despite
the system being fully gyrokinetic. In other words, even if drift-kinetic scale invariance is
broken at small scales, the assumption behind (2.6) is that the transport is set by the outer
scale, which is in the drift-kinetic limit, and the relevant breaking of scale-invariance is
done by L‖. This is indeed what we observed in § 5: despite the breaking of scale invariance
at small perpendicular scales due to the introduction of hyperviscosity, our simulation
results still confirmed the scaling (2.6) as the well-defined outer scale was still set by L‖.
We acknowledge, however, that the scale separation required for such a state is far from
guaranteed: non-zero magnetic shear, for example, can create long-wavelength modes with
binormal wavenumbers kyρi ∼ 1 but narrow radial structures near mode-rational surfaces
on the scale kxρe ∼ 1 (Hardman et al. 2022, 2023; Parisi et al. 2022). Whether our results
are robust to the effects of significant magnetic shear and other forms of equilibrium
shaping that can amplify the importance of FLR – and thus undermine the possible
separation between FLR effects and a putative outer scale – is a subject for future work.

A key assumption behind the scaling (2.6) is that the heat flux is able to reach a
(statistical) steady state. The existence of such a state, however, is less assured than one
might think: indeed, it has been known for some time that nonlinear saturation can fail to
occur in simulations of electron-scale, gradient-driven turbulence due to the persistence of
large-scale streamer structures in the absence of flow shear or a non-adiabatic ion response
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(Joiner et al. 2006; Candy et al. 2007; Roach et al. 2009; Guttenfelder & Candy 2011). In
our simple fluid model, we too find that introducing magnetic drifts associated with an
inhomogeneous equilibrium magnetic field is sufficient to reproduce this behaviour. In
such simulations, the curvature-mediated ETG instability (Horton, Hong & Tang 1988;
Adkins et al. 2022), absent in a straight magnetic field, gives rise to nonlinearly robust,
large-scale streamer structures that cause unbounded growth of the heat flux with time.
Further details of these simulations can be found in appendix C. This behaviour is
consistent with the view that the adiabatic ion response (3.7) is insufficient to saturate
ETG-scale turbulence in the presence of finite magnetic-field gradients (Hammett et al.
1993). It must be stressed that this lack of saturation does not break the drift-kinetic
scale invariance (2.3), which is valid for any constant perpendicular equilibrium gradients,
including those of the equilibrium magnetic field – it merely demonstrates that the
steady state required to deduce (2.6) from (2.3) may not always be achievable in the
regime of interest. Indeed, if we had been able to find a case of turbulence driven
by the curvature-mediated ETG instability that saturated, we would have expected the
scaling (2.6) for the corresponding heat flux (although not necessarily the same detailed
inertial-range structure as for the sETG turbulence that we studied above), but in any event,
no such saturated cases have so far presented themselves.

Another limiting assumption of our work was the electrostatic nature of the
turbulence. The existence of finite electromagnetic perturbations also formally breaks
the (electrostatic) drift-kinetic symmetry observed in § 2 (this is manifest on inspection of
the equations of electromagnetic gyrokinetics). However, this does not necessarily imply
that the heat-flux scaling (2.6) can never be realised in systems with finite beta. Indeed, we
argued above that this scaling would still hold in the presence of FLR effects if the outer
scale of the turbulence remained within the drift-kinetic limit, despite scale invariance
being formally broken at the smallest spatial scales. A similar argument is applicable here.
If the outer scale lies at scales sufficiently smaller than those on which electromagnetic
effects are important (the ‘flux-freezing scale’, determined by the electron inertia in the
collisionless limit, or resistivity in the collisional one; see Adkins et al. (2022)), then
the scaling (2.6) will continue to hold as, once again, the assumption behind it is that
the transport is set by the outer scale located in the electrostatic, drift-kinetic limit, and the
relevant breaking of scale invariance is done by L‖, rather than the flux-freezing scale.
For example, Chapman-Oplopoiou et al. (2022) performed nonlinear, electromagnetic
simulations of JET–ILW pedestals for k⊥ρi � 1, and observed the same scaling of the heat
flux with LT as (2.7) at gradients sufficiently far above the linear threshold. However, if the
outer scale lies on scales larger than the flux-freezing scale, i.e. if the turbulence is truly
electromagnetic, then the constraints imposed by the scale invariance of electrostatic drift
kinetics is lifted. Given that such regimes will likely be realised within tokamak-relevant
reactor scenarios (see, e.g. Shimomura et al. 2001; Sips 2005; Patel et al. 2021) due
to higher experimental values of the plasma beta (the ratio of the thermal to magnetic
pressures), a central focus of ongoing research is the extent to which any of the general
physical conclusions of this paper carry over into truly electromagnetic systems of
tokamak turbulence.
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Appendix A. Derivation of scale invariance

In this appendix, we demonstrate explicitly that electrostatic drift kinetics remains
invariant under the transformation (2.3), which leads to the heat-flux scaling (2.6).

We take as our starting point the electrostatic drift-kinetic system, in which the
perturbed distribution function for species s consists of a Boltzmann and gyrokinetic parts

δfs(r, v, t) = −qsφ

T0s
f0s(r, v) + hs(r, v, t), (A1)

and hs evolves according to

∂

∂t

(
hs − qsφ

T0s
f0s

)
+ (

v‖b0 + vds
) ·∇hs + c

B0
b0·
[∇φ × ∇ (hs + f0s)

] =
∑

s′
C(l)

ss′ [hs].

(A2)
Here, and in what follows, f0s is the Maxwellian equilibrium distribution of species s
with density n0s and temperature T0s, and φ is the perturbed electrostatic potential. The
magnetic-drift velocity arising from the inhomogeneities in the equilibrium magnetic field
is given by

vds = b0

Ωs
×
(

v2
‖b0·∇b0 + 1

2
v2

⊥∇ log B0

)
, (A3)

where b0 = B0/B0 is the direction of the equilibrium magnetic field, B0 = |B0| is its
magnitude, and Ωs = qsB0/msc, qs and ms are the Larmor frequency, charge and mass of
species s, respectively. The collision term on the right-hand side of (A2) is the linearised
Landau collision operator

C(l)
ss′ [hs] = γss′

ms
∇v·

∫
d3v′ f0s(v)f0s′(v′)(∇w∇ww)

·
[

1
ms

∇v

hs(v)

f0s(v)
− 1

ms′
∇v′

hs′(v′)
f0s′(v′)

]
, (A4)

where w = |w|, w = v − v′, γss′ = 2πq2
s q2

s′ log Λ, and all velocity derivatives are evaluated
at constant position r. Finally, (A2) is closed by quasineutrality,

0 =
∑

s

qsδns =
∑

s

qs

[
−qsφ

T0s
n0s +

∫
d3vhs

]
. (A5)
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In what follows, it will be useful to decompose hs into parts that are even and odd in the
parallel velocity v‖, viz.,

heven
s (r, v‖, v⊥, t) = 1

2

[
hs(r, v‖, v⊥, t) + hs(r,−v‖, v⊥, t)

]
, (A6)

hodd
s (r, v‖, v⊥, t) = 1

2

[
hs(r, v‖, v⊥, t) − hs(r,−v‖, v⊥, t)

]
. (A7)

It follows straightforwardly from (A2) and (A4) that heven
s and hodd

s satisfy, respectively,

∂

∂t

(
heven

s − qsφ

T0s
f0s

)
+ v‖b0·∇hodd

s + vds·∇heven
s

+ c
B0

b0·
[∇φ × ∇heven

s

]+ c
B0

b0·
[∇φ × ∇f0s

] =
∑

s′
C(�)

ss′
[
heven

s

]
, (A8)

∂hodd
s

∂t
+ v‖b0·∇heven

s + vds·∇hodd
s + c

B0
b0·
[∇φ × ∇hodd

s

] =
∑

s′
C(�)

ss′
[
hodd

s

]
. (A9)

The quasineutrality condition (A5) becomes

0 =
∑

s

qs

[
−qsφ

T0s
n0s +

∫
d3v heven

s

]
. (A10)

Note that in (A8) and (A9), we have assumed that the (radial) gradient of the equilibrium
distribution function ∇f0s is an even function of v‖ – this is only the case in systems without
any equilibrium flows.

We now wish to consider transformations of the system of equations (A8)–(A10) that
can be made whilst preserving the size of perpendicular equilibrium gradients. It is
obvious from considering, e.g. the magnetic-drift velocity (A3) that any rescaling of the
velocity variables v‖ and v⊥ – at fixed equilibrium magnetic-field strength – would require
a compensatory rescaling of ∇ log B0 and |b0·∇b0| in order to preserve the magnitude
and direction of vds. Therefore, we will henceforth restrict ourselves to transformations
involving only the spatial and time coordinates. In a similar vein to Connor & Taylor
(1977), we consider the following one-parameter transformation:

h̃even
s = λae heven

s (x/λa⊥, y/λa⊥, z/λa‖, t/λat), (A11)

h̃odd
s = λao hodd

s (x/λa⊥, y/λa⊥, z/λa‖, t/λat), (A12)

φ̃ = λaeφ(x/λa⊥, y/λa⊥, z/λa‖, t/λat), (A13)

where x, y and z are the radial, binormal and parallel (to the magnetic field) coordinates,
respectively, the tildes indicate the transformed distribution functions and fields, and ai
are real constants parametrising the transformation. Quasineutrality (A10) implies that
the amplitudes of the ‘even’ fields must be rescaled in the same way, as in (A11) and
(A13), while the rescaling of the amplitude of hodd

s remains unconstrained. The spatial
and time coordinates can then be rescaled independently, with the caveat that the radial
and binormal coordinates should be rescaled in the same way in order not to rule out
perpendicular isotropy. The rescaling (A11)–(A13) is the most general one-parameter
transformation of electrostatic drift kinetics that can be made while allowing (although
not requiring) the spatial isotropy of structures in the perpendicular plane.

The constants ai can be fixed by demanding that the transformation leave (A8) and
(A9) invariant. In the collisionless limit, the collision operator can be neglected and it is
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easy to show that ae = ao = a⊥ = a‖ = at is the only choice that fulfils this condition.
The collisional limit is somewhat more subtle. As we have done throughout this paper,
we order ω ∼ (k‖vthe)

2/νss′ � νss′ and ωheven
s ∼ k‖vthshodd

s . In the resultant collisional
expansion, the collision operator is forced to vanish at leading order (see appendix B.3.1),
and can only survive at higher order due to the presence of finite-Larmor-radius effects
(see appendix B.3.3), which are neglected within the drift-kinetic approximation. At first
order, one obtains, from (A9), a balance between the parallel streaming of heven

s and
the collision operator acting on hodd

s (see appendix B.3.2). At second order, one evolves
heven

s via (A8) with the collision operator neglected (see appendix B.3.3). One can then
show that ae = 2ao = a⊥ = 2a‖ = at is the only choice of parameters that leaves the
drift-kinetic equations invariant. Any constraints on ai inferred from (A11)–(A10) in this
way are only valid to second order within the collisional expansion, and not to any higher
orders. However, given that the solvability conditions (B25) and (B36) guarantee that a
closed system can be obtained solely from these two orders, this is not a problematic
limitation.

Thus, it follows from the above discussion that electrostatic drift kinetics is invariant
under the transformation

h̃even
s = λ2heven

s (x/λ2, y/λ2, z/λ2/α, t/λ2), (A14)

h̃odd
s = λ2/αhodd

s (x/λ2, y/λ2, z/λ2/α, t/λ2), (A15)

φ̃ = λ2φ(x/λ2, y/λ2, z/λ2/α, t/λ2), (A16)

where we have chosen ae = 2 without loss of generality, and α = 1, 2 in the collisionless
and collisional limits, respectively. The transformation of the odd and even parts of the
distribution function hs is inherited by its moments that are odd and even in v‖; e.g. the
temperature perturbation, being a velocity moment that is even in v‖, viz.,

δTs

T0s
= 2

3n0s

∫
d3v

(
msv

2

2T0s
− 3

2

)
heven

s , (A17)

will transform according to (A14). This, when combined with the transformation (A16)
of the electrostatic potential φ gives exactly (2.3), which is the starting point for the
deductions presented in the main text.

Appendix B. Derivation of collisional fluid model

This appendix details a self-contained derivation of the electron-fluid equations
(3.2)–(3.4). An alternative route to these via a subsidiary expansion of a more general
system of (electromagnetic) equations can be found in Adkins (2023) (see also appendix G
of Adkins et al. 2022). In what follows, appendix B.1 describes and physically motivates
our electron-scale, collisional ordering, which is then implemented to derive equations
describing our ion and electron dynamics in appendices B.2 and B.3, respectively.
Although the magnetic geometry adopted throughout the majority of this paper is that
of a conventional slab (see § 3), we shall here consider the more general case in which the
equilibrium (mean) magnetic field B0 is assumed to have the scale length and radius of
curvature

L−1
B = − 1

B0

dB0

dx
, R−1 = |b0·∇b0| , (B1)

assumed constant across the domain. Doing so will allow us to capture the effects of
the magnetic drifts on our plasma while retaining most of the simplicity associated with
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conventional slab gyrokinetics (Howes et al. 2006; Newton et al. 2010; Ivanov et al. 2020,
2022; Adkins et al. 2022). Note that for a low-beta plasma, R = LB.

B.1. Collisional, electron-scale ordering
In our model, we would like to be able to capture, at a minimum, the physics associated
with drift waves, perpendicular advection by both magnetic drifts and E × B flows, and
parallel heat conduction. Therefore, we postulate an asymptotic ordering in which the
frequencies ω of the perturbations in the plasma are comparable to the characteristic
frequencies associated with these phenomena, viz.,

νee ∼ νei � ω ∼ ω∗s ∼ ωdsk⊥vE ∼ κk2
‖, (B2)

where

ω∗s = kyρsvths

2LTs

, ωds = kyρsvths

2LB
(B3)

are the drift and magnetic-drift frequencies, respectively, vE = cE × B/B2 is the E × B
drift velocity (c is the speed of light), κ ∼ v2

the/νei is the electron thermal diffusivity, and

νei = 4
√

2π

3
e4n0e log Λ

m1/2
e T3/2

0e

, νee = νei

Z
(B4)

are the electron–ion and electron–electron collision frequencies, respectively, log Λ being
the Coulomb logarithm (Braginskii 1965; Helander & Sigmar 2005).

The ordering of the parallel conduction rate with respect to the drift frequency gives us
a constraint relating parallel and perpendicular wavenumbers:

κk2
‖ ∼ ω∗s ∼ ωds ∼ k⊥ρe

vthe

L
⇒ (k‖L)2 ∼ L

λei
k⊥ρe, (B5)

where λei = vthe/νei is the electron–ion mean free path and L is some (perpendicular)
equilibrium length scale, L ∼ LTs ∼ LB ∼ R. The ordering of the parallel conduction rate
with respect to the E × B drifts determines the size of perpendicular flows within our
system:

κk2
‖ ∼ k⊥vE ⇒ vE

vthe
∼ k‖

k⊥
k‖λei ∼ ρe

L
≡ ε, (B6)

where ε = ρe/L is the gyrokinetic small parameter (see, e.g. Abel et al. 2013), mandating
small-amplitude, anisotropic perturbations. The frequency of these perturbations is small
compared with the Larmor frequencies of both the electrons and ions:

ω

Ωe
∼ k⊥vE

Ωe
∼ k⊥ρeε,

ω

Ωi
= mi

Zme

ω

Ωe
∼ k⊥ρeε

mi

me
. (B7)

The ordering (B6) of vE relative to the electron thermal velocity allows us to order the
amplitude of the perturbed scalar potential φ:

vE

vthe
∼ c

B0

k⊥φ

vthe
∼ k⊥ρe

eφ
T0e

⇒ eφ
T0e

∼ ε

k⊥ρe
. (B8)

The density perturbations δns are ordered anticipating a Boltzmann density response and
the temperature perturbations δTs are assumed comparable to them:

δTe

T0e
∼ δTi

T0i
∼ δni

n0i
= δne

n0e
∼ eφ

T0e
∼ ε

k⊥ρe
. (B9)
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Finally, for the ordering of perpendicular magnetic-field perturbations, we demand that the
effects of Lorentz tension (equivalently, of parallel compressions) must always be large
enough to have an effect on the electron density perturbation, viz. [cf. (3.2)],

d
dt

δne

n0e
∼ ∇‖u‖e ∼ c

4πen0e
∇‖ [b0· (∇⊥×δB⊥)] ⇒ δB⊥

B0
∼ βe

k‖λei

k⊥ρe

eφ
T0e

, (B10)

where βe = 8πn0eT0e/B2
0 the electron plasma beta. The (compressive) parallel

magnetic-field perturbations are ordered anticipating pressure balance:

δB‖
B0

= 4π

B2
0
δ

(
B2

8π

)
∼ 4π

B2
0
δ(nsTs) ∼ βe

δTe

T0e
∼ εβe

k⊥ρe
. (B11)

The orderings (B5)–(B11) still allow for a choice of ordering for perpendicular
wavenumbers k⊥ with respect to the electron and ion Larmor radii. Given that we would
like to obtain a set of electrostatic equations that exhibit the scale invariance discussed in
§ 2, we consider wavenumbers

βe
λei

L
� k⊥ρe � λei

L
, (B12)

for which the physical motivation is discussed in § 3.2. In terms of time scales, (B12) is
equivalent to demanding that

(k⊥ρe)
2νee � ω ∼ ω∗s ∼ k⊥vE ∼ κk2

‖ � (k⊥de)
2νei, (B13)

where de = ρe/
√

βe is the electron inertial scale. We shall formalise (B12) by demanding
that k⊥ρe ∼ σλei/L, where σ is a placeholder constant satisfying βe � σ � 1. In other
words, k⊥ρ⊥ ∼ 1, where ρ⊥ = ρeL/λeiσ , an ‘intermediate’ spatial scale [cf. (3.11)].

To summarise, (B5)–(B12) imply the following ordering of frequencies:

ω

Ωe
∼ σ
λei

L
ε,

ω

Ωi
∼ mi

me
σ
λei

L
ε; (B14)

length scales:

k⊥ρi ∼ σ
λei

L

√
mi

me
, k⊥ρe ∼ σ

λei

L
, k‖L ∼ √

σ ,
k‖
k⊥

∼ L√
σλei

ε; (B15)

and amplitudes:

eφ
T0e

∼ δne

n0e
∼ δni

n0i
∼ δTe

T0e
∼ δTi

T0i
∼ L

σλei
ε,

δB⊥
B0

∼ βe√
σ

eφ
T0e

,
δB‖
B0

∼ βe
eφ
T0e

. (B16)

All relevant quantities are thus naturally ordered with respect to some combination of
me/mi, σ , λei/L, and the gyrokinetic small parameter ε = ρe/L. The above ordering of
frequencies, length scales and amplitudes with respect to ε is the standard gyrokinetic
ordering (see, e.g. Abel et al. 2013). We choose to treat the ordering in λei/L – the fact
that this should be formally small following straightforwardly from, e.g. νei � ω∗s – as
subsidiary to both the orderings in ε and in the mass ratio [see the first expression in
(B15)], meaning that the formal hierarchy of our expansions is

ε �
√

me

mi
� σ

λei

L
� 1, (B17)

with all other dimensionless parameters treated as finite.
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B.2. Ion kinetics
Given that the ordering of perpendicular wavenumbers (B15) implies that k⊥ρi � 1
under the expansion in the mass ratio, the ion distribution function hi will satisfy the
gyrokinetic equation (see, e.g. Abel et al. 2013), rather than the drift-kinetic one (A2). It
is straightforward to show (by, e.g. expanding the Bessel functions therein for k⊥ρi � 1)
that, to leading order in the mass-ratio expansion, the gyrokinetic equation is solved by

hi = 0. (B18)

The contributions to quasineutrality (A5) arising from the next-order solution will be of
the size

〈hi〉r

f0i
∼ 〈〈ϕ〉Ri

〉
r ∼ ϕ

k⊥ρi
, (B19)

which can be safely neglected. Thus, the ion dynamics do not enter anywhere into our
equations, which is the approximation of ‘adiabatic ions’. Given that no further reference
will be made to the ion temperature gradient LTi , we henceforth denote the electron
temperature gradient LTe = LT .

B.3. Electron fluid equations
We now proceed with our derivation of the electron fluid equations. It will turn out that the
ordering (B15) of perpendicular length scales means that no FLR effects need be retained
within our equations – these can only enter at second order within our expansion, but they
are negligible even at this order (see appendix B.3.3). Furthermore, the ordering of the
perpendicular and parallel magnetic field perturbations (B16) implies that both δB⊥ and
δB‖ can be neglected at all orders in our expansion. We thus adopt the drift-kinetic equation
(A2) for s = e as the starting point, expanding our distribution function he in σλei/L � 1
as

he =
∞∑

n=0

h(n)
e , h(n)

e ∼
(

σ
λei

L

)n eφ
T0e

f0e. (B20)

B.3.1. Zeroth order: perturbed Maxwellian
Given the ordering of timescales (B2), the collision operator on the right-hand side of

(A2) is dominant to leading order:

C(l)
ee

[
h(0)

e

]+ Lei
[
h(0)

e

] = 0, (B21)

where C(l)
ee is given by (A4) for s = s′ = e, and

Lei [he] = γein0e

m2
e

∇v

[
f0e· (∇v∇vv) ·∇v

he

f0e

]
(B22)

is the pitch-angle scattering (Lorentz) collision operator, valid to leading order in the mass
ratio. We multiply (B21) by h(0)

e /f0e and integrate over the entire phase space, yielding∫
d3r
V

∫
d3v C(l)

ee

[
h(0)

e

]+
∫

d3r
V

∫
d3vLei

[
h(0)

e

] = 0. (B23)

Both terms in (B23) are negative definite and must vanish individually, meaning that the
solution is constrained to be a perturbed Maxwellian with no mean flow (Helander &
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Sigmar 2005), viz.,

h(0)
e =

[
δne

n0e
− ϕ + δTe

T0e

(
v2

v2
ths

− 3
2

)]
f0e, (B24)

where ϕ = eφ/T0e, and we have imposed the solvability conditions

∫
d3v h(n)

e =
∫

d3v v2h(n)
e = 0, n � 1, (B25)

in order to determine uniquely the density δne and temperature δTe moments in (B24).
Note that, in general, the Lorentz collision operator constrains the electron distribution
function to be isotropic in the frame moving with the parallel ion velocity. However,
the parallel ion velocity is zero to all orders within our expansion in σλei/L (given the
adiabatic ion solution (B18)), meaning that the electron distribution function will have no
parallel velocity moment to leading order.

We are now in a position to simplify the quasineutrality constraint (A5). Using the
solutions (B18) and (B24), it straightforwardly becomes (3.7).

B.3.2. First order: parallel flows
The parallel flows are determined self-consistently from the leading-order perturbations

at the next order in our expansion, viz., h(1)
e is determined by the solution of the

Spitzer–Härm problem (Spitzer & Härm 1953; Braginskii 1965; Helander & Sigmar
2005):

v‖
∂

∂z

[(
δne

n0e
− ϕ + δTe

T0e

)
+
(

v2

v2
the

− 5
2

)
δTe

T0e

]
f0e = C(l)

ee

[
h(1)

e

]+ Lei
[
h(1)

e

]
. (B26)

This can be inverted for h(1)
e by means of a standard variational method. We define the

functional:

Σ[he] = − 〈he, C(l)
ee [he]

〉− 〈he,Lei [he]〉

+ 2
〈
he, v‖

∂

∂z

[(
δne

n0e
− ϕ + δTe

T0e

)
+
(

v2

v2
the

− 5
2

)
δTe

T0e

]
f0e

〉
, (B27)

where 〈· · · , · · · 〉 denotes an inner product in velocity space weighted by the inverse of the
electron (Maxwellian) equilibrium f0e. Then, considering small variations he = hmin + δh
and using the self-adjointness of the linearised collision operator, it is straightforward to
show that the functional Σ[he] has a minimum at hmin = h(1)

e , for any variation δh (see,
e.g. Helander & Sigmar 2005). Given that the spherical harmonics are eigenfunctions of
the linearised collision operator, we choose to expand our distribution function in terms of
spherical coordinates in velocity space (x, α, β), with x = v2/v2

the, as

h(1)
e =

∞∑
p=0

apL(3/2)
p (x)v‖f0e(v) =

∞∑
p=0

apL(3/2)
p (x)v cos αf0e(v), (B28)
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where L(3/2)
p (x) are the generalised Laguerre polynomials and ap coefficients to be

determined. Using this in (B27), one obtains

Σ
[
h(1)

e

] = n0ev
2
the

⎡
⎣ ∞∑

p=0

∞∑
q=0

apaq

2

(
νeeKee

pq + νeiKei
pq

)

+ a0
∂

∂z

(
δne

n0e
− ϕ + δTe

T0e

)
− 5

2
a1

∂

∂z
δTe

T0e

⎤
⎦ , (B29)

where

Kee
pq = − 2

neνee

〈
x1/2L(3/2)

p (x)f0e(v) cos α, C(l)
ee

[
x1/2L(3/2)

q (x)f0e(v) cos α
]〉

, (B30)

Kei
pq = − 2

neνei

〈
x1/2L(3/2)

p (x)f0e(v) cos α,Lei
[
x1/2L(3/2)

q (x)f0e(v) cos α
]〉

, (B31)

are the coefficients calculated in, e.g. Hardman et al. (2022) (and references therein).
Truncating (B28) at p = 3, and demanding that the functional (B29) be stationary with
respect to variations in the coefficients ap, we find that

h(1)
e =

[
a0 + a1L(3/2)

1 (x) + a2L(3/2)

2 (x)
]
v‖f0e, (B32)

where the coefficients are given by

νeia0 = −
217
64

+ 151

8
√

2Z
+ 9

2Z2

1 + 61

8
√

2Z
+ 9

2Z2

∂

∂z

(
δne

n0e
− ϕ + δTe

T0e

)
−

5
2

(
33
16

+ 45

8
√

2Z

)

1 + 61

8
√

2Z
+ 9

2Z2

∂

∂z
δTe

T0e
,

(B33)

νeia1 =
33
16

+ 45

8
√

2Z

1 + 61

8
√

2Z
+ 9

2Z2

∂

∂z

(
δne

n0e
− ϕ + δTe

T0e

)
+

5
2

(
13
4

+ 45

8
√

2Z

)

1 + 61

8
√

2Z
+ 9

2Z2

∂

∂z
δTe

T0e
, (B34)

νeia2 = −
3
8

− 3

2
√

2Z

1 + 61

8
√

2Z
+ 9

2Z2

∂

∂z

(
δne

n0e
− ϕ + δTe

T0e

)
−

5
2

(
3
2

+ 3

2
√

2Z

)

1 + 61

8
√

2Z
+ 9

2Z2

∂

∂z
δTe

T0e
, (B35)

which can easily be shown to satisfy the Onsager (1931) relations.
The solution (B32) allows us to determine, subject to the solvability condition∫

d3v v‖h(n)
e = 0, n � 2, (B36)

the parallel electron flow:

u‖e = 1
n0e

∫
d3v v‖h(1)

e . (B37)
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Using (B32) for h(1)
e in (B37) and defining the (ion-charge-dependent) coefficients [cf. for

Z = 1, (C16) and (C17) in Hardman et al. 2022]

c1 =
217
64

+ 151

8
√

2Z
+ 9

2Z2

1 + 61

8
√

2Z
+ 9

2Z2

, c2 =
5
2

(
33
16

+ 45

8
√

2Z

)

1 + 61

8
√

2Z
+ 9

2Z2

, c3 =
25
4

(
13
4

+ 45

8
√

2Z

)

1 + 61

8
√

2Z
+ 9

2Z2

− c2
2

c1
,

(B38)
we obtain (3.3).

B.3.3. Second order: density and temperature evolution
At second order, the electron drift-kinetic equation

d
dt

(
h(0)

e + ϕf0e
)+ v‖

∂h(1)
e

∂z
+ vde·∇⊥h(0)

e + ρevthe

2LT

∂ϕ

∂y

(
v2

v2
the

− 3
2

)
f0e

= C(l)
ee

[
h(2)

e

]+ Lei
[
h(2)

e

]
, (B39)

describes the evolution of the density and temperature perturbations in (B24). When
taking the density and temperature moments of (B39), the contributions from the
collision operator on the right-hand side vanish, as the electron–electron and Lorentz
collision operators conserve particle number and energy to this order in our expansion.
An observant reader may have noticed, however, that in starting our expansion from
the drift-kinetic equation (A2), we ruled out the possibility of retaining higher-order
collisional terms due to FLR motions of the electrons. Indeed, if we had instead considered
the gyrokinetic equation (see, e.g. Abel et al. 2013) and expanded the oscillatory
exponential factors exp(±ik·ρe) arising from the presence of the gyroaverages of the
collision operator on its right-hand side, we would have obtained terms of the form
∼νeeρ

2
e ∇2

⊥h(0)
e at order (k⊥ρe)

2. These represent electron thermal diffusion (cf. Newton
et al. 2010; Ivanov et al. 2020; Hardman et al. 2022). Recalling the ordering of timescales
(B13), however, it is clear that these terms are negligible in comparison with those on the
left-hand side of (B39) – this justifies post factum the choice to perform our expansion
starting from the drift-kinetic equation (A2), rather than from the gyrokinetic one.

Thus, taking the density moment of (B39), employing the identity [see (A3) and (B1)]

vde·∇⊥h(0)
e = ρevthe

2

(
2
R

v2
‖

v2
ths

+ 1
LB

v2
⊥

v2
ths

)
∂h(0)

e

∂y
, (B40)

and making use of the fact that R = LB for a low-beta plasma, we find:

d
dt

δne

n0e
+ ∂u‖e

∂z
+ ρevthe

LB

∂

∂y

(
δne

n0e
− ϕ + δTe

T0e

)
= 0. (B41)

For the temperature moment, we first note that, from (B32),

1
n0e

∫
d3v v‖

(
v2

v2
the

− 3
2

)
h(1)

e =
(

1 + c2

c1

)
u‖e + δqe

n0eT0e
, (B42)
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where δqe is defined in (3.6). Therefore, taking the temperature moment of (B39) and
dividing throughout by 3/2 yields

d
dt

δTe

T0e
+ 2

3
∂

∂z
δqe

n0eT0e
+ 2

3

(
1 + c2

c1

)
∂u‖e

∂z
+ 2

3
ρevthe

LB

∂

∂y

(
δne

n0e
− ϕ + 7

2
δTe

T0e

)

= −ρevthe

2LT

∂ϕ

∂y
. (B43)

Neglecting the magnetic drifts, one straightforwardly obtains (3.2) and (3.4) from (B41)
and (B43), respectively.

Appendix C. Case with finite magnetic-field gradients

This appendix details the behaviour of our model system in the presence of magnetic
drifts associated with an inhomogeneous equilibrium magnetic field. Assuming its scale
length LB [see (B1)] to be constant across the domain, our evolution equations for the
electrostatic potential and temperature perturbations are now [see (B41) and (B43)]:

∂

∂t
τ̄−1ϕ − c1v

2
the

2νei

∂2

∂z2

[(
1 + 1

τ̄

)
ϕ −

(
1 + c2

c1

)
δTe

T0e

]

+ ρevthe

LB

∂

∂y

[(
1 + 1

τ̄

)
ϕ − δTe

T0e

]
= 0, (C1)

d
dt

δTe

T0e
+ 2

3
c1v

2
the

2νei

∂2

∂z2

{(
1 + 1

τ̄

)(
1 + c2

c1

)
ϕ −

[
c3

c1
+
(

1 + c2

c1

)2
]

δTe

T0e

}

− 2
3

ρevthe

LB

∂

∂y

[(
1 + 1

τ̄

)
ϕ − 7

2
δTe

T0e

]
= −ρevthe

2LT

∂ϕ

∂y
. (C2)

The reduction of these equations to (3.8)–(3.9) occurs for very steep electron-temperature
gradients, in the limit LB/LT → ∞.

The presence of the magnetic-drift terms in (C1)–(C2) introduces another instability
into the system, the curvature-mediated ETG (cETG) instability (Horton et al. 1988;
Adkins et al. 2022), which can, and generally does, modify its turbulent-transport
properties. In particular, the turbulence theory of § 5 assumed that the sETG instability
was the dominant source of energy injection; this is only the case at sufficiently large
LB/LT , meaning that we would expect departures from the behaviour observed in § 5 to
be most significant for LB/LT of order unity. A series of simulations were conducted in
which LB/LT was varied, with all other parameters being kept the same as in the baseline
simulation (see table 1); the heat flux from these simulations is plotted in figure 13. It is
readily apparent that the introduction of finite magnetic-field gradients leads to a failure
of saturation for all simulations where LB/LT is above the linear critical gradient for the
cETG instability:

LB

LT
>

1
2

(
τ̄ + 40

9
1
τ̄ 2

)
, (C3)

a threshold that can be derived straightforwardly from (C1) and (C2) in the 2D limit. This
lack of saturation appears to persist irrespective of changes in box size, aspect ratio, and
resolution in any (or all) of the coordinate directions.

As discussed in § 5.5, the adiabatic ion response (3.7) causes the nonlinearity in the
electron-scale continuity equation (3.8) to vanish identically, a property that is shared by
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FIGURE 13. Time traces of the instantaneous heat flux from simulations with finite LB/LT , with
the limit of LB/LT → ∞ shown for comparison. All parameters are the same as the baseline
simulation (see table 1), and the heat flux is normalised to (ρ⊥/ρe)QgBe. The heat flux grows
without bound in all simulations with (finite) LB/LT above the linear critical gradient (C3)
(≈2.72 for τ̄ = 1), with the rate of divergence decreasing as LB/LT is increased.

(C1), meaning that the system lacks any nonlinearity capable of generating 2D secondary
instabilities that are responsible for the generation of zonal flows and destruction of
streamer structures (see references in § 5.5). Indeed, the lack of saturation in the case
of our ETG simulations appears to be due to the inability of the system to break apart the
streamers created by the cETG instability; the existence of such streamers causes the heat
flux to diverge as they ‘short circuit’ the heat transport across the radial domain. Even if
the simulation initially appears to saturate after the linear phase, it eventually forms these
large-scale streamers, which appear to be immune to all types of nonlinear shearing, as
seen clearly in the real-space snapshots of cETG turbulence shown in figures 14 and 15.

This perhaps confirms the view of Hammett et al. (1993) that the adiabatic ion
response (3.7) is insufficient to saturate ETG-scale turbulence in the presence of finite
magnetic-field gradients, and one may have to resort to more inclusive closures for the
ions. One such closure including scales comparable to the ion-Larmor radius is (see, e.g.
Adkins et al. 2022)

δne

n0e
= −τ̄−1ϕ + 1

n0i

∫
d3v 〈gi〉r , (C4)

where τ̄−1 is now an operator defined as follows:

− τ̄−1ϕ = −Z
τ

(1 − Γ̂0)ϕ ≈

⎧⎪⎪⎨
⎪⎪⎩

Z
2τ

ρ2
i ∇2

⊥ϕ, k⊥ρi � 1,

−Z
τ

ϕ, k⊥ρi � 1,

(C5)

and the operator Γ̂0 can be expressed in Fourier space in terms of the modified Bessel
function of the first kind: Γ0 = I0(αi) e−αi , where αi = (k⊥ρi)

2/2. The presence of the
non-adiabatic ion distribution function gi in (C4), however, means that one would have
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(a) (b)

FIGURE 14. Real-space snapshots of the (a) electrostatic potential and (b) temperature
perturbations from the simulation with LB/LT = 1000 from figure 13, taken at (ρe/ρ⊥)2νeit/2 =
200. The coordinate axes are as shown, while the red and blue colours correspond to regions of
positive and negative fluctuation amplitude. At these early times, the turbulence appears similar
to that of saturated sETG turbulence for LB/LT → ∞ (cf. figure 11), despite the eventual lack of
saturation (see figure 15).

(a) (b)

FIGURE 15. The same as figure 14, except taken at (ρe/ρ⊥)2νeit/2 = 1000. The unbounded
growth of the heat flux is associated with the formation of large-scale, approximately 2D streamer
structures that appear to be immune to all types of nonlinear shearing.

also to include a self-consistent treatment of ions in order to make use of this closure
(gi = 0 is not a solution to the ion gyrokinetic equation in the presence of finite
magnetic drifts). Should this, or other similar closures, allow for saturation, this would
imply that one must always appeal to (elements of) ion-scale physics for saturation
of electrostatic cETG-driven turbulence. The extent to which such considerations are
practically relevant, however, depends on whether or not the system being considered
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contains any electromagnetic physics, and thus on the value of the (electron) plasma beta
βe. Indeed, for βe � me/mi, the ‘flux-freezing scale’ de = ρe/

√
βe is encountered before

(i.e. is smaller than) the ion Larmor radius ρi when moving towards larger perpendicular
scales. Provided that the wavenumber interval between de and ρi is sufficiently wide to
allow for the presence of electron-scale, electromagnetic instabilities, the mechanisms of
saturation in such a system could be vastly different than in the electrostatic regime. This
is a subject of ongoing research.
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