Canad. Math. Bull. Vol. 16 (2), 1973

ON THE IRREGULAR SETS OF A TRANSFORMATION GROUP

BY S. K. KAUL

We assume throughout that (X, T, π) is a transformation group [2], where X is a topological space which is always assumed to be regular and Hausdorff. We call a point $x \in X$ regular under T if for any open set U in X and any subset G of T such that $\overline{xG} \subseteq U$, there exists an open set V containing x, such that $VG \subseteq U$ [7]. Let R(X) denote the interior of the set of all the regular points of X under T, and I(X)the set of *irregular* points of X under T, that is the set of points which are not regular under T. Let C denote the set of all the components of $\overline{I(X)}$. In this paper we wish to study C. We shall say that C has property Q if for any $A \in C$ and any open set U containing A there exists an open set V, such that $A \subseteq V \subseteq U$ and $\overline{I(X)} \cap bdy V = \phi$, where bdy is the boundary. In case each component of $\overline{I(X)}$ is a singleton property Q is the same as zero dimensionality. In view of Theorem A below the results here extend the results of [3] to general topological spaces.

We say that $A \in C$ is *irregular* if there exists a net $t = \{t_{\alpha}, \alpha \in D, \geq\}$ in T such that the net $xt = \{xt_{\alpha}, \alpha \in D, \geq\}$ converges to a point of A for some $x \in R(X)$. Although theorems (4.1) and (4.4) are of interest in themselves the main results in this study are:

THEOREM A. Let (X, T, π) be a transformation group. Let X be a locally compact and locally connected space, \overline{xT} be compact for each $x \in X$, $\overline{I(X)}$ be compact, and R(X) be connected and dense in X. If C has property Q and there is an $A \in C$ which is irregular, then, (a) each member of C which is invariant under T is irregular, and (b) C has at most two invariant sets.

T is said to be discrete on a subset *E* of *X* if there exists a net *t* of distinct elements in *T* such that, $xt \rightarrow x$ (xt converges to x) for each $x \in E$. *T* is called *strongly discrete* if it is discrete on *R*(*X*), and simply *discrete* if it is discrete on *X*. By *C*(x, t) we shall denote the set of all the accumulation points of the net xt for a net *t* in *T* and $x \in X$. *T* is said to be discontinuous if for any given net *t* in *T*, *C*(x, t) lies entirely in $\overline{I(X)}$ for each $x \in R(X)$.

THEOREM B. Let (X, T, π) be a transformation group. Let X be a locally compact, locally connected, separable and first countable space, \overline{xT} be compact for each $x \in X$,

Received by the editors November 26, 1970 and, in revised form, December 3, 1971.

I(X) be compact, and R(X) be connected and dense in X. Let T be strongly discrete. If C is finite then C has at most two elements.

REMARK. If C is finite then it has property Q, since X is regular and Hausdorff.

1. LEMMA (1.1). Let $t = \{t_{\alpha}, \alpha \in D, \geq\}$ and $s = \{s_{\beta}, \beta \in E, \geq\}$ be nets in T and let $at \rightarrow b$ and $bs \rightarrow c$, where a, b, c are in X. If $ts = \{t_{\alpha}s_{\beta}, (\alpha, \beta) \in D \times E\}$ is the product directed net, then

(i) $c \in C(a, ts)$, and

(ii) if b is regular under T, then ats $\rightarrow c$.

Proof. Proof of (i) is straightforward. We prove (ii). Let U be an open set containing c. Let W be an open set such that $c \in W \subseteq \overline{W} \subseteq U$. Let $\delta \in E$ be such that for any $\beta \in E$ and β beyond δ (that is $\beta \ge \delta$), $bs_{\beta} \in W$. Let $G = \{s_{\beta} : \beta \in E$ and β beyond δ }. Then, $\overline{bG} \subseteq U$. From regularity of T at b there exists an open set V containing b, such that, $VG \subseteq U$. Let $\gamma \in D$ be such that $at_{\alpha} \in V$ for α beyond γ ($\alpha \ge \gamma$). Then clearly for any (α , β) in the product directed set beyond (γ , δ), $at_{\alpha}s_{\beta} \in U$. This proves (ii), and the proof of the lemma is complete.

LEMMA (1.2). Let $\{x_{\alpha}, \alpha \in D, \geq\}$ and $\{y_{\alpha}, \alpha \in D, \geq\}$ be nets in X converging respectively to x and y. If T is regular at x and for each $\alpha \in D$ there exists a $g_{\alpha} \in T$, such that, $x_{\alpha}g_{\alpha}=y_{\alpha}$, then the net $\{xg_{\alpha}, \alpha \in D, \geq\}$ converges to y.

Proof. Suppose $\{xg_{\alpha}\}$ does not converge to y. Then there exists an open set U containing y such that the net is frequently in its complement. Let V, W be open sets, such that, $y \in W \in \overline{W} \subseteq V \subseteq \overline{V} \subseteq U$, and $G = \{g_{\alpha} : \alpha \in D \text{ and } xg_{\alpha} \in X - \overline{V}\}$. Then $\overline{xG} \subseteq X - \overline{W}$, and from the regularity of T at x there exists an open set 0 containing x, such that, $0G \subseteq X - \overline{W}$. Let $\alpha \in D$ be such that for $\alpha \ge \gamma$, $\alpha \in D$, $x_{\alpha} \in 0$ and $y_{\alpha} \in W$. But there exists a $\delta \ge \gamma$, $\delta \in D$, such that $g_{\delta} \in G$, and hence $y_{\delta} = x_{\delta}g_{\delta} \notin W$. This is a contradiction. Hence $\{xg_{\alpha}\}$ converges to y and the proof is complete.

Lemma (1.2) gives immediately:

COROLLARY (1.2). If $t = \{t_{\alpha}\}$ is a net in T such that, for some $x \in X$, xt converges to y and T is regular at y, then $yt^{-1} \rightarrow x$, where t^{-1} is the net $\{t_{\alpha}^{-1}\}$.

LEMMA (1.3). Let xT be compact for each $x \in X$. If $t = \{t_{\alpha}, \alpha \in D, \geq\}$ is a net in T, then the set $E(t) = \{x \in R(X) : C(x, t) \subseteq R(X)\}$ is both open and closed in R(X).

Proof. Let $x \in E(t)$. Since C(x, t) is compact and R(X) is open, there exists open sets V and W, such that, $C(x, t) \subseteq W \subseteq \overline{W} \subseteq V \subseteq \overline{V} \subseteq R(X)$. Let $G = \{t_{\alpha} : \alpha \in D\}$

226

and $xt_{\alpha} \in W$. Then $xG \subseteq V$, and from the regularity of T at x there exists an open set U containing x such that $UG \subseteq V$. Hence for any $y \in U$, $\overline{yG} \subseteq R(X)$. Since G contains all t_{α} for $\alpha \ge \alpha_0$, for some $\alpha_0 \in D$, it follows that $C(y, t) \subseteq R(X)$ for each $y \in U$. This proves that E(T) is open.

Suppose a is an accumulation point of E(t) in R(X) and that $C(a, t) \cap I(X) \neq \emptyset$. Then there exists a subset $s = \{s_{\alpha}, \alpha \in E, \geq\}$ of t, such that, $as \rightarrow b \in \overline{I(X)}$. Since \overline{bT} is compact, we may assume, without loss of generality, that bs^{-1} converges, say to c. It is easy to see that I(X) is invariant under T, and, hence, so is $\overline{I(X)}$. Thus $c \in \overline{I(X)}$. Since $a \neq c$ there exist open sets V and W, such that, $c \in W \subseteq \overline{W} \subseteq V$ and $a \notin \overline{V}$. Let $G = \{g \in T : ag \in W\}$. Since T is regular at a, we may choose an open set U containing a such that $UG \subseteq V$. Let also $U \cap V = \emptyset$. Let $y \in E(t) \cap U$, and $r = \{r_{\alpha}, \alpha \in F\}$ be a subnet of s, such that, yr converges, say to z. Since $y \in E(t)$, $z \in R(X)$. Hence a $rr^{-1} \rightarrow y$ [Lemma (1.1), (ii)]. But since r is a subset of s, $ar \rightarrow b$ and $br^{-1} \rightarrow c$. Hence a rr^{-1} is frequently in W [Lemma (1.1), (i)], and therefore G contains a subset which is cofinal in rr^{-1} . This implies, since $y \in U$, that $y rr^{-1}$ is frequently in V, which is a contradiction. Hence $C(a, t) \cap I(X) = \emptyset$ and $a \in E(t)$. This proves that E(t) is closed in R(X), and completes the proof of the lemma.

LEMMA (1.4). Suppose xT is compact for each $x \in X$ and X is metrizable. Then $x \in X$ is regular under T if and only if it is equicontinuous with respect to any metric on X compatible with the topology of X.

Proof. Suppose d is a metric on X compatible with its topology. For any set $A \subseteq X$ we shall denote by $U(A, \varepsilon)$ the ε -neighbourhood of A for any $\varepsilon > 0$. We also denote $U(\{x\}, \varepsilon)$ by $U(x, \varepsilon)$.

Suppose T is regular at $x \in X$. Let $\varepsilon > 0$ be given. Let $\{U_i: 1 \le i \le n\}$ be a finite open covering of \overline{xT} , where $U_i = U(x_i, \varepsilon/4)$ for some $x_i \in \overline{xT}, 1 \le i \le n$. Let $G_i = \{t \in T: xt \in U_i\}$. Then $\overline{xG_i} \subseteq W_i = U(x_i, \varepsilon/2)$, and $T = \bigcup_{i=1}^n G_i$. Since n is finite, by the regularity of T at x, there exists a $\delta > 0$, such that, $U(x, \delta)G_i \subseteq W_i$. Hence if $d(x, y) < \delta$ then $d(xt, yt) < \varepsilon$ for each $t \in T$, and T is equicontinuous at x.

Suppose that T is equicontinuous at x. Let U be open and $G \subseteq T$ be such that $\overline{xG} \subseteq U$. Since \overline{xG} is compact there exists an $\varepsilon > 0$, such that, $U(\overline{xG}, \varepsilon) \subseteq U$. Let $\delta > 0$ be such that, for each $t \in T$, $d(x, y) < \delta$ implies that $d(xt, yt) < \varepsilon$. Then clearly $U(x, \delta)G \subseteq U$, and T is regular at x. This completes the proof.

2. LEMMA (2.1). Suppose X is a locally connected and locally compact space, and $\overline{I(X)}$ is zero dimensional. If $y \in I(X)$ and \overline{yT} is compact then there exists a net t in T such that for some $z \in R(X)$, $zt \rightarrow y$.

Proof. Since $y \in I(X)$, there exists an open set V such that for some subset G of $T, \overline{yG} \subseteq V$ but there does not exist an open set U containing y such that $UG \subseteq V$.

Since I(X) is invariant under T, $yG \subseteq I(X)$. Since yG is compact, I(X) is zero dimensional and X is locally compact, there exists an open set $W \subseteq V$, such that, \overline{W} is compact, $\overline{yG} \subseteq W$ and $I(X) \cap$ bdry $W = \emptyset$, where bdry is the boundary. Thus if U is any connected open set containing y, $Ug \cap$ bdry $W \neq \emptyset$ for some $g \in G$. Let $\{V_{\alpha} : \alpha \in D\}$ be a neighbourhood system of connected open sets at y, and for any α , $\beta \in D$ let $\alpha \geq \beta$ if and only if $V_{\alpha} \subseteq V_{\beta}$. Let $x_{\alpha} \in V_{\alpha}$ and $g_{\alpha} \in G$ be such that, $x_{\alpha}g_{\alpha}=y_{\alpha} \in$ bdry W. Then the net $\{y_{\alpha}, \alpha \in D\}$ has a convergent subnet, $\{y_{\alpha}, \alpha \in E\}$ converging, say to $z \in$ bdry $W \subseteq R(X)$. Since $\{y_{\alpha}g_{\alpha}^{-1}, \alpha \in E\}$ converges to y, it follows from Corollary (1.2) that $\{zg_{\alpha}^{-1}, \alpha \in E\} \rightarrow y$. This proves the lemma.

LEMMA (2.2) Let xT be compact for each $x \in X$, and $A \subseteq X$ be closed and invariant under T. If there exists a net t in T such that for some $x \in X - A$, $xt \rightarrow y \in A$, then $y \in I(X)$.

Proof. t contains a subnet $s = \{s_{\alpha}, \alpha \in E\}$ such that, ys^{-1} converges. Since A is invariant under T and closed if $ys^{-1} \rightarrow z$, then $z \in A$. Let U, V, W be open sets such that, $z \in V$ and $\overline{V} \subseteq U$, W contains x and is disjoint with U. If $G = \{s_{\alpha}^{-1} \in s: ys_{\alpha}^{-1} \in V\}$, then $\overline{yG} \subseteq U$, but for no open set 0 containing y is $0G \subseteq U$, since the net xt and therefore xs is eventually in 0. Hence $y \in I(X)$. This proves the lemma.

THEOREM (2.3). Suppose X is a locally compact and locally connected space, $\overline{I(X)}$ is zero dimensional, \overline{xT} is compact for each $x \in X$ and R(X) is connected. Then given a $y \in I(X)$ there exists a net t in T, such that, for each $x \in R(X)$, $xt \rightarrow y$.

Proof. From Lemma (2.1) there exists a net t in T such that $x_0t \rightarrow y$ for some $x_0 \in R(X)$. Since R(X) is connected and $x_0 \in E(t)$, it follows from Lemma (1.3) that $C(x, t) \cap R(X) = \emptyset$ for each $x \in R(X)$. Now let U be an open set containing y such that $\overline{I(X)} \cap$ bdry $U = \emptyset$. Then it is easy to see that the set $E(t, U) = \{x \in R(X): C(x, t) \subseteq U\}$ is open. E(t, U) is also closed in R(X): For let a be an accumulation point of E(t, U) in R(X) and suppose that $C(a, t) \notin U$. Then there exists a subnet s of t, such that, $as \rightarrow b \notin U$. Since at has no accumulation point in R(X), $b \in \overline{I(X)}$ and hence $b \notin \overline{U}$. Let V be an open set 0 containing a, such that, for any $z \in 0$, zs is eventually in V. But 0 contains a point $z \in E(U, t)$ contradicting that $C(z, t) \subseteq U$. Hence E(t, U) is also closed.

Thus, from above, R(X) = E(t, U). Since for any given $z \neq y$ there exists an open set U not containing z, it is clear that $xt \rightarrow y$ for each $x \in R(X)$. This completes the proof of the theorem.

THEOREM (2.4). Suppose X is a locally connected and locally compact space, $\overline{I(X)}$ is zero dimensional, \overline{xT} is compact for each $x \in X$ and R(X) is connected. Then I(X) is closed. **Proof.** Let y be an accumulation point of I(X), and $\{y_{\alpha}, \alpha \in D\}$ be a net in I(X) converging to y. For each $\alpha \in D$, let $t_{\alpha} = \{t_{\alpha\beta}, \beta \in E_{\alpha}\}$ be a net in T such that, $xt_{\alpha} \rightarrow y_{\alpha}$ for each $x \in R(X)$ [Theorem (2.3)]. Fix an $x \in R(X)$, then $\lim_{\alpha} \lim_{\beta} xt_{\alpha\beta} = y$. Hence from [8, p. 69, Theorem 4], there exists a net t in T such that $xt \rightarrow y$. Then, since $\overline{I(X)}$ is invariant under T and $x \notin I(X)$, from Lemma (2.2), $y \in I(X)$. Hence I(X) is closed, and the proof is complete.

THEOREM (2.5). Under the hypotheses of Theorem (2.3) I(X) has at most two minimal sets.

Proof. From Theorem (2.4), I(X) is closed. The proof can be completed using Theorem (2.3) and following the proof of the theorem in [3, p. 62].

3. Let C denote the set of all the components of I(X) of a transformation group (X, T, π) . Let $Y=C \cup \{\{x\}: x \in R(X)\}$ have the quotient topology, and $p: X \to Y$ be the natural projection.

LEMMA (3.1) If C has property Q, then p is a closed map and I(X)p is zero dimensional.

Proof. It is easy to see that if C has property Q then Y is an upper semi-continuous decomposition of X, and therefore p is a closed map. To show that $\overline{I(X)}p$ is zero dimensional notice that if V is an open set containing an $A \in C$, such that, $\overline{I(X)} \cap$ bdry $V = \emptyset$, then Vp is open and $\overline{I(X)}p \cap$ bdry $Vp = \emptyset$. This implies, using property Q, that $\overline{I(X)}p$ is zero dimensional. This proves the lemma.

Since I(X) is invariant under T, for any component A of I(X), At is again a component of $\overline{I(X)}$ for each $t \in T$. Consequently if each $A \in C$ is compact then (Y, T, ρ) , where $\rho: Y \times T \rightarrow Y$ is defined by $(Y, T)\rho = xt\rho$, for any $(y, t) \in Y \times T$ where $x \in y\rho^{-1}$, is a transformation group [2, p. 7, Definition (1.39)] provided C has property Q. Furthermore, the following diagram

$$\begin{array}{ccc} X \times T \xrightarrow{\pi} X \\ \downarrow^{p \times 1} & \downarrow^{p} \\ Y \times T \xrightarrow{\rho} Y \end{array}$$

where 1 is the identity on T, is commutative.

Henceforth in this section we assume that X is locally connected and locally compact, C has property Q and each $A \in C$ is compact, so that, Y is a locally compact and locally connected space, and furthermore that \overline{xT} is compact for each $x \in X$, so that \overline{yT} is compact for each $y \in Y$.

Let I(Y) denote the set of all the irregular points of (Y, T, ρ) and $R(Y) = Y - \overline{I(Y)}$.

[June

LEMMA (3.2). I(Y) is zero dimensional and is contained in I(X)p.

Proof. Since R(X) is open in X, and p is 1-1 on R(X), the restriction of p to R(X), $p \mid R(X)$, is a homeomorphism. Hence from (*), $R(X)p \subseteq R(Y)$. This implies that $I(Y) \subseteq \overline{I(X)}p$. Hence $\overline{I(Y)}$ is zero dimensional, since $\overline{I(X)}p$ is zero dimensional [Lemma (3.1)].

THEOREM (3.3). $A \in C$ is irregular if and only if $Ap \in I(Y)$.

Proof. If $A \in C$ is irregular then by definition there exists a net t in T such that for some $x \in R(X)$, xt converges to a point of A. Hence $xpt \rightarrow Ap$. Since, $y = xp \in R(Y)$ [Lemma (3.1)], and $Ap \in \overline{I(X)}p$ which is closed and invariant under T, from (*), from Lemma (2.2), $Ap \in I(Y)$.

Conversely, suppose $z=Ap \in I(Y)$. Since I(X)p is zero dimensional [Lemma (3.1)], and \overline{zT} is compact, from Lemma (2.1) there exists a net t in T such that for some $y \in R(X)p$, $yt \rightarrow z$. Hence since \overline{xt} is compact, if $x=yp^{-1}$, then $x \in R(X)$, and for a subnet s of t, xs converges to a point of A. This completes the proof.

Proof of Theorem A. Let $A \in C$ be an irregular set, and Ap=a. Then $a \in I(Y)$ [Theorem (3.3)]. Since R(X) is connected and dense in X, R(Y) is connected. Hence from Theorem (2.3), there exists a net t in T, such that, for each $y \in R(Y)$, $yt \rightarrow a$. If $B \in C$ is not irregular, then $Bp \notin I(Y)$ [Theorem (3.4)]. From Theorem (2.4), I(Y) is closed, and hence $Bp \in R(Y)$. Therefore $Bpt \rightarrow a$ and Bp is not invariant under T, and from (*) B is not invariant under T. This proves (a).

Since from (a) each invariant element $A \in C$ is irregular, it follows that $\{Ap\}$ is a minimal set in (Y, T, ρ) . But as there can be at most two such minimal sets [Theorem (2.5)], C can have at most two invariant elements. This proves (b), and completes the proof of the theorem.

4. THEOREM (4.1). Suppose (X, T, π) is a transformation group, where X is a separable and first countable space, \overline{xT} is compact for each $x \in X$, and $I(X) = \emptyset$. If T is discrete then it is finite.

Proof. Let $\{a_n:n=1, 2, \ldots\}$ be a dense set in X and let T be not finite. Since $\overline{a_1T}$ is compact and X is first countable there exists a sequence $s_1 = \{s_{1n}: n=1, 2, \ldots\}$ of distinct elements in T, such that, the sequence a_1s_1 converges. Inductively we get a subsequence s_m of $s_{m-1}, m \ge 2$, such that, a_ms_m converges. Hence by the diagonal process there exists a sequence s in T, such that, a_ns converges for each $a_n, n=1, 2, \ldots$. Since T is regular at each a_n , for the product directed net $ss^{-1}, a_nss^{-1} \rightarrow a_n$ for each a_n [Lemma (1.1)]. Again, from the first countability of X, we get a sequence t in T, such that, $a_nt \rightarrow a_n$ for each a_n : For consider a neighbourhood

system $U_n = \{U_{nm}: m=1, 2, ...\}$ of a_n , and let $t_n = s_{i(n)}s_{j(n)}^{-1} \in s \times s^{-1}$ such that, $t_n \neq t_k$ and $a_k s_{i(n)} s_{j(n)}^{-1} \in U_{kn}$ for all $k \leq n$, n=1, 2, ... Then $t = \{t_n: n=1, 2, ...\}$ is the required sequence. Hence xt converges for each $x \in X$ [7, p. 465, Lemma (3.2)], and from the proof of Theorem (3.2) [7, p. 465] it follows that $xt \rightarrow x$ for each $x \in X$. This proves the lemma.

THEOREM (4.2). Suppose X is a separable and first countable space, xT is compact for each $x \in X$, $I(X) \neq \emptyset$ and T is strongly discrete. Then C has at least one irregular set.

Proof. Since $I(X) \neq \emptyset$, *T* is not finite. There must exist a point $x \in R(X)$ such that $\overline{xT} \cap \overline{I(X)} \neq \emptyset$, for otherwise, R(X) being invariant under *T*, the transformation group $(R(X), T, \pi)$ satisfies all conditions of Theorem (4.1) and hence is not discrete, that is (X, T, π) is not strongly discrete. This is a contradiction. Hence there exists a sequence *t* in *T*, such that, $xt \rightarrow y \in \overline{I(X)}$. If *A* is the component of $\overline{I(X)}$ containing *y*, then *A* is irregular. This completes the proof.

COROLLARY (4.2). Assume the hypotheses of Theorem A, and, furthermore, that X is separable and first countable and T is strongly discrete. Then

- (a) each $A \in C$ which is invariant under T is irregular, and
- (b) C has at most two invariant sets.

Proof. From Theorem (4.2) C has at least one irregular set. The results then follow from Theorem A. This completes the proof.

The following lemma is essentially a result of Roberson [9].

LEMMA (4.3) Suppose X is a locally compact, locally connected and first countable space, $\overline{I(X)}$ is zero dimensional, y and z are points of $\overline{I(X)}$, such that, $z \notin \overline{yT}$, R(X) is connected and \overline{xT} is compact for each $x \in X$. If t is a sequence in T, such that, $xt \rightarrow z$ for some $x \in R(X)$, then it has a subsequence s, such that, $xs^{-1} \rightarrow y$ for each $x \in X$. Consequently $\overline{yT} = \{y\}$.

Proof. Consider a sequence of connected open sets $\{V_n:n=1, 2, \ldots\}$ which is a neighbourhood system at y. Let U be an open set containing z, such that, \overline{U} is compact and disjoint with \overline{yT} , and $\overline{I(X)} \cap$ bdry $U=\emptyset$. Since, from Lemma (2.1), R(X) is dense in X, there exists a $y_n \in V_n \cap R(X)$ for each n. Let $m(n) \ge n$ be an integer, such that, $y_n t_{m(n)} \in U$ (this is possible from Theorem (2.3)), so that, since $yt_{m(n)} \in \overline{yT}$, and $V_n t_{m(n)}$ is connected, $V_n t_{m(n)} \cap$ bdry $U \neq \emptyset$. Let x_n be a point in this intersection. Assuming without loss of generality that $x_n \rightarrow x$, since $x \in R(X)$, we get from Lemma (1.2) that $\{xt_{m(n)}^{-1}:n=1, 2, \ldots\} \rightarrow y$. Thus $s^{-1}=$ $\{t_{m(n)}^{-1}:n=1, 2, \ldots\}$ is the required sequence and $xs^{-1} \rightarrow y$ for each $x \in R(X)$ [Theorem (2.3)]. If $y' \in yT$ and $y' \neq y$, then since $xs \rightarrow z$ for each $x \in R(X)$, we can get, as above, a subsequence s' of s, such that, $xs'^{-1} \rightarrow y'$ for each $x \in X$. But this is impossible. This completes the proof.

Proof of Theorem B. Suppose $I(X) \neq \emptyset$. Then from Theorem (4.2), C has at least one irregular element. Hence $I(Y) \neq \emptyset$ (Theorem (3.3)). Since I(Y) and $\overline{I(X)}p$ are both invariant under T, the set $E = \overline{I(X)}p - I(Y)$ is also invariant under T. If $A \in C$ is not irregular, then $a = Ap \in E$. Let $b \in I(Y)$, and t be a net in T such that for each $y \in R(Y)$, $yt \rightarrow b$ [Theorem (2.3)]. Since $E \subseteq R(Y)$, $at \rightarrow b$. But since $\overline{I(X)}p$ is finite at eventually takes the value b. But, since $b \notin E$, $a \in E$, and E is invariant under T, this is impossible. Hence $E = \emptyset$, and each $A \in C$ is irregular [Theorem (3.3)]. Since C is finite, so is I(Y). Then as in Lemma 2 [8], using Lemma (4.3), we can show that I(Y) has at most two points. Hence C has at most two elements. This completes the proof.

THEOREM (4.4). Suppose X is a separable and first countable space, xT is compact for each $x \in X$, and R(X) is connected. Then T is discontinuous if and only if it is strongly discrete.

Proof. If T is discontinuous then it is obviously strongly discrete. To prove the converse, suppose that T is strongly discrete but not discontinuous. Then, since X is first countable, there exists a sequence t in T, such that, for some $x \in R(X)$, $C(x, t) \subseteq R(X)$. Consequently, from Lemma (1.3), $C(x, t) \subseteq R(X)$ for each $x \in R(X)$. Hence, just as in the proof of Theorem (4.1), using the separability of X, we can get a sequence s, such that, $xs \rightarrow x$ for each $x \in R(X)$, contradicting the fact that T is strongly discrete. Therefore, T is discontinuous and the proof is complete.

REFERENCES

1. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1968.

2. W. H. Gottschalk and G. A. Hedlund, *Topological dynamics*, Colloq. Publ., American Math. Soc., Providence, R.I., 1955.

3. W. J. Gray and F. A. Roberson, On the near equicontinuity of transformation groups, Proc. Amer. Math. Soc. 23 (1969), 59-63.

4. T. Homma and S. Kinoshita, On homeomorphisms which are regular except for a finite number of points, Osaka J. Math. 7 (1955), 29–38.

5. S. K. Kaul, On almost regular homeomorphisms, Canad. J. Math. 20 (1968), 1-6.

6. —, On a transformation group, Canad. J. Math. 21 (1969), 935-941.

7. ----, Compact subsets in function spaces, Canad. Math. Bull. 12 (1969), 461-466.

8. J. L. Kelley, General topology, Van Nostrand, Princeton, N.J., 1955.

9. F. A. Roberson, Some theorems on the structure of near equicontinuous transformation groups, Canad. J. Math. 23 (1971), 421-425.

UNIVERSITY OF SASKATCHEWAN,

REGINA, SASKATCHEWAN