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ON THE IRREGULAR SETS OF A 
TRANSFORMATION GROUP 

BY 

S. K. KAUL 

We assume throughout that (X, T, 77) is a transformation group [2], where Jf is 
a topological space which is always assumed to be regular and Hausdorff. We call a 
point x e X regular under T if for any open set U in X and any subset G of T such 
that xG^ U, there exists an open set V containing x, such that VG^ U [7]. Let 
R(X) denote the interior of the set of all the regular points of X under T, and I(X) 
the set of irregular points of X under T, that is the set of points which are not 
regular under T. Let C denote the set of all the components of I(X). In this paper 
we wish to study C. We shall say that C has property Q if for any A e C and any 
open set U containing A there exists an open set V, such that A ç V^ U and 
I(X) n bdy ¥=$, where bdy is the boundary. In case each component of I{X) is 
a singleton property Q is the same as zero dimensionality. In view of Theorem A 
below the results here extend the results of [3] to general topological spaces. 

We say that A e C is irregular if there exists a net t={ta, a e D , > } in T such 
that the net xt={xta, oc e D, > } converges to a point of A for some x e R(X). 
Although theorems (4.1) and (4.4) are of interest in themselves the main results in 
this study are : 

THEOREM A. Let (X, T, IT) be a transformation group. Let Xbe a locally compact 
and locally connected space, xT be compact for each XEX, I(X) be compact, and 
R(X) be connected and dense in X.IfC has property Q and there is an AeC which 
is irregular, then, (a) each member of C which is invariant under T is irregular, and 
(b) C has at most two invariant sets. 

Tis said to be discrete on a subset E of Xiï there exists a net t of distinct elements 
in jfsuch that, xt->x (xt converges to x) for each x E E. Tis called strongly discrete 
if it is discrete on R(X), and simply discrete if it is discrete on X. By C(x, t) we shall 
denote the set of all the accumulation points of the net xt for a net t in T and 
x E X. Tis said to be discontinuous if for any given net t in T, C(x, t) lies entirely 
in 1{X) for each x e R(X). 

THEOREM B. Let (X, T, TT) be a transformation group. Let Xbe a locally compact, 

locally connected, separable and first countable space, xTbe compact for each XEX, 
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I(X) be compact, and R(X) be connected and dense in X. Let Tbe strongly discrete. 
IfC is finite then C has at most two elements. 

REMARK. If C is finite then it has property Q, since X is regular and Hausdorff. 

1. LEMMA (1.1). Let t={ta,v.e D, > } ands={sp, p eE, >} be nets in Tand let 
at->b and bs^c, where a, b, c are in X. Ifts={taSp, (oc, (S) e DxE} is the product 
directed net, then 

(i) ce C(a, ts), and 
(ii) ifb is regular under T, then ats^c. 

Proof. Proof of (i) is straightforward. We prove (ii). Let U be an open set 
containing c. Let W be an open set such that c e W^ W^ U. Let ô G E be 
such that for any /? e E and (i beyond ô (that is /?><5), bsfi e W. Let G={sp:(l e E 
and /? beyond ô}. Then, bG^ U. From regularity of Tat ô there exists an open set 
V containing b, such that, VG^ U. Let y e D be such that ata G F for a beyond y 
(a>y) . Then clearly for any (a, (3) in the product directed set beyond (y, ô), 
ataSp G U. This proves (ii), and the proof of the lemma is complete. 

LEMMA (1.2). Let {xa, a G D, > } and {ya, a e D , > } be nets in X converging 
respectively to x andy. IfTis regular at x and for each a G D there exists a gae T, 
such that, x(Xga=ya, then the net {xga9 a G D, > } converges to y. 

Proof. Suppose {xga} does not converge to y. Then there exists an open set U 
containing y such that the net is frequently in its complement. Let V, W be open 
sets, such that, y e We W^V^V^U, and G={ga:oieD and xgaeX-V}. 
Then xG^X— W, and from the regularity of T at x there exists an open set 0 
containing x, such that, OG^X—W. Let a G D be such that for a > y , oteD, 
xaeO and ya e W. But there exists a ô>y, ô G D, such that gôeG, and hence 
yô=xôgô $ W. This is a contradiction. Hence {xga} converges to y and the proof is 
complete. 

Lemma (1.2) gives immediately: 

COROLLARY (1.2). Ift={ta} is a net in Tsuch that, for some x G X, xt converges to 
y and T is regular at y, then yt~x->x, where t~x is the net {Ç1}. 

LEMMA (1.3). Let xTbe compact for each x e X. Ift={ta,oi e D, > } is a net in T, 
then the set E(t)={x e R(X):C(x, t)^R(X)} is both open and closed in R(X). 

Proof. Let x e E(t). Since C{x, t) is compact and R(X) is open, there exists open 
sets V and W, such that, C(x,t)^W^W^V^V^R(X). Let G={/a:ocGi> 
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and xta e W}. Then xG^ V, and from the regularity of T at x there exists an open 
set U containing x such that UG^ V. Hence for any y eU9 yG^R(X). Since G 

contains all ta for a><x0, for some a0 e D, it follows that C(y9 t)^R(X) for each 
y 6 U. This proves that E(T) is open. 

Suppose a is an accumulation point of E(t) in R(X) and that C(a, t) n / ( Z ) ^ 0 . 
Then there exists a subset s={sa9 a G £, > } of t, such that, a?->ô G 7(JT). Since ô r 
is compact, we may assume, without loss of generality, that bs~x converges, say 
to c. It is easy to see that I(X) is invariant under T9 and, hence, so is I(X). Thus 
c e I(X). Since a^c there exist open sets V and W9 such that, c e W^ W^ V 
and a$V. Let G={ge T:ag e W). Since r i s regular at a, we may choose an open 
set U containing a such that UG^ V. Let also U n K= 0 . Let y e £ ( 0 n £/, and 
r={ra , a G JF} be a subnet of,?, such that, j r converges, say to z. Since y e E(t)9 

z G R(X). Hence j rr_1->^ [Lemma (1.1), (ii)]. But since r is a subset of s, ar-*b 
and br^-t-c. Hence a rr_1 is frequently in W [Lemma (1.1), (i)], and therefore G 
contains a subset which is cofinal in rr~x. This implies, since y e U, that y rr~x 

is frequently in V, which is a contradiction. Hence C(a9 t) n 7(Z)= 0 and tf G is(f). 
This proves that E(t) is closed in R(X)9 and completes the proof of the lemma. 

LEMMA (1.4). Suppose xT is compact for each x e X and X is metrizable. Then 
x G Xis regular under T if and only if it is equicontinuous with respect to any metric on 
X compatible with the topology ofX. 

Proof. Suppose d is a metric on X compatible with its topology. For any set 
i ç l w e shall denote by U(A, e) the e-neighbourhood of A for any e>0. We 
also denote U({x}9 e) by U(x, s). 

Suppose Tis regular at x eX. Let e>0 be given. Let {U^AKiKn} be a finite 

open covering of xT, where Ui=U(xi9 e/4) for some JC,- exT, l < / < « . Let G,= 

{t eTixte Ut}. Then IcG^ W~U(xi9 e/2)9 and T=\J"=1
 Gi> s i n c e n i s finite> ty 

the regularity of Ta t x9 there exists a <5>0, such that, U(x, d)Gi
<^: W^ Hence if 

d(x9 y)<à then d(xt9 yt)<e for each t eT9 and Tis equicontinuous at x. 
Suppose that Tis equicontinuous at x. Let U be open and G ç T be such that 

xGç Ï7. Since xG is compact there exists an £>0, such that, U(xG9 e)^ U. Let 
ô>0 be such that, for each t eT9 d(x9 y)<ô implies that d(xt9 yt)<e. Then clearly 
U(x9 ô)G^ U, and Tis regular at x. This completes the proof. 

2. LEMMA (2.1). Suppose X is a locally connected and locally compact space, and 

I{X) is zero dimensional. If y e I(X) and yT is compact then there exists a net t in 

T such that for some z G R(X)9 zt->y. 

Proof. Since y e I(X)9 there exists an open set V such that for some subset G of 

T9 yG^ F but there does not exist an open set U containing y such that UG^ V. 
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Since I(X) is invariant under T, yG^I(X). Since yG is compact, I{X) is zero 
dimensional and X is locally compact, there exists an open set W^ V, such that, 
W is compact, yG^W and I(X) n bdry W=0, where bdry is the boundary. 
Thus if U is any connected open set containing y, £/g n bdry fiT# 0 for some 
g G G. Let {Va: a G Z)} be a neighbourhood system of connected open sets at j , and 
for any a , j 8 e D let <x>/? if and only if Va<^ Vp. Let xa e Va and gaeG be such 
that, x a g a = j a G bdry W. Then the net {ya, oc G £>} has a convergent subnet, 
{ya, OLEE] converging, say to z e bdry W^R(X). Since {yag~x, cx.eE} converges 
to y, it follows from Corollary (1.2) that {zg"1, oc e E}->y. This proves the lemma. 

LEMMA (2.2) Let xT be compact for each xeX, and A^X be closed and in
variant under T. If there exists a net t in T such that for some x e X—A, xt->y e A, 
then y e IÇX). 

Proof, t contains a subnet s={sa, aeE} such that, ys'1 converges. Since A is 
invariant under Tand closed if ys~x-+z, then z e A. Let U9 V, Wbc open sets such 
that, zeV and V^U, W contains x and is disjoint with U. If G={s~x es: 
ys~x G V}, then yG^ U, but for no open set 0 containing y is OGç U, since the 
net xt and therefore xs is eventually in 0. Hence y e I(X). This proves the lemma. 

THEOREM (2.3). Suppose X is a locally compact and locally connected space, 

I{X) is zero dimensional, xT is compact for each x e X and R(X) is connected. Then 

given aye I(X) there exists a net t in T, such that, for each x e R(X), xt-+y. 

Proof. From Lemma (2.1) there exists a net t in T such that x0t-^y for some 
x0 eR(X). Since R(X) is connected and x0 e E(t), it follows from Lemma (1.3) 
that C(x, t) n R(X)= 0 for each x e R(X). Now let U be an open set containing 
y such that I(X) n bdry U=0. Then it is easy to see that the set E(t, U)={xe 
R(X):C(x, t)^ U} is open. E(t, U) is also closed in R(X): For let a be an accumu
lation point of E(t, U) in R(X) and suppose that C(a, t) $ U. Then there exists a 
subnet s of t, such that, as-+b $ U. Since at has no accumulation point in R(X), 
b G I(X) and hence b$Û. Let Fbe an open set containing b and disjoint with U. From 
the regularity of T at a there exists an open set 0 containing a, such that, for any 
z e 0, zs is eventually in V. But 0 contains a point z eE(U, t) contradicting that 
C(z, t)^ U. Hence E(t, U) is also closed. 

Thus, from above, R(X)=E(t, U). Since for any given zj£y there exists an open 
set U not containing z, it is clear that xt-^y for each x e R(X). This completes the 
proof of the theorem. 

THEOREM (2.4). Suppose X is a locally connected and locally compact space, 

I(X) is zero dimensional, xT is compact for each x e X and R(X) is connected. Then 

I(X) is closed. 
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Proof. Let y be an accumulation point of I(X), and {ya9 oc e D} be a net in I(X) 
converging to y. For each oc e D, let ta={taP, ft e Ea} be a net in T such that, 
xta->ya for each x e R(X) [Theorem (2.3)]. Fix an x e R(X), then lima lim^ xtaP=y. 
Hence from [8, p. 69, Theorem 4], there exists a net t in Tsuch that xt-+y. Then, 
since I(X) is invariant under T and x $ I(X)9 from Lemma (2.2), y e I(X). Hence 
I(X) is closed, and the proof is complete. 

THEOREM (2.5). Under the hypotheses of Theorem (2.3) I(X) has at most two 
minimal sets. 

Proof. From Theorem (2.4), I(X) is closed. The proof can be completed using 
Theorem (2.3) and following the proof of the theorem in [3, p. 62]. 

3. Let C denote the set of all the components of I(X) of a transformation group 
(X, T, TT). Let Y=C U {{x}:x e R(X)} have the quotient topology, and/?:*-> y 
be the natural projection. 

LEMMA (3.1) If C has property Q, then p is a closed map and I(X)p is zero di
mensional. 

Proof. It is easy to see that if C has property Q then Y is an upper semi-con

tinuous decomposition of X, and therefore p is a closed map. To show that I(X)p 

is zero dimensional notice that if Fis an open set containing an A e C, such that, 

I(X) n bdry K = 0 , then Vp is open and I(X)p n bdry Vp=0. This implies, 

using property Q, that I(X)p is zero dimensional. This proves the lemma. 

Since I(X) is invariant under T, for any component A of I(X), At is again a 
component of I(X) for each t eT. Consequently if each A e C is compact then 
( 7 , T, p), where />: Yx T->Y is defined by (7 , T)p=xtp9 for any (y, 0 e F x T 
where JC G J /* - 1 , is a transformation group [2, p. 7, Definition (1.39)] provided C 
has property g . Furthermore, the following diagram 

XxT-^X 

(*) J ' * |p 

y x r - ^ y 
where 1 is the identity on T9 is commutative. 

Henceforth in this section we assume that X is locally connected and locally 

compact, C has property Q and each A e C is compact, so that, Y is a locally 

compact and locally connected space, and furthermore that xTis compact for each 

x e X, so that yT is compact for each y e Y. 
Let I(Y) denote the set of all the irregular points of (Y, T9 />) and R(Y)= 

Y-Wy 

https://doi.org/10.4153/CMB-1973-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-039-2


230 S. K. KAUL [June 

LEMMA (3.2). I(Y) is zero dimensional and is contained in I(X)p. 

Proof. Since R(X) is open in X, and/? is 1 — 1 on R(X), the restriction ofp to 
R(X), p\R(X), is a homeomorphism. Hence from (*), R(X)p^R(Y). This 

implies that I(Y)^I(X)p. Hence I(Y) is zero dimensional, since I(X)p is zero 
dimensional [Lemma (3.1)]. 

THEOREM (3.3). AeC is irregular if and only if Ap e I(Y). 

Proof. If A e C is irregular then by definition there exists a net t in T such that 
for some x e R(X), xt converges to a point of A. Hence xpt-+Ap. Since, y=xp e 

R(Y) [Lemma (3.1)], and Ap e I(X)p which is closed and invariant under T, from 
(*), from Lemma (2.2), Ap e 7(F). 

Conversely, suppose z=Ap el(Y). Since I{X)p is zero dimensional [Lemma 

(3.1)], and zT is compact, from Lemma (2.1) there exists a net / in T such that for 

some y e R{X)p, yt-+z. Hence since xt is compact, if x=yp~1
9 then x e R(X), 

and for a subnet s of t, xs converges to a point of A. This completes the proof. 

Proof of Theorem A. Let A e C be an irregular set, and Ap=a. Then a e I(Y) 
[Theorem (3.3)]. Since R(X) is connected and dense in X, R( Y) is connected. Hence 
from Theorem (2.3), there exists a net t in T, such that, for each y e R(Y),yt-+a. 
If B G C is not irregular, then Bp^I(Y) [Theorem (3.4)]. From Theorem (2.4), 
I(Y) is closed, and hence Bp eR(Y). Therefore Bpt->a and Bp is not invariant 
under T, and from (*) B is not invariant under T. This proves (a). 

Since from (a) each invariant element AeC is irregular, it follows that {Ap} is a 
minimal set in ( Y, T, p). But as there can be at most two such minimal sets [Theorem 
(2.5)], C can have at most two invariant elements. This proves (b), and completes 
the proof of the theorem. 

4. THEOREM (4.1). Suppose (X, T, IT) is a transformation group, where X is a 

separable and first countable space, xT is compact for each x e X, and I(X)= 0. If 

T is discrete then it is finite. 

Proof. Let {an:n=l, 2 , . . .} be a dense set in X and let T be not finite. Since 
a1 Tis compact andXis first countable there exists a sequencesx={sln:n = l, 2 , . . .} 
of distinct elements in T, such that, the sequence a±s± converges. Inductively we get 
a subsequence sm ofsm_u m>2 , such that, amsm converges. Hence by the diagonal 
process there exists a sequence s in T, such that, ans converges for each an, n= 
1 , 2 , . . . . Since Tis regular at each an, for the product directed net ss~x, anss~r->-
an for each an [Lemma (1.1)]. Again, from the first countability of X, we get a 
sequence t in T, such that, ant-^an for each an: For consider a neighbourhood 
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system Un={Unm:m=l, 2,...} of an, and let tn=si{n)sj^n) esxs'1 such that, 
tn7*tk and aksm)sjln) e Ukn for all k<n, n=l, 2, Then t={tn:n=l, 2 , . . . } 
is the required sequence. Hence xt converges for each xeX [7, p. 465, Lemma 
(3.2)], and from the proof of Theorem (3.2) [7, p. 465] it follows that xt->x for 
each xeX. This proves the lemma. 

THEOREM (4.2). Suppose X is a separable and first countable space, xT is compact 
for each x e X, I{X)j& 0 and T is strongly discrete. Then Chas at least one irregular 
set. 

Proof. Since I(X)^ 0, T is not finite. There must exist a point x e R(X) such that 

xT n I(X)T£ 0, for otherwise, R(X) being invariant under T, the transformation 

group (R(X), T, IT) satisfies all conditions of Theorem (4.1) and hence is not 

discrete, that is (X, T, 77) is not strongly discrete. This is a contradiction. Hence 

there exists a sequence t in T, such that, xt-+y e I(X). If A is the component of 

I(X) containing y, then A is irregular. This completes the proof. 

COROLLARY (4.2). Assume the hypotheses of Theorem A, and, furthermore, 
that X is separable and first countable and T is strongly discrete. Then 

(a) each AeC which is invariant under T is irregular, and 
(b) C has at most two invariant sets. 

Proof. From Theorem (4.2) C has at least one irregular set. The results then 
follow from Theorem A. This completes the proof. 

The following lemma is essentially a result of Roberson [9]. 

LEMMA (4.3) Suppose X is a locally compact, locally connected and first countable 

space, I(X) is zero dimensional, y and z are points ofI(X), such that, z $yT, R(X) is 

connected and xT is compact for each x e X. If t is a sequence in T, such that, 

xt-+z for some x G R(X), then it has a subsequence s, such that, xs~x->y for each 

xeX. ConsequentlyyT—{y). 

Proof. Consider a sequence of connected open sets {Vn:n=l,2,...} which is 
a neighbourhood system at y. Let U be an open set containing z, such that, Û is 
compact and disjoint withyT, and I(X) n bdry U=0. Since, from Lemma (2.1), 
R(X) is dense in X, there exists a, yneVn n R(X) for each n. Let m(n)>n be an 
integer, such that, yntm{n) e U (this is possible from Theorem (2.3)), so that, 
since ytm{n) eyT, and Vntm{n) is connected, Vntm{n) C\ bdry V^0. Let xn be a 
point in this intersection. Assuming without loss of generality that xn->x, since 
xeR(X), we get from Lemma (1.2) that {xt^L

{n):n=l, 2,.. .}->j. Thus ̂ ~1= 
{f~J n ) :«=l ,2 , . . . } is the required sequence and xs~x->y for each xeR(X) 
[Theorem (2.3)]. 

https://doi.org/10.4153/CMB-1973-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-039-2


232 S. K. KAUL 

If j ' e yT and y'=£y, then since xs->z for each x e R(X), we can get, as above, a 
subsequence s' of s, such that, x s ' - 1 - * / for each xeX. But this is impossible. 
This completes the proof. 

Proof of Theorem B. Suppose I(X)^0. Then from Theorem (4.2), C has at 
least one irregular element. Hence I(Y)^0 (Theorem (3.3)). Since I(Y) and 
I(X)p are both invariant under T, the set E=I(X)p—I(Y) is also invariant under T. 
If A e C is not irregular, then a=Ap e E. Let b e I(Y), and t be a net in Tsuch that 
for each y e R(Y), yt-+b [Theorem (2.3)]. Since E^R(Y), at->b. But since 
I(X)p is finite at eventually takes the value b. But, since b $ E, ae E, and E is 
invariant under T, this is impossible. Hence E= 0, and each A e C is irregular 
[Theorem (3.3)]. Since C is finite, so is I(Y). Then as in Lemma 2 [8], using 
Lemma (4.3), we can show that I{Y) has at most two points. Hence C has at most 
two elements. This completes the proof. 

THEOREM (4.4). Suppose X is a separable and first countable space, xT is compact 
for each xeX, and R{X) is connected. Then T is discontinuous if and only if it is 
strongly discrete. 

Proof. If T is discontinuous then it is obviously strongly discrete. To prove the 
converse, suppose that T is strongly discrete but not discontinuous. Then, since 
X is first countable, there exists a sequence t in T, such that, for some x e R(X), 
C(x,t)^R(X). Consequently, from Lemma (1.3), C(x, t)^R(X) for each 
x G R(X). Hence, just as in the proof of Theorem (4.1), using the separability of 
X, we can get a sequence s, such that, xs-^x for each x e R(X), contradicting the 
fact that T is strongly discrete. Therefore, T is discontinuous and the proof is 
complete. 
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