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The Stokes equation describes the motion of fluids when inertial forces are negligible
compared with viscous forces. In this article, we explore the consequence of
parity-violating and non-dissipative (i.e. odd) viscosities on Stokes flows in three
dimensions. Parity-violating viscosities are coefficients of the viscosity tensor that are not
invariant under mirror reflections of space, while odd viscosities are those which do not
contribute to dissipation of mechanical energy. These viscosities can occur in systems
ranging from synthetic and biological active fluids to magnetized and rotating fluids.
We first systematically enumerate all possible parity-violating viscosities compatible with
cylindrical symmetry, highlighting their connection to potential microscopic realizations.
Then, using a combination of analytical and numerical methods, we analyse the effects of
parity-violating viscosities on the Stokeslet solution, on the flow past a sphere or a bubble
and on many-particle sedimentation. In all the cases that we analyse, parity-violating
viscosities give rise to an azimuthal flow even when the driving force is parallel to the
axis of cylindrical symmetry. For a few sedimenting particles, the azimuthal flow bends the
trajectories compared with a traditional Stokes flow. For a cloud of particles, the azimuthal
flow impedes the transformation of the spherical cloud into a torus and the subsequent
breakup into smaller parts that would otherwise occur. The presence of azimuthal flows in
cylindrically symmetric systems (sphere, bubble, cloud of particles) can serve as a probe
for parity-violating viscosities in experimental systems.
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1. Introduction

An incompressible fluid is described by the Navier–Stokes equations

ρDtv = ∇ · σ + f and ∇ · v = 0, (1.1a,b)

in which v is the velocity field, ρ is the density of the fluid and Dt = ∂t + v · ∇ is the
convective derivative. Surface forces in the fluid are contained in the stress tensor σ and
body forces such as gravity are contained in f . In a Newtonian fluid, the stress tensor

σij = σ h
ij + ηijk� ∂�vk (1.2)

is composed of a hydrostatic stress σ h
ij present even in the undisturbed fluid (in standard

fluids, σ h
ij = −Pδij, where P is the pressure) and of a viscous stress ηijk�∂�vk that arises in

response to velocity gradients.
In Stokes flows, the advection term in the Navier–Stokes equation is small compared

with the viscous term (at low Reynolds numbers) and can therefore be neglected
(Kim & Karrila 1991). Then, the momentum conservation in the fluid reduces to the
(transient/unsteady) Stokes equation

ρ∂tv = ∇ · σ + f . (1.3)

Stokes flows are the setting for phenomena ranging from the locomotion of microscopic
organisms (Taylor 1951; Purcell 1977; Lapa & Hughes 2014) to microfluidics (Stone,
Stroock & Ajdari 2004) and sedimentation (Ramaswamy 2001; Guazzelli, Morris & Pic
2009; Goldfriend, Diamant & Witten 2017; Chajwa, Menon & Ramaswamy 2019). In
usual fluids such as air and water, the viscosity tensor has only two components, the shear
viscosity μ and the bulk viscosity ζ , the latter of which can be ignored in incompressible
flows. Hence, the Stokes equation takes the very simple form

ρ∂tv = −∇P + μ	v + f (1.4)

along with ∇ · v = 0 (Δ is the Laplacian). As the Stokes equation is linear, the flow v
due to an arbitrary force field f can be obtained from the Green function of (1.4), called
the Oseen tensor, or Stokeslet (see below for precise definitions). This point response
can be leveraged to describe the flow due to a disturbance in the fluid or to describe the
hydrodynamic interactions between colloidal particles.

In this article, we consider a class of fluids called parity-violating fluids. In these fluids,
parity (i.e. mirror reflection) is broken at the microscopic level, either by the presence of
external fields (e.g. a magnetic field) or by internal activity (e.g. microscopic torques).
Parity-violating fluids include fluids under rotation (Nakagawa 1956), magnetized plasma
(Chapman 1939) and neutral polyatomic gases under a magnetic field (Korving et al. 1967),
but also artificial and biological fluids composed of active elements (Condiff & Dahler
1964; Tsai et al. 2005; Soni et al. 2019; Yamauchi et al. 2020) or vortices (Wiegmann
& Abanov 2014) as well as quantum fluids describing the flow of electrons in solids
under a magnetic field (Bandurin et al. 2016; Berdyugin et al. 2019). As a consequence
of parity violation, the viscous response (summarized by the viscosity tensor) is richer
than in usual fluids. In three-dimensional polyatomic gases subject to a magnetic field
(Beenakker & McCourt 1970), two non-dissipative parity-violating viscosities have been
measured (Korving et al. 1967; Beenakker & McCourt 1970) (called η4 and η5 in those
papers). In general, even more parity-violating viscosities can exist. In § 2, we classify
all possible viscous coefficients of three-dimensional fluids with cylindrical symmetry.
Our classification is based on two criteria: whether the viscosities violate parity and
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Stokes flows in three-dimensional fluids

whether they contribute to energy dissipation in the fluid. We provide a summary of
the results that can be used without extensive knowledge of group theory, as well as the
underlying group-theoretical analysis. In § 3, we discuss the effects of an anti-symmetric
hydrodynamic stress. In § 4, we analyse in detail how the Stokeslet is affected by the
presence of the additional parity-violating viscous coefficients. Qualitatively, the most
important change is the presence of an azimuthal velocity in the Stokeslet, which normally
vanishes. These results allow us to describe the flow past an obstacle in § 5, in which we
again find the presence of azimuthal flows, even past a sphere and a spherically symmetric
bubble. Finally, in § 6, we illustrate the large-scale consequences of parity-violating
viscosities in the example of the sedimentation of a cloud of particles under gravity.

2. The viscosity tensor of a parity-violating fluid

2.1. Constraints from spatial symmetries
In three dimensions, the rank-four viscosity tensor ηijk� has 81 possible elements. However,
the form of the viscosity tensor is constrained by the symmetries of the fluid it describes.
For example, the most general form of the viscosity tensor for an isotropic fluid is given
by

ηijk� = ζ δijδk� + μ
(
δikδj� + δi�δjk − 2

3δijδk�
)+ ηR(δikδj� − δi�δjk), (2.1)

which contains just three independent coefficients: the shear viscosity μ, the bulk viscosity
ζ and the rotational viscosity ηR (de Groot 1962). These three coefficients are invariant
under parity: the exact same coefficients describe the evolution of a fluid and the image of
the fluid in a mirror. In an anisotropic fluid, however, this need not be the case.

To systematically classify all the viscosity coefficients compatible with a given set
of symmetries, we use the language of group theory. A general introduction to group
theory in the context of fluid mechanics and applied mathematics is given in Cantwell
(2002) and Hydon, Hydon & Crighton (2000). Readers unfamiliar with this formalism
can skip directly to (2.7), which generalizes the expression in (2.1). Figure 1 and table 2
provide a visual summary of the possible symmetries of the fluid illustrated by microscopic
examples, along with the allowed entries in the viscosity tensor for each symmetry class.
In general, the less symmetry the fluid has (moving down figure 1), the larger the number
of independent viscosity coefficients. Our symmetry analysis can also be read as a guide
on how to build parity-violating fluids from microscopic constituents. The symmetry of
the fluid can be designed using the interplay between the symmetries of the microscopic
constituents and the way these constituents are collectively arranged in the fluid (for
instance, whether they are aligned); see figure 1(a–g) and accompanying caption for
concrete examples.

We begin by noting that under a rotation or reflection of space, the viscosity tensor
transforms as

ηijk� = Rii′Rjj′Rkk′R��′ηi′j′k′�′, (2.2)

where R is an orthogonal matrix that implements the transformation. We say a fluid is
parity-violating if its properties are not invariant under some improper rotation, i.e. a
rotation combined with a reflection. In three dimensions, the most general viscosity
tensor invariant under all proper rotations (i.e. under the group SO(3), consisting of the
transformations R ∈ O(3) with det(R) = 1) is automatically invariant under all improper
rotations as well (i.e. under the whole group O(3)). This happens because any improper
rotation can be written as a proper rotation times −1 = diag(−1, −1, −1): the four copies
of −1 always cancel out of (2.2).
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Figure 1. Axial symmetry groups, examples of their microscopic realizations and their constraints on the
viscosity tensor. (a–g) Examples of microscopic systems for each axial point group (with cylindrical symmetry
about the ẑ axis) in (h). Each example is distinguished from the others by the presence of or absence of
additional spatial symmetries. (a) A fluid of spherical particles is invariant under all rotations and reflections.
(b) A fluid of randomly oriented helices (with fixed chirality) is invariant under all rotations, but no reflections.
(c) A fluid of elongated (nematic) particles that align with each other is invariant under reflections across all
planes parallel and perpendicular to the ẑ axis. (d) A fluid of chiral particles that align is invariant under π/2
rotations about any axis perpendicular to the ẑ axis, but not any reflections. (e) A fluid of electric dipoles
under an electric field is invariant under reflections across all planes parallel, but not perpendicular, to the
ẑ axis. ( f ) A fluid of charged particles under a magnetic field (or a fluid of active particles rotating about
a fixed axis) is invariant under reflections across all planes perpendicular, but not parallel, to the ẑ axis. (g)
A fluid of chiral particles that rotate about a fixed axis has no additional symmetry beyond cylindrical. The
group–subgroup relations between axial point groups are shown by arrows in (h). Groups drawn in identical
colour place identical constraints on the viscosity tensor. The groups Kh ≡ O(3) and K ≡ SO(3) (in black)
give rise to the viscosity tensor of an isotropic fluid in (2.1). The groups D∞h, C∞v and D∞ (in blue) allow all
the coefficients in black in (2.7) and table 2. Some of these coefficients are anisotropic, and all are invariant
under reflections parallel and perpendicular to the ẑ axis (even though the microscopic components are not
necessarily invariant under such reflections). The groups C∞h and C∞ allow for additional coefficients that
change sign under reflection across planes containing the ẑ axis. These coefficients are shown in red in (2.7)
and table 2. For more details of the symmetry groups, see Shubnikov (1988) and Hahn (2005) (in particular
table § 10.1.4.2, p. 799; and figure § 10.1.4.3, p. 803).

Hence, we have to consider anisotropic fluids in order to see the effects of parity
violation. Here, we focus on systems with cylindrical symmetry (i.e. those invariant under
rotation about a fixed axis ẑ). The set of all reflections and rotations that leave a fluid
globally unchanged forms a group G. It turns out that there are just nine possible symmetry
groups that respect cylindrical symmetry (Shubnikov 1988; Hahn 2005). These groups,
known as the axial point groups, are shown in figure 1 and differ from each other by
which combinations of horizontal and/or vertical reflections are present (see Appendix B,
in particular figure 7). Just as invariance under O(3) and SO(3) placed identical constraints
on the viscosity tensor, some of the anisotropic symmetry groups in figure 1 place identical
constraints on the viscosity tensor. They break into two classes, drawn in blue and in red in
figure 1. Fluids with the symmetry groups D∞h, C∞v or D∞ (in blue) have an anisotropic
viscosity tensor that is invariant under all reflections parallel and perpendicular to the
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Stokes flows in three-dimensional fluids

ẑ axis. We call these fluids parity-preserving cylindrical, and examples include aligned
nematic particles (D∞h), aligned helices (C∞v) and dipolar molecules in an electric field
(C∞v) shown in figure 1(c–e). In contrast, fluids with the symmetry groups C∞h or C∞
(in red) allow additional terms in their viscosity tensor. Examples of such fluids shown in
figure 1( f ,g) include spherical charged particles (C∞h) and chiral charged particles (C∞)
in a magnetic field. The additional allowed viscosity coefficients acquire a minus sign
when reflected across any plane containing the ẑ axis. We call these fluids parity-violating
cylindrical.

It is useful to organize the components of the viscosity tensor by decomposing the stress
σij and velocity gradient ėk� ≡ ∂�vk tensors on a basis of 3 × 3 matrices τA

ij (A = 1 . . . 9)
corresponding to a decomposition into irreducible representations of the orthogonal group
O(3) (see Appendix B). In this notation, the viscosity tensor ηijk� is expressed as a 9 × 9
matrix (see Scheibner, Irvine & Vitelli (2020a) and Scheibner et al. (2020b), in which this
notation is also used to describe elastic and viscoelastic media). The basis consists of

(i) a diagonal matrix τ 1
ij = Cij =

√
2
3δij corresponding to pressure and dilation,

(ii) three anti-symmetric matrices τA+1
ij = RA

ij = εAij corresponding to torques and
vorticity, and

(iii) five traceless symmetric matrices τA+5
ij = SA

ij corresponding to shear stresses and
shear strain rates, whose expressions are

S1 =
⎡⎣1 0 0

0 −1 0
0 0 0

⎤⎦ , S2 =
⎡⎣0 1 0

1 0 0
0 0 0

⎤⎦ , S3 =

⎡⎢⎣
−1√

3
0 0

0 −1√
3

0

0 0 2√
3

⎤⎥⎦ ,

S4 =
⎡⎣0 0 0

0 0 1
0 1 0

⎤⎦ , S5 =
⎡⎣0 0 1

0 0 0
1 0 0

⎤⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.3)

Note that τA
ij τ

B
ij = 2δAB. Defining

σA ≡ σij τ
A
ij , ėA ≡ ėij τ

A
ij , ηAB = 1

2τA
ij ηijk� τB

k�, (2.4a–c)

we may write
σA = ηAB ėB. (2.5)

We can transform back to Cartesian tensors via

σij = 1
2 σAτA

ij , ėij = 1
2 ėAτA

ij , ηijk� = 1
2 τA

ij ηAB τB
k�. (2.6a–c)

The most general form of ηAB satisfying cylindrical symmetry about the ẑ axis is

σC
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σ 1
R σ 2

R σ 3
R σC σ 1

S σ 2
S σ 3

S σ 4
S σ 5

S

ω1 ω2 ω3 ∇ · v ė1
S ė2

S ė3
S ė4

S ė5
S

Py −1 1 −1 1 1 −1 1 −1 1

Table 1. Effect of the reflection Py on the components of the stress and strain rate used in (2.7). The
components with a 1 are invariant under Py, while those with a −1 change sign. The action of Py on Cartesian
coordinates is diag(1, −1, 1).

Viscosity tensor Parity-preserving Parity-violating
class Isotropic cylindrical cylindrical

Symmetry groups O(3) SO(3) D∞h C∞v D∞ C∞h C∞

ηR,1 = ηR,2 ≡ ηR ηR,1 ηR,2 ηR,1 ηR,2
ζ ζ ζ

Dissipative viscosities μ1 = μ2 = μ3 ≡ μ μ1 μ2 μ3 μ1 μ2 μ3
ηe

s ηe
s ηe

A
ηe

Q,1 ηe
Q,1 ηe

Q,2 ηe
Q,3

Non-dissipative viscosities (none)

ηo
R

ηo
1 ηo

2
ηo

s ηo
s ηo

A
ηo

Q,1 ηo
Q,1 ηo

Q,2 ηo
Q,3

Table 2. Classes of viscosity tensors and allowed viscosity coefficients. The coefficients refer to (2.7).
Parity-violating viscosities (those only present in the last column) are highlighted in red. Explicitly, these
are ηe

A, ηe
Q,2, ηe

Q,3, ηo
R, ηo

1, ηo
2, ηo

A, ηo
Q,2, ηo

Q,3. See Hahn (2005) for more details of the symmetry groups.

in which the parity-violating viscosities are written in red (these are only allowed in the
groups drawn in red in figure 1). An explicit list of parity-violating viscosities is also given
in the caption of table 2. Concretely, these entries of the viscosity tensor relate components
of the strain rate and stress tensors with different parities under a reflection by a mirror
plane containing the ẑ axis (see table 1 for the parities of the basis tensors used in (2.7)
under the reflection Py). Finally, we have restricted our attention to fluids invariant under
continuous rotations about the ẑ axis, because they arise when an originally isotropic fluid
is submitted to a single external field. In general, the fluid can be even less symmetric, for
example when the fluid is invariant under a discrete point group. This can happen when
multiple external fields that are not parallel to each other are applied, or in electron fluids in
crystals (Cook & Lucas 2019; Rao & Bradlyn 2020; Toshio, Takasan & Kawakami 2020;
Varnavides et al. 2020).

2.2. Dissipative and non-dissipative viscosities
In addition to the decomposition based on spatial symmetries discussed in § 2.1, the
viscosity tensor can be decomposed into symmetric and anti-symmetric parts:

ηijk� = ηe
ijk� + ηo

ijk�, (2.8)

in which e/o (standing for even/odd) label the symmetric and anti-symmetric parts of the
tensor, satisfying ηo

ijk� = −ηo
k�ij and ηe

ijk� = ηe
k�ij. The rate of mechanical energy lost by the
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fluid due to viscous dissipation is (see Appendix C.1)

ẇ = σij ∂jvi = ηijk� (∂jvi) (∂�vk) = 1
2 ηABėAėB. (2.9)

Hence, the anti-symmetric part ηo
ijk� is purely non-dissipative, because ηo

ijk�(∂jvi) (∂�vk) =
0. In contrast, the symmetric part ηe

ijk� does indeed contribute to viscous dissipation. In
a standard fluid, the viscous dissipation corresponds to a rate of entropy production ṡ =
(1/T) σij∂jvi, where T is temperature. The symmetry of the viscosity tensor has also been
related to Onsager reciprocity relations in equilibrium fluids, in which one expects ηo

ijk� =
0 when microscopic reversibility is satisfied (Onsager 1931; de Groot & Mazur 1954; de
Groot 1962).

The dissipative part ηe
ijk� of the viscosity tensor corresponds to the symmetric part of the

matrix ηAB in (2.5), while the non-dissipative part ηo
ijk� corresponds to its anti-symmetric

part. Hence, we have split all off-diagonal terms in (2.7) into odd and even parts
(except when one of these is already ruled out by spatial symmetry). The non-dissipative
viscosities all have an ‘o’ superscript. In table 2, we classify the viscosity coefficients in
(2.7) based on whether they are dissipative or not, and on the symmetry groups in which
they can occur.

3. The stress tensor of a parity-violating fluid

In parity-violating fluids, it is possible that the stress tensor is asymmetric. An asymmetric
stress tensor means that the fluid experiences torques. While this is not possible for
classical particles interacting through central pairwise interactions, non-central pairwise
interactions are sufficient to contribute an anti-symmetric part to the stress tensor (Condiff
& Dahler 1964). This occurs, for instance, in polyatomic gases since the particles
are not spherical (Condiff & Dahler 1964). In general, anisotropic fluids and fluids
with non-symmetric stress require additional hydrodynamic fields, such as the average
alignment or angular velocity of the constituents (Ariman, Turk & Sylvester 1973;
Ramkissoon 1976; Hayakawa 2000). Here, we assume that all other order parameters relax
much faster than the velocity field, so that their dynamics can safely be ignored. When
the stress tensor is constrained to be symmetric, the viscosity has the additional symmetry
ηijk� = ηjik�. (Similarly, we have ηijk� = ηij�k when vorticity does not affect the viscous
response.)

In addition to the viscous stresses discussed in the previous section, the stress tensor
also contains a hydrostatic part σ h

ij present even when there is no velocity gradient. Under
the assumption of cylindrical symmetry, the hydrostatic stress takes the form

σ h
ij = −Pδij + γ S3

ij − τzR
3
ij, (3.1)

in which P is the pressure, γ is a hydrostatic shear stress and τz is a hydrostatic torque.
In this paper, we assume that γ and τz are frozen (i.e. they relax to a constant value on
very short time scales), like in Banerjee et al. (2017), Markovich & Lubensky (2021) and
Han et al. (2021). In addition, we assume that τz and γ are spatially uniform. In this case,
they do not contribute to the term ∂jσij in the Stokes equation (1.3), and therefore do not
affect the form of the Stokeslet, which we discuss in the next section. However, a constant
hydrostatic torque σ h

ij = −εijkτk can induce a net torque Tk on an object immersed in the
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fluid:

Tk =
∮

∂V
n̂i σ

h
ji εjk� x� d2x = 2τk

∫
V

d3 x = 2τkV, (3.2)

where V is the volume of the object V, in which we have assumed that n̂iσki is the force on
a unit area with normal n̂i (this boundary condition might not always hold true, depending
on the microscopic interactions and on the definition of the stress). The effect of the
hydrostatic torque τzR3

ij on a sphere is further discussed in § 5.3. Similarly, the effect of a
homogeneous shear stress γ S3

ij is to shear a soft deformable body, although it has no effect
on rigid bodies.

4. The Stokeslet of a parity-violating fluid

4.1. Oseen tensor and Stokeslet
The (transient) Stokes equation for an incompressible fluid found in (1.3) can be written as

ρ∂tvi = −∂iP + ∂j[ηijk�∂�vk] + fi with ∂ivi = 0, (4.1)

in which we have used the expression (1.2) of the viscous stress. In reciprocal space (see
Appendix A for Fourier transform conventions):

− iωρvi = −iqiP − qjq�ηijk�vk + fi with iqivi = 0. (4.2)

These equations can be written as

M(q, ω)v = −iPq + f with q · v = 0, (4.3)

in which we have defined the matrix

M ik(q, ω) = qjq�ηijk� − iωρ δik. (4.4)

The matrix M(q, ω) is always invertible at finite q provided that the dissipation rate ẇ in
(2.9) is strictly positive (see Appendix C.1). Under this hypothesis, we apply M−1(q, ω) to
(4.3). We then take the scalar product with q to obtain the pressure P, and then replace P
with its expression to obtain the velocity, giving

iP = q · (M−1f )

q · (M−1q)
and v = −q · (M−1f )

q · (M−1q)
M−1q + M−1f . (4.5a,b)

The expression of the velocity in terms of the force is then

v = G(q, ω)f , (4.6)

in which

Gij(q, ω) ≡
(

[M−1]ij − [M−1]imqmqn[M−1]nj

qk[M−1]k�q�

)
(4.7)

is the Green function of the Stokes equation, which is usually called the (reciprocal space)
Oseen tensor (Kim & Karrila 1991; Kuiken 1996). Formally, it is defined so that vi = Gij
is a solution of (4.1) with f = δ(x)ej, where ej is the unit vector in direction j. For an
isotropic incompressible fluid, we recover the usual (reciprocal space) Oseen tensor

Giso
ij (q, ω = 0) = 1

μq2

(
δij − qiqj

q2

)
. (4.8)

When the symmetric part of ηijk� (corresponding to dissipation) vanishes, the second
term of (4.7) diverges at ω = 0 (but finite q) because M−1

k� is strictly anti-symmetric
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Stokes flows in three-dimensional fluids

under exchange of k and �, while the product qkq� is symmetric (so the denominator
qk[M−1]k�q� vanishes). This corresponds to a divergence of the characteristic time scale
associated with viscous relaxation: in this case, the Stokes approximation is not valid.
In the following, we assume that viscous relaxation is fast enough, and focus on steady
solutions that correspond to the steady Oseen tensor G(q) ≡ G(q, ω = 0).

The real-space Oseen tensor is then

Gij(x) = 1
(2π)3

∫
eiq·x Gij(q) d3q (4.9)

and the flow generated by a point force f (x) = f δ(x) is the Stokeslet

v(x) = G(x)f . (4.10)

When the anti-symmetric (non-dissipative) part of the viscosity tensor vanishes (ηo
ijk� =

0), the matrix M defined by (4.4) is symmetric. Hence, M−1 and the Green function G(q)

are symmetric as well. The symmetry of the reciprocal-space Green function Gij(q) =
Gji(q) is equivalent to Gij(x) = Gji(x) in physical space. This is the expression of Lorentz
reciprocity (Masoud & Stone 2019, § 4.2, (4.7)), which can be interpreted as a symmetry
in the exchange between the source (producing a force) and the receiver (measuring the
velocity field). Conversely, Lorentz reciprocity is broken by the presence of non-dissipative
(or, equivalently, odd) viscosities.

We can now analyse the effect of parity-violating viscosities on the Stokeslet. Unlike
the situation in a two-dimensional, isotropic incompressible fluid (see Appendix D), in
three dimensions the odd and parity-violating viscosities can modify the Stokeslet velocity
field. To see this, we compute the real-space Oseen tensor or Stokeslet in different cases,
using both numerical and analytical methods. The qualitative changes compared with usual
isotropic fluids can be anticipated without any computation from symmetry arguments.
When the driving force is along the axis of azimuthal symmetry, a fluid from the classes
‘isotropic’ and ‘parity-preserving cylindrical’ in table 2 cannot exhibit an azimuthal flow
because a reflection symmetry constrains the azimuthal component of the velocity to be
opposite to itself – this is indeed the case for the standard Stokeslet solution (Kim &
Karrila 1991). In contrast, an azimuthal flow is allowed when parity-violating terms are
introduced in the viscosity tensor (class ‘parity-violating cylindrical’ in table 2).

4.2. Stresslet, rotlet and multipolar responses
Since the Stokeslet is a response to a point perturbation, multipolar responses can be
computed by taking derivatives of the Green function in (4.9) (see Kim & Karrila 1991).
For example, consider a force dipole defined by a point force f at 1

2δr and a point force
− f at −1

2δr. The corresponding fluid velocity is given by

vi(r) = Gik
(
r − 1

2δr
)
fk − Gik

(
r + 1

2δr
)
fk ≈ −∂jGik(r)δrjfk ≡ H ijk(r)δrjfk. (4.11)

The tensor H ijk is often decomposed into two contributions: the symmetric part Sijk =
1
2 (H ijk + H ikj), which represents the response to point shears (also known as stresslet), and
the anti-symmetric part Ai� = 1

2εjk�H ijk, which represents the response to point torques T�

(also known as rotlet). As discussed in § 3, such point torques can arise from a hydrostatic
torque in the fluid. An explicit expression of the Oseen tensor Gik is given by (H6) of
Appendix H in a perturbative case, from which the stresslet and rotlet can be deduced
using (4.11).
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4.3. General numerical solution
To determine the physical-space Stokeslet or Oseen tensor G(x), one must compute the
inverse Fourier transform (4.9). This can be done numerically in the general case, in which
analytical solutions are not easily accessible. To do so, we evaluate (4.7) on a discrete grid
in reciprocal space (each component of q ranges from −Q to +Q with increments δq). This
allows us to resolve length scales larger than a few π/Q but smaller than π/δq. We then
use the fast Fourier transform algorithm to compute the real-space Oseen tensor (or the
real-space Stokeslet). To avoid numerical instabilities (Gibbs oscillations) due to the sharp
cutoff in reciprocal space, we regularize the integrand in (4.9) with a Gaussian kernel
exp(−πq2/4Q2) (Cortez 2001; Gómez-González & del Álamo 2013). This procedure
allows us to compute the Stokeslet for an arbitrary viscosity tensor. Our code for this
computation is available at https://github.com/talikhain/StokesletFFT.

We consider an external force parallel to the ẑ axis and examine the perturbative effect of
each coefficient separately. We set the normal shear viscosity to μ1 = μ2 = μ3 = 1 and
vary each of the other viscosity coefficients one by one, setting them to be ηi = 0.01μ.
This flow is visualized for each viscosity in figure 8 of Appendix F, in which we also
validate the numerical method using the exact solution discussed in the next section (see
figure 10). We find that the viscosity coefficients that give rise to an azimuthal flow are

ηo
R, ηe

Q,2, ηo
Q,2, ηe

Q,3, ηo
Q,3, ηo

1, ηo
2. (4.12a–g)

The list of viscosity coefficients that we found to generate vφ are a subset of the
parity-violating viscosities (in red in (2.7) and listed in the caption of table 2), as expected.
In fact, the only parity-violating viscosities that do not give rise to azimuthal flow are ηe

A
and ηo

A. This is because we have assumed that the flow is incompressible. First, the term
(ηe

A − ηo
A)∇ · v vanishes because ∇ · v = 0. Second, the term (ηe

A + ηo
A)ω3 contributes to

the component σC of the stress, and can therefore be absorbed in the pressure.

4.4. The Stokeslet of an odd viscous fluid: exact solution
We now consider a particular case in which the real-space Stokeslet can be computed
analytically. First, we set μ ≡ μ1 = μ2 = μ3 and consider only the odd shear viscosities
ηo

1 and ηo
2 (all the other viscosities are assumed to vanish, except perhaps the bulk ξ

viscosity which drops out of the Stokes equation). In this case, the matrix M(ω = 0)

defined by (4.4) takes the form

M(ω = 0) =
⎡⎣ μq2 ηo

1(q
2
x + q2

y) − ηo
2q2

z −ηo
2qyqz

−ηo
1(q

2
x + q2

y) + ηo
2q2

z μq2 ηo
2qxqz

ηo
2qyqz −ηo

2qxqz μq2

⎤⎦ . (4.13)

Taking f = −ẑFzδ
3(x), and defining q2

⊥ ≡ q2
x + q2

y , we find the full expressions for the
velocity and pressure in Fourier space by using (4.5a,b):

v̂(q) = Fz

N(q)

⎡⎣qz(qy(−(ηo
1 + ηo

2)q
2
⊥ + ηo

2q2
z ) + μqx(q2

⊥ + q2
z ))

qz(qx((η
o
1 + ηo

2)q
2
⊥ − ηo

2q2
z ) + μqy(q2

⊥ + q2
z ))

−μq2
⊥(q2

⊥ + q2
z )

⎤⎦ , (4.14)

p̂(q) = i
Fz

N(q)
qz[(ηo

1q2
⊥ − ηo

2q2
z )((η

o
1 + ηo

2)q
2
⊥ − ηo

2q2
z ) + μ2(q2

⊥ + q2
z )

2]. (4.15)

in which N(q) = μ2(q2
⊥ + q2

z )
3 + q2

z ((η
o
1 + ηo

2)q
2
⊥ − ηo

2q2
z )

2. Second, we assume that
ηo

1 = −2ηo
2, for which simplifications occur in (4.14)–(4.15). This particular case occurs
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Stokes flows in three-dimensional fluids

in the limit of low magnetic field regime in experiments on polyatomic gases (see (13) in
Hulsman et al. 1970), and was also obtained in a theoretical Hamiltonian description of
fluids of spinning molecules (Markovich & Lubensky 2021). In this limit, the viscosity
matrix can be seen as a simple combination of isotropic contractions and rotations about
the ẑ axis in the space of shears (see Appendix G).

In order to find the real-space solution, we compute the inverse Fourier transform in
(4.9) (see Appendix G for the detailed calculation). Parameterizing the final flow field by
γ = ηo

2/μ, we obtain the velocity field

vr(r, θ) = − Fz

4πηo
2

cot θ
γ r

⎛⎝1 − 1√
1 + γ 2 sin2 θ

⎞⎠ , (4.16)

vφ(r, θ) = Fz

4πηo
2

cot θ
r
⎛⎝1 − 1√

1 + γ 2 sin2 θ

⎞⎠ , (4.17)

vz(r, θ) = Fz

4πηo
2

1
γ r
⎛⎝1 − γ 2 + 1√

1 + γ 2 sin2 θ

⎞⎠ , (4.18)

as well as the pressure field

p(r, θ) = Fz

4π

cos θ

r2
(

1 − 2(γ 2 + 1)

(1 + γ 2 sin2 θ)3/2

)
. (4.19)

Here, r is the radius in spherical coordinates (see schematic in figure 2(a) and
Appendix A). Streamlines of the velocity field are visualized for a range of γ in
figure 2 and supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.1079.
In the absence of odd viscosity, the Stokeslet flow only has two components, vr and vz
(Appendix G), visualized in the vertical x–z plane in figure 2(a) and in three dimensions
in figure 2(b). Notably, as the blue and red arrows in figure 2(a) indicate, the flow develops
an azimuthal component for γ /= 0 (figure 2c–d), consistent with the fact that ηo

1 and ηo
2

are parity-violating (see table 2 and (2.7)).
As γ is increased, the magnitude of the azimuthal component grows, while the radial

component diminishes. When γ 	 1, the r̂ component of the velocity field goes to zero,
while vφ and vz approach (r sin θ)−1. (For the approximation of a steady Stokes flow to
remain valid, the dissipative shear viscosity μ must remain finite in order to ensure that
the relaxation time of the fluid is also finite, so the limit γ = ∞ is never actually reached.)
At smaller γ , the central line splits into lobes of high azimuthal velocity that migrate away
from the vertical, as illustrated in Appendix G.

4.5. Stokeslet: perturbative solution
In this section, we consider more generally the effect of the odd shear viscosities and of the
rotational viscosities on the Stokeslet by treating the problem perturbatively (with respect
to the small parameters characterizing the magnitude of these viscosities). We find that the
first-order correction vStokes,1 to the standard Stokeslet (given in (G1) of Appendix G) due
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z

z

x
x

γ = 0 γ = 1 γ = ∞

yrφ

θ

Fz

(a) (b) (c) (d)

Figure 2. A Stokeslet in an odd viscous fluid. (a) The streamlines of a standard Stokeslet flow are shown in
black. The blue and red arrows indicate the appearance of an azimuthal flow once odd viscosity is introduced.
A schematic of the system and the coordinate convention is shown in the inset. An external force, F , is applied
at the origin in the −ẑ direction. (b–d) A three-dimensional rendition of the Stokeslet streamlines initialized
around a circle (i.e. many copies of the bold streamline in b), for a range of viscosity ratios, γ = ηo/μ. As the
odd viscosity increases, the velocity field develops an azimuthal component that changes sign across the z = 0
plane, where the source is located. In the limit of only odd viscosity (d), the familiar radial component of the
flow vanishes.

to the parity-violating coefficients ηo
1, η

o
2 and ηo

R is of the form

vStokes,1 = vφ,1φ̂ =
[
v

(ηo
1)

φ,1 + v
(ηo

2)

φ,1 + v
(ηo

R)

φ,1

]
φ̂. (4.20)

Let us now discuss the explicit form of each of these terms, starting with the odd shear
viscosities.

Starting back from (4.14)–(4.15) (in which ηo
1 and ηo

2 are independent), we perform
a perturbative expansion in the quantities ε1(2) ≡ ηo

1(2)/μ 
 1. Computing the inverse
Fourier transform to obtain the flow fields in real space as in § 4.4 (see Appendix H for the
detailed calculation), we find that both ηo

1 and ηo
2 contribute to leading order by introducing

terms contained entirely in the φ̂ component of the velocity field. The contributions of the
two viscosities are

v
(ηo

1)

φ,1 (r, θ) = −ε1
Fz

128πμ

(5 + 3 cos 2θ) sin 2θ

r + O(ε2
1), (4.21)

v
(ηo

2)

φ,1 (r, θ) = −ε2
Fz

64πμ

(1 + 3 cos 2θ) sin 2θ

r + O(ε2
2), (4.22)

while the pressure is not modified at first order. The azimuthal component is visualized
in the vertical r–z plane in figure 3. In the absence of odd viscosity (figure 3a), vφ = 0.
The non-dimensionalized vφ profiles for ηo

1 and ηo
2 given by (4.21)–(4.22) are shown in

figure 3(b–c). While both velocity fields decay as 1/r, they differ appreciably in their
angular dependence: ηo

2 includes an additional sign change.
We now consider rotational viscosities, which couple vorticity and torques. These

viscosities break both minor symmetries of the viscosity tensor (ηijk� /= ηjik� /= ηji�k),
because the vorticity and torques are the anti-symmetric parts of the strain rate and stress
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0.010

0.015

0

–0.4

–0.2

0.2

0.4

0.6

z 0

0 0.2 0.4
r

0.6 0 0.2 0.4
r

0.6 0 0.2 0.4
r

0.6

(a) (b) (c) (d)

η1
o > 0 η2

o > 0 ηR
o > 0

v
φ

∙μ
/F

z

Figure 3. The non-dimensionalized azimuthal component of the Stokeslet flow for small shear and rotational
odd viscosity coefficients. (a) In the absence of odd viscosity, the azimuthal component of the velocity field
is zero. (b–d) The first-order correction of the Stokeslet due to ηo

1, η
o
2 and ηo

R, respectively, taking ηo/μ = 0.1.
The origin is removed due to the singularity of the flow at r = z = 0. The azimuthal flow is odd with respect
to z, and forms lobe-like regions of concentrated rotation. Blue indicates flow into the page, red corresponds to
flow out of the page. Overall, the fluid flows out of the page in the upper lobe (in red) and into the page in the
lower lobe (in blue). In (c), two small additional lobes have opposite velocities compared with the larger ones.

tensors, and are shown in the block outlined in green in (2.7), reproduced below:⎡⎣σ 1
R

σ 2
R

σ 3
R

⎤⎦ =
⎡⎣ηR,1 ηo

R 0
−ηo

R ηR,1 0
0 0 ηR,2

⎤⎦⎡⎣ω1
ω2
ω3

⎤⎦ . (4.23)

These rotational viscosities are often ignored in standard fluids because their contribution
to the stress relaxes to zero over short times (de Groot 1962), but occur in the
hydrodynamics of liquid crystals (Miesowicz 1946; Ericksen 1961; Leslie 1968; Parodi
1970) as well as in the hydrodynamics of electrons in materials with anisotropic Fermi
surfaces (Cook & Lucas 2019).

We consider perturbations in the quantities εR,1 = ηR,1/μ, εR,2 = ηR,2/μ and εo
R =

ηo
R/μ. The matrix M is given by

M = μ

⎡⎣q2 − εR,1q2
z − εR,2q2

y εR,2qxqy − εo
Rq2

z εR,1qxqz + εo
Rqyqz

εR,2qxqy + εo
Rq2

z q2 − εR,1q2
z − εR,2q2

x −εo
Rqxqz + εR,1qyqz

εR,1qxqz − εo
Rqyqz εo

Rqxqz + εR,1qyqz q2 − εR,1q2

⎤⎦ . (4.24)

Applying (4.5a,b), we calculate the velocity and pressure in Fourier space:

v(q) = Fz

μ N2(q)

⎡⎣−qxqz(q2
⊥ + q2

z ) − εo
Rqyqz(q2

⊥ + q2
z ) + εRqxq3

z
−qyqz(q2

⊥ + q2
z ) + εo

Rqxqz(q2
⊥ + q2

z ) + εRqyq3
z

q2
⊥(q2

⊥ + q2
z ) − εRq2

⊥q2
z

⎤⎦ , (4.25)

p(q) = −iFz
N2(q)

[qz(q2
⊥ + q2

z )
2 − εRqz(q2

⊥ + q2
z )(q

2
⊥ + 2q2

z ) + (ε2
R + (εo

R)2)q3
z (q

2
⊥ + q2

z )],

(4.26)

in which

N2(q) = (q2
⊥ + q2

z )
3 + εR(q2

⊥ + q2
z )

2(−q2
⊥ − 2q2

z ) + (ε2
R + (εo

R)2)q2
z (q

2
⊥ + q2

z )
2. (4.27)
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Note that the coefficient εR,2 does not affect the flow (see Appendix H for further details).
For the remaining coefficients, we expand the above expressions up to first order in εR,1
and εo

R, and compute their inverse Fourier transform to find the real-space fields.
Of the three rotational viscosities, only ηo

R violates parity (see table 2 and (2.7)) and as
a consequence, gives rise to an azimuthal flow:

v
(ηo

R)

φ,1 (r, θ) = εo
R

Fz

16πμ

sin(2θ)

r + O((εo
R)2). (4.28)

The vφ profile due to ηo
R is shown in figure 3(d). While the parity-violating shear and

rotational viscosities generate quantitatively different azimuthal flows, their qualitative
effect is the same. The pressure is again not modified to first order.

5. Odd viscous flow past an obstacle

5.1. Odd viscous flow past a sphere
Two-dimensional flows past obstacles in the presence of a non-dissipative (odd) viscosity
have previously been studied experimentally in Soni et al. (2019) and theoretically in
Kogan (2016). Lapa & Hughes (2014) also analysed the consequences on swimmers at low
Reynolds numbers. In these two-dimensional cases, only the pressure field is modified by
the additional viscous terms, while the velocity field remains unchanged. Nevertheless,
Kogan (2016) reported that a lift force appears in the Oseen approximation (including
inertia) of the flow past an infinite cylinder due to the non-dissipative viscosity. In this
section, we consider three-dimensional flows. Even in the Stokes limit (without inertia),
we find that parity-violating viscosities have a qualitative effect on the flow past a sphere:
the Stokes drag is not modified at this order, but an azimuthal velocity develops despite
the symmetry of the obstacle.

Let us begin by considering the viscous flow past a finite-radius sphere (Kim & Karrila
1991). We assume a uniform velocity field v = Uẑ at r→ ∞ and a no-slip boundary
condition with v = 0 on the surface of the sphere r = a. The streamlines of this flow in
a standard fluid are shown in black in figure 4(a) on the r–z plane. Here, we assume that
the sphere cannot (or does not) rotate. In § 5.3, we discuss the case in which the sphere is
allowed to rotate.

We once again look for a perturbative solution to (4.1) with fi = 0 in the small
parameters ε1, ε2 and εo

R. To leading order in the parity-violating viscosities, the pressure
field about the sphere is given simply by the pressure term due to the Stokeslet, as in a
standard isotropic fluid. Since the Stokeslet pressure does not have a first-order correction
(§ 4.5), (4.1) reduces to the vector Poisson equation for the first-order velocity field:

	v1 = −Δαv0, (5.1)

in which Δα is the second-order differential operator associated with the viscosity α (here,
α = ηo

1, η
o
2, η

o
R; see Appendix E for explicit form) and v0 is the flow past a sphere in a

standard fluid (given by (I4)). The resulting vector Poisson equation for the perturbed flow
is formally equivalent to the electrostatics problem of finding the electric potential due to a
conducting spherical cavity enclosing a point charge. We use the corresponding Dirichlet
Green function by expanding the solution in spherical harmonics (Jackson 1999). The
details of this calculation are provided in Appendix I. Solving for the flow v1 to leading
order in ε1, ε2 and εo

R, we can express the resulting velocity field in terms of the Stokeslet
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Figure 4. Odd viscous flow past (a–e) a sphere and ( f – j) a bubble. (a) The streamlines of a standard flow past
a sphere are shown in black. The blue and red arrows indicate the appearance of an azimuthal flow once odd
viscosity is introduced. (b–e) The non-dimensionalized azimuthal velocity component of the flow visualized
on the r–z plane. If the odd viscosity is absent (b), the azimuthal component is zero. Perturbative additions of
ηo

1, η
o
2 and ηo

R (taking ηo/μ = 0.1) significantly affect the flow past a sphere by introducing a non-zero vφ that
is odd in z (c–e). ( f ) The streamlines of a standard flow outside and inside a spherical bubble are shown in
black. The blue and red arrows indicate the appearance of an azimuthal flow once odd viscosity is introduced.
(g– j) The non-dimensionalized azimuthal velocity component of the flow visualized on the r–z plane. Unlike
the case of the sphere, the velocity field extends into the bubble, with a continuous velocity across the bubble
surface. If the odd viscosity is absent (g), the azimuthal component is zero. Perturbative additions of ηo

1, ηo
2 and

ηo
R (taking ηo/μ = 0.1) significantly affect the flow by introducing a non-zero vφ both inside and outside the

bubble (h– j).

solution, vStokes,1 in (4.21), (4.22) and (4.28), from § 4.5, as

vφ,1(r, θ) =
(

6πaUμ

Fz
vStokes,1 + πa3Uμ

Fz
	vStokes,1 + πa5Uμ

20Fz
Δ2vStokes,1

)
· φ̂ (5.2)

with no modifications to vr and vz at leading order.
In standard isotropic fluids, a superposition of the Stokeslet (v ∝ 1/r) and its second

derivative (a source dipole v ∝ 1/r3) is sufficient to satisfy the boundary conditions. In
the presence of odd viscosity, we find that higher-order gradients are necessary, as can be
seen from (5.2). Even so, by equating the far field of the flow and the Stokeslet solution, we
find Fz = 6πaUμ. Hence, the Stokes drag experienced by the sphere remains unchanged
to first order in ηo

R, ηo
1 and ηo

2 compared with a standard fluid.
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Rewriting (5.2) more explicitly, we have

vφ,1(r, θ) = 3U
64

[
g1(θ)

a
r + g3(θ)

(a
r
)3 + g5(θ)

(a
r
)5
]

sin 2θ, (5.3)

where

g1(θ) = 8εo
R − (5 + 3 cos 2θ)ε1 − (2 + 6 cos 2θ)ε2 + O(ε2), (5.4)

g3(θ) = −8εo
R + (6 + 10 cos 2θ)ε1 + (4 + 20 cos 2θ)ε2 + O(ε2), (5.5)

g5(θ) = −(1 + 7 cos 2θ)ε1 − (2 + 14 cos 2θ)ε2 + O(ε2). (5.6)

These velocity fields are shown in figure 4(c–e) on the r–z plane. As in the Stokeslet case,
each odd viscosity coefficient results in an azimuthal flow, but the quantitative features of
the velocity field vary depending on the exact viscosity chosen.

5.2. Odd viscous flow past a bubble
Closely related to the flow past a solid sphere is the flow past a spherical bubble
without surface tension, in which the bubble itself is filled with a fluid (Hadamard 1911;
Rybczynski 1911; Lamb 1924; Batchelor 1967). Here we assume that the inner and outer
fluid have the same viscosities. As with the sphere, we solve for a steady velocity field
configuration satisfying v = Uẑ as r→ ∞, but now we require that the velocity field
be continuous throughout all space (even across the nominal boundary of the bubble).
In a standard fluid, the flow outside the bubble resembles that of the flow past a sphere,
while the flow inside is described by Hill’s spherical vortex (Hill 1894), with the boundary
condition imposing continuous velocity at the surface. The streamlines of this velocity
field are visualized in black in figure 4(f ). Following the set-up above, let us consider the
effect of the odd viscosities ηo

1, η
o
2, η

o
R in the perturbative limit.

Like in the case of the sphere, the first-order correction to the pressure vanishes, and the
flow outside the bubble reduces to (5.1). To solve this equation, we again employ Green
function methods. Unlike the sphere problem, however, the boundary condition no longer
requires no-slip velocity on the bubble surface, so we do not need to use the Dirichlet
Green function. The details of this calculation are provided in Appendix J. Solving for the
flow to leading order in ε1, ε2 and εo

R, we can write it in terms of the Stokeslet solution,
vStokes,1:

vout
φ,1(r, θ) =

(
5πaUμ

Fz
vStokes,1 + πa3Uμ

2Fz
	vStokes,1 + πa5Uμ

56Fz
Δ2vStokes,1

)
· φ̂, (5.7)

with no modifications to vr and vz at leading order. As in the case of the sphere,
the higher-order 1/r5 term is necessary to satisfy (5.1) and the boundary condition.
By equating the far-field flow and the Stokeslet solution, we find Fz = 5πaUμ,
which corresponds to the Stokesian drag on a bubble in a standard fluid; that is,
the drag force is again unaffected at first order in odd viscosity. Note that the
general form of the drag on a spherical bubble in a standard fluid is given by Fz =
(4πaUμout)((μout + (3/2)μin)/(μout + μin)), where μout and μin are the even shear
viscosities outside and inside the bubble, respectively. In the case we are considering,
μin = μout, so Fz reduces to the expression above (Batchelor 1967).

934 A23-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1079


Stokes flows in three-dimensional fluids

Rewriting (5.7) more explicitly, we have

vout
φ,1(r, θ) = U

896

[
g1

out(θ)
a
r + g3

out(θ)
(a
r
)3 + g5

out(θ)
(a
r
)5
]

sin 2θ, (5.8)

where

g1
out(θ) = 280εo

R − (175 + 210 cos 2θ)ε1 − (70 + 105 cos 2θ)ε2 + O(ε2), (5.9)

g3
out(θ) = −168εo

R + (126 + 210 cos 2θ)ε1 + (84 + 420 cos 2θ)ε2 + O(ε2), (5.10)

g5
out(θ) = −(15 + 105 cos 2θ)ε1 − (30 + 210 cos 2θ)ε2 + O(ε2). (5.11)

Next, we consider the flow inside the bubble. In this case, Δαvin
0 = 0, so (4.1) reduces

to the vector Laplace equation:

	vin
1 = 0, (5.12)

with the boundary condition vout
1 (a, θ) = vin

1 (a, θ). The solution to this Dirichlet problem
involves the Dirichlet Green function used in the sphere computation (Jackson 1999) (see
details in Appendix J). Solving for vin

1 , we find

vin
φ,1(r, θ) = U

56

[
g1

in(θ)
(r

a

)2
]

sin 2θ, (5.13)

where
g1

in(θ) = 7εo
R − 4ε1 − ε2 + O(ε2), (5.14)

again with no modifications to vr and vz at leading order. We plot the velocity fields outside
and inside the bubble in figure 4(h–j).

5.3. Effect of hydrostatic torque
As we have mentioned in § 3, parity-violating fluids, such as fluids made of spinning
particles, can exhibit a hydrostatic torque σ h

ij = −εijzτz and a hydrostatic shear stress
density in their hydrostatic stress. Let us illustrate the effect of the hydrostatic torque on
a finite sphere. We assume a no-slip boundary condition at the surface of the sphere.
In contrast to the situation of § 5.1, where the velocity at the surface of the sphere was
assumed to vanish, here this velocity is determined by the balance between the torques
due to the viscous stress and to the hydrostatic stress. Note that other boundary conditions
could be appropriate, depending on the microscopic interactions between the constituents
of the fluid and the boundary.

In the absence of odd viscosity, the hydrostatic torque leads to a total torque
Tz = 8

3πa3τz on the sphere (see (3.2)). Hence, the sphere rotates at a steady angular
velocity Ω = Tz/8πa3μ = τz/3μ (see Hobbie & Roth 2007) and introduces an additional
azimuthal component

vφ(r, θ) = Ωa3 sin θ

r2 (5.15)

to the flow. This expression is valid for all r (in both near and far fields), as it satisfies
the boundary condition. This azimuthal flow is even in z, unlike the flow due to the
parity-violating viscosities, which is odd in z.
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When odd viscosity is present, we can still compute the far-field flow using the
perturbative Oseen tensor (computed in (H6) of Appendix H). The far-field flow is given
by vi = AizTz using the rotlet Ai� (see § 4.2), and we find that

v = Tz

8πμ

sin θ

r2 φ̂ + ε
Tz

16πμ

1 + 3 cos 2θ

r2 r̂, (5.16)

in which ε ≡ ηo/μ 
 1 and ηo
2 = −ηo

1/2 ≡ ηo. Again, we find an azimuthal flow even in
z as a consequence of the hydrostatic torque. In addition, we see that the presence of odd
viscosity combined with a hydrostatic torque generates flow in the radial direction that is
absent in the zeroth-order case.

6. Sedimentation in a parity-violating fluid

6.1. Few particles: mechanisms
We now examine the role of parity-violating viscosities and of the corresponding
azimuthal flows in the problem of sedimentation, in which particles driven by an external
field (e.g. gravity) interact hydrodynamically at low Reynolds number. We assume the
particles to be small identical spheres without inertia, which sediment under gravity and
are advected by the flow due to the other particles.

In a standard isotropic fluid, an isolated sedimenting particle experiences a Stokesian
drag and thus sinks at a velocity U = Fz/(6πμa). In a co-moving reference frame, the
velocity field generated by a single sedimenting sphere β is simply given by the Stokes
flow past a sphere (I4). In the dilute limit, we can neglect the near-field terms that fall off
faster than 1/r (Happel 1983). In particular, we neglect the higher-order 1/r2 velocity field
contribution associated with particle rotation (see § 5.3), which may occur in a fluid with
hydrostatic torques. As a result, the velocity field generated by each particle simply reduces
to the Stokeslet (G1). If all the sedimenting particles experience the same force f = −ẑFz,
the equation of motion in the co-moving frame for particle α becomes (Hocking 1964;
Guazzelli et al. 2009)

dxα

dt
=
∑

α /=β

G(xα − xβ)f , (6.1)

where G(x) is the Green function of the Stokes equation (Oseen tensor) from (4.9), α and
β are particle indices and xα is the position of particle α in the co-moving reference frame.

In a parity-violating fluid, we replace the standard Stokeslet field on the right-hand side
of (6.1) with the odd viscous Stokeslet from (4.16)–(4.18). For simplicity, here we will
consider ηo

2 = −ηo
1/2 ≡ ηo and μ1 = μ2 = μ3 ≡ μ (all other viscosities in (2.7) are set

to zero). Since each of the sedimenting particles experiences an identical vertical force, we
can move into their co-moving reference frame. We then numerically integrate (6.1) over
time with a standard fourth-order Runge–Kutta algorithm to obtain the trajectories of the
particles.

Figure 5(a,b) shows the trajectories of three particles in the x–z plane with ηo = 0 and
ηo > 0. While the sedimentation of as few as three Stokeslets in a standard isotropic fluid
is already chaotic (Hocking 1964; Jánosi et al. 1997), the parity-violating flow introduces
simple and well-defined modifications to the trajectories. For example, the trajectories
of two particles interacting through the standard Stokeslet are confined to the vertical
plane (figure 5c) containing initial positions. In the presence of odd viscosity, the particle
trajectories are deflected out of this plane due to the azimuthal flow present in the odd
Stokeslet (figure 5d). Similarly, the dynamics of a three-particle system initialized along a
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ẑ∙
Δ

0 t 18

3

5

ẑ∙
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Figure 5. Few-particle sedimentation in an odd viscous fluid. (a,b) The trajectories of three particles, initially
positioned along a horizontal line, without and with odd viscosity, respectively. Although the change to the
trajectories is small, the addition of ηo is sufficient to qualitatively change the long-time dynamics of the
system, as the red particle gets left behind in (b), while the black particle is lost in (a). (c,d) The trajectories of
two particles initialized at different heights without and with odd viscosity, respectively. Rather than moving
along the line connecting the two particles (c), the trajectories are rotated by an angle in the presence of ηo

(d). (e, f ) Three particle trajectories without and with odd viscosity, respectively. In (e), the three particles
remain in the same vertical plane as they sediment, but the addition of ηo in ( f ) allows the particles to follow
three-dimensional trajectories. (g,h) The projected triangle area of a three-particle system remains constant
with time without odd viscosity (g), but can change with the addition of ηo (h). Panels (b), (d) and ( f ) are
computed with ηo = 0.1, panel (h) with ηo = 1.

horizontal line is constrained to the initial vertical plane, as shown in figure 5(e) (Hocking
1964). The azimuthal flow in the odd Stokeslet allows the trajectories to escape out of this
plane and follow three-dimensional trajectories (figure 5 f ). More generally, the area, Δ · ẑ,
of the projection on the x–y plane of the triangle formed by three sedimenting particles is
constant in time for standard fluids (Hocking 1964), even though its shape will generally
change (figure 5g). This conservation law is broken when azimuthal flow is present, as
illustrated in figure 5(h). In the figure, we have used a high ηo = 1 for ease of visualization,
but the effect is also present in the perturbative regime.

6.2. Sedimentation of clouds
We now consider a cloud composed of many sedimenting particles. We start with N =
2000 particles uniformly distributed within a spherical volume of radius a = 0.5, and
evolve the system by integrating (6.1). Figure 6(a–c) shows snapshots of the evolution
for different values of odd viscosity (see also supplementary movie 2).

The case of a standard fluid (figure 6a) was analysed theoretically and experimentally
by Batchelor (1972), Nitsche & Batchelor (1997), Ekiel-Jeżewska, Metzger & Guazzelli
(2006) and Metzger, Nicolas & Guazzelli (2007) (see also references therein). In this case,
the cloud develops a vertical tail of particles that are lost from the outside layer of the
cloud. Then, the circulating motion of the flow inside the cloud (figure 6d) depletes the
number of particles along the central vertical axis of the cloud, leading to the formation
of a torus. If the initial cloud is sufficiently large, the torus undergoes a breakup event
into smaller clouds. As shown in figure 6(d), the streamlines of the fluid velocity field due
to the particles (or, equivalently, the trajectories of the particles themselves, since inertia
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Figure 6. Sedimentation of a cloud in an odd viscous fluid. (a–c) Snapshots of the falling cloud from
simulations with N = 2000 particles for different values of γ = ηo/μ. In the absence of odd viscosity, the
initially spherical cloud deforms into a torus, and subsequently breaks apart into smaller clouds. As the odd
viscosity is increased, the breakup event only occurs in a fraction of the runs, and for even higher values
of γ , the cloud no longer forms a torus, instead deforming into an ellipsoid. (d,e) Streamlines of the fluid
flow in the x–z plane with y = 0, computed at t = 0 in the instantaneous reference frame of the cloud. When
γ = 0, the flow field corresponds to Hill’s spherical vortex. In contrast, for a large odd viscosity, the initially
spherical cloud immediately deforms to an ellipsoid due to the stretched vortices. ( f –h) The velocity field in
the x–y plane with z = 0.33, computed at t = 0, for various values of γ . As the odd viscosity is increased,
the radial component of the velocity decreases while the azimuthal component increases. (i–k) Sample particle
trajectories for varying γ , with supplementary schematics to highlight the main features. The colour map
indicates distance from the viewer, with dark blue closest.

is neglected) initially coincide with the flow past a bubble from § 5.2 (Kojima, Hinch &
Acrivos 1984; Pozrikidis 1990; Ekiel-Jeżewska et al. 2006; Shimokawa et al. 2016).

We now analyse the effect of a non-zero odd viscosity. In the regime of small γ = ηo/μ,
the streamlines inside the cloud still agree with the velocity field in a bubble from (5.13).
Particles develop a small in-plane tangential velocity component that points in opposite
directions below and above the equator. This perturbative modification due to odd viscosity
does not yet affect the qualitative features of the cloud dynamics (i.e. the formation of a
torus and its breakup). As odd viscosity is increased further, the strength of the azimuthal
flow increases in comparison with the radial component, and qualitative features of the
evolution begin to change. At γ = 1, for instance, the breakup event does not always
happen. At γ = 5, we find that the cloud no longer deforms into a torus. Instead, the cloud
adopts an ellipsoidal shape which persists until all particles have leaked into the trailing
tail (figure 6c). The formation of the ellipsoid is visible from the initial flow within the
cloud; unlike the Hill spherical vortex shown in figure 6(d), the initial streamlines in the
high odd viscosity case form a stretched vortex flow (figure 6e). The radial and azimuthal
flows, as seen from above, are shown in figure 6( f –h).

In all cases, the particles within the cloud follow approximately closed trajectories
(figure 6i–k). In the absence of odd viscosity, the closed-loop trajectories are angled
radially inward to the central axis of the cloud (figure 6i). When odd viscosity is non-zero,
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the loop deforms due to the azimuthal flow. Since the azimuthal component changes sign
above and below the equator of the cloud, the particles change rotation direction along
the trajectories, now creating curved closed loops (see figure 6 j). For values of γ that
correspond to ellipsoidal clouds, the trajectories wrap around layers of the cloud with
little radial motion, again rotating in opposite directions above and below the equator
(figure 6h).

7. Conclusion

In this article, we have explored the effects of parity violation on the viscous response of a
fluid in three dimensions. The broken mirror symmetry gives rise to azimuthal flows even
when the external forcing is aligned with the axis of azimuthal symmetry. The changes
in a single Stokeslet lead to qualitative changes in the sedimentation of both few and
many particles. The situations we have analysed theoretically and numerically are within
experimental reach. In the context of soft matter, this could be done in multiple-scale
colloids: a colloidal suspension of rotating particles can produce effective fluids with
parity-violating viscosities (as has already been demonstrated in two dimensions; Soni
et al. 2019), while larger particles can act as colloidal particles for the effective fluid. In
these systems, the presence of parity-violating coefficients could also affect hydrodynamic
instabilities such as the fingering instabilities observed in colloidal rollers in suspension
(Wysocki et al. 2009; Driscoll et al. 2016). In the context of hard condensed matter,
recent experimental and theoretical works (Hoyos & Son 2012; Levitov & Falkovich 2016;
Holder, Queiroz & Stern 2019) have focused on the hydrodynamic behaviour of electrons
in solids. There, sizeable parity-violating viscosities can occur and have been observed
when the sample is under a magnetic field (Berdyugin et al. 2019) and Stokes flow can be
realized by introducing holes in the sample (Gusev et al. 2020).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1079.
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Appendix A. Coordinate systems and Fourier transform conventions

In this appendix, we give explicit expressions for the coordinate systems used in this work
(see also the schematic in figure 2a). Writing Cartesian coordinates (x, y, z) in terms of
cylindrical coordinates (r, φ, z), we have

x = r cos φ, (A1a)
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y = r sin φ, (A1b)

z = z. (A1c)

In terms of the spherical coordinates (r, φ, θ), we have

x = r sin θ cos φ, (A2a)

y = r sin θ sin φ, (A2b)

z = r cos θ. (A2c)

Finally, we define the Fourier transform of a function φ as follows:

φ(x) = 1
(2π)3

∫
d3 qφ(q)eiq·x, (A3)

φ(q) =
∫

d3 qφ(x)e−iq·x. (A4)

Appendix B. Symmetries

The action of an isometry R ∈ O(3) on the stress and strain rate tensors is

σij → Rii′Rjj′σi′j′ and ėij → Rii′Rjj′ ėi′j′, (B1a,b)

which can be written as σ → RσRT and ė → RėRT in matrix notation.
The basis of tensors τA introduced in (2.4a–c) arises from the decomposition in

irreducible representations (irrep) of the action (B1a,b) of O(3) on rank-two tensors. Here,
the (proper or improper) rotation R ∈ O(3) corresponds to the vector representation D−

1 of
O(3), in which D+(−)

� are the positive (negative) irreducible representations of O(3) with
dimension (2� + 1) (i.e. with angular momentum �) and parity ± (see e.g. Miller 1973;
Altmann 2013). Hence, the representation given by (B1a,b) is

D−
1 ⊗ D−

1 � D+
0 ⊕ D+

1 ⊕ D+
2 . (B2)

The basis tensor C corresponds to the one-dimensional irrep D+
0 , the basis tensors Rk to

the three-dimensional irrep D+
1 and the basis tensors Sk to the five-dimensional irrep D+

2 .
In terms of the components of the decomposition of the stress or strain rate on this basis

(defined in (2.4a–c)), the action (B1a,b) reads

σA → RABσB and ėA → RABėB, (B3a,b)

in which
RAB = 1

2 τA
ij Rii′Rjj′τ

B
i′j′ (B4)

is an orthogonal matrix. Under this transformation, the viscosity matrix transforms as

ηAB → RAA′
RBB′

ηA′B′
. (B5)

For example, consider a reflection over the y axis, whose action on R3 is given by the
matrix

Py =
⎡⎣1 0 0

0 −1 0
0 0 1

⎤⎦ . (B6)
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Stokes flows in three-dimensional fluids

We can then compute the action on the basis tensors. For instance, shear two transforms
as follows:

PyS2PT
y =

⎡⎣1 0 0
0 −1 0
0 0 1

⎤⎦⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦⎡⎣1 0 0
0 −1 0
0 0 1

⎤⎦ =
⎡⎣ 0 −1 0

−1 0 0
0 0 0

⎤⎦ = −S2. (B7)

Considering all of the basis matrices in this way allows us to construct the matrix

Py =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B8)

given by (B4), which describes how the stress and strain rate transform under reflection
across the y axis. Consequently, the viscosity matrix transforms under this reflection as

η → η′ = PyηPT
y . (B9)

For each symmetry group in figure 1, the allowed viscosity coefficients are derived by
requiring that ηijk� be invariant under all the corresponding generators listed in the table in
figure 7. The generators in the table of figure 7 can be represented explicitly as matrices

C∞(φ) =
⎡⎣ cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎤⎦ , v =
⎡⎣−1 0 0

0 1 0
0 0 1

⎤⎦ , (B10)

h =
⎡⎣1 0 0

0 1 0
0 0 −1

⎤⎦ , C ′
2 =

⎡⎣−1 0 0
0 1 0
0 0 −1

⎤⎦ (B11)

acting on R3 (following the vector representation D−
1 ), in which the C′

2 axis has been
chosen so that C′

2 = σhσv . Notice that the viscosity tensor is automatically invariant under
−1 = diag(−1, −1, −1) since four copies of the −1 cancel in (2.2). Notice that σh =
−1 · C∞(π/2). Hence, any cylindrical symmetric viscosity tensor is invariant under σh
regardless of whether σh is an element of the underlying symmetry group of the fluid.
Thus, the effective symmetry group of the viscosity tensor is generally larger than the
symmetry group of the fluid, and it can be obtained by simply adding σh to the list of
generators of the symmetry group of the underlying fluid.

Appendix C. Energy dissipation

C.1. Dissipated power
Let us start from the Stokes equation (1.3):

ρ∂tvi = ∂jσij + fi. (C1)
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x

Group

C∞v
C∞h

D∞h

D∞

C∞

Generators

y

z
C∞ (φ)

C∞ (φ)

C∞ (φ)

C∞ (φ)

C∞ (φ)

C∞ (φ)

C′
2

C′
2

σv

σv

σv

σh

σh

σh

(a) (b)

Figure 7. Symmetry operations used to define the groups with axial symmetry. Here, C∞(φ) are rotations
about the z axis (by an angle φ; in red), σv is a mirror reflection about a plane containing the z axis (in green),
σh is a mirror reflection about a plane orthogonal to the z axis (in blue) and C′

2 is a two-fold (180◦) rotation
about any axis orthogonal to the z axis (purple). We also give generators of the five infinite axial groups. We
follow IUPAC recommendations (Schutte et al. 1997) for the point groups and symmetry operations, given
with Schoenflies notations. See Shubnikov (1988) and Hahn (2005) (in particular table § 10.1.4.2, p. 799; and
figure § 10.1.4.3, p. 803) for more details, including the correspondence with Hermann–Mauguin notations.

The total stress tensor is split into two pieces:

σij = σ h
ij + σvis

ij , (C2)

where σ h
ij are the ‘hydrostatic’ stresses present even when there are no velocity gradients

while the viscous stresses σvis
ij = ηijk�∂�vk arise as a linear response to velocity gradients.

(This decomposition is distinct from the geometric decomposition of the stress tensor σij =
πδij + sij into a volumetric stress π ≡ σii/d (d is the space dimension) and a deviatoric (i.e.
traceless) stress sij ≡ σij − πδij.)

After multiplying by vi and integrating the result over a volume V, we obtain∫
V

ρ ∂t

(
v2

2

)
d3x =

∫
V

vi(∂jσij) dV +
∫

V
vifi d3x. (C3)

After an integration by parts (ignoring boundary terms for simplicity), we obtain∫
V

ρ ∂t

(
v2

2

)
d3x = −

∫
V
(∂jvi)σij d3x +

∫
V

vifi d3x (C4)

= −
∫

V
(∂jvi)σ

h
ij d3x −

∫
V
(∂jvi)σ

vis
ij d3x +

∫
V

vifi d3x. (C5)

Here, (∂jvi)σ
h
ij is the rate of change of stored energy in the fluid element. This allows us to

identify
ẇ ≡ (∂jvi)σ

vis
ij (C6)

as the local rate of energy dissipation in the fluid. Finally, we obtain

ẇ = (∂jvi)σ
vis
ij = ηijk� (∂jvi) (∂�vk) = ηe

ijk� (∂jvi) (∂�vk), (C7)

which can be interpreted as the rate of viscous dissipation in the fluid, and in which only
the symmetric part of the viscosity tensor contributes, by symmetry of the expression.

In terms of the viscosity matrix defined in (2.5), the dissipated power reads

ẇ = 1
2 ηABėAėB = 1

2 [ηe]ABėAėB, (C8)

in which ηe = (η + ηT)/2 is the symmetric part of the viscosity matrix, and A, B label its
components.

934 A23-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1079


Stokes flows in three-dimensional fluids

C.2. Virtual power and Lorentz reciprocity
We now note that Lorentz reciprocity (Happel 1983; Masoud & Stone 2019), which
was defined in the main text in terms of Green functions, can be interpreted from an
energetic viewpoint. To do so, consider two a priori unrelated incompressible velocity
fields v and v′ satisfying the Stokes equation, and the corresponding stress tensors
σij = −Pδij + ηijk�∂�vk and σ ′

ij = −P′δij + ηijk�∂�v
′
k. We consider the quadratic form

Ẇ[v, v′] = σij ∂jv
′
i = ηijk� ∂�vk ∂jv

′
i, (C9)

in which we used ∂kv
′
k = 0. The quantity Ẇ[v, v′] can be seen as the virtual power exerted

by the stress tensor σij in the velocity field v′, and Ẇ[v, v] reduces to the local power ẇ
dissipated in the fluid as given by (C7). Permuting the arguments, we get

Ẇ[v′, v] = σ ′
ij ∂jvi = ηijk� ∂�v

′
k ∂jvi = ηk�ij ∂�vk ∂jv

′
i. (C10)

Hence, the reciprocity theorem Ẇ[v, v′] = Ẇ[v′, v] is in general satisfied only when
ηijk� = ηk�ij, namely when the viscosity tensor is purely dissipative.

C.3. Positivity of the dissipated power
Taking the Fourier transform of (C7) yields

ẇ(q, ω) = −v
†
i (q, ω)M ik(q, ω)vk(q, ω). (C11)

In the derivation of the Green function in (4.7), we assumed that M is negative definite
for all q /= 0. (This implies that M is invertible at finite q, as used in the derivation.) On
the one hand, from (C11), we see that requiring M to be negative definite is equivalent
to requiring the dissipation rate be strictly positive for all flows at finite q. On the other
hand, (C7) and (C8) show that a necessary and sufficient condition for ẇ > 0 is that ηe

ijk�
is a positive definite linear map on the space of rank-two tensors, or equivalently that the
symmetric part of the viscosity matrix ηAB is positive definite.

Appendix D. Incompressible Stokes flow in two dimensions

In a two-dimensional isotropic fluid in which ηijk� retains both its minor symmetries, odd
viscosity is captured by a single coefficient:

ηo
ijk� = ηo

2
(εikδj� + εi�δjk + εjkδi� + εj�δik). (D1)

In this case, the odd viscosity enters the equations of motion for the velocity field as

ρDtvi = −∂iP + (ξ + 1
3μ
)
∂i∂jvj + μ	vi + ηoεij	vj. (D2)

Using εij	vj = −∂i[εk�∂kv�] for an incompressible fluid (for which ∂ivi = 0), we can
rewrite the equations of motion for the velocity field as

ρDtvi = −∂iP̃ + μ	vi, (D3)

∂ivi = 0, (D4)

in which P̃ = P + ηoεk�∂kv� is an effective pressure. Since odd viscosity drops out
of the bulk equations of motion, it does not affect the flow of an incompressible,
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isotropic two-dimensional fluid unless boundary conditions on the fluid are stated in
terms of stresses, not velocities (e.g. at a free surface) (Avron 1998; Banerjee et al. 2017;
Abanov & Monteiro 2019). For this reason, the Stokeslet flow is not modified in two
dimensions. However, odd viscosity does modify the flow of incompressible, anisotropic
two-dimensional fluids (Souslov, Gromov & Vitelli 2020).

In three dimensions, it is not possible to absorb the odd shear viscosity terms in the
pressure. The form of the odd terms in the Stokes equation is given in Appendix E; since
these terms cannot be written as gradients of a scalar function, we expect that ηo

1 and ηo
2

can in fact lead to changes in the velocity field, in agreement with the results demonstrated
in the main text.

Appendix E. Modification to Stokes flow

The steady Stokes equation for an incompressible fluid reads

0 = −∂iP + ∂j[ηijk�∂�vk] + fi with ∂ivi = 0. (E1)

Once the form of ηijkl is specified, we write the viscous term using shorthand vector
notation to distinguish between the even and odd viscosity contributions. In this notation,
the Stokes equation becomes

0 = −∇P + μ	v + αΔαv, (E2)

in which Δα is the second-order differential operator associated with the viscosity α = ηo
1,

ηo
2 and ηo

R. In Cartesian coordinates, they are given by

Δηo
1
v =

⎡⎣ (∂2
x + ∂2

y )vy

−(∂2
x + ∂2

y )vx

0

⎤⎦ , Δηo
2
v =

⎡⎣−∂2
z vy − ∂y∂zvz

∂2
z vx + ∂x∂zvz

∂z(∂yvx − ∂xvy)

⎤⎦ , Δηo
R
v =

⎡⎣ ∂zωx

∂zωy

−∂xωx − ∂yωy

⎤⎦ ,

(E3a–c)

where ω is the vorticity.
Assuming that v has no dependence on φ, the expressions of Δα in cylindrical

coordinates are

Δηo
1
v =

⎡⎢⎢⎢⎢⎣
∂2

r vφ + ∂rvφ

r
− vφ

r2

−∂2
r vr − ∂rvr

r
+ vr

r2

0

⎤⎥⎥⎥⎥⎦ , Δηo
2
v =

⎡⎢⎣ −∂2
z vφ

∂r∂zvz + ∂2
z vr

−∂zvφ

r
− ∂r∂zvφ

⎤⎥⎦ , Δηo
R
v =

⎡⎢⎣ ∂zωr
∂zωφ

−ωr

r
− ∂rωr

⎤⎥⎦ .

(E4a–c)

Appendix F. Stokeslet: numerical solution

In figure 8, we visualize the azimuthal component of the Stokeslet velocity field on the
r–z plane for all viscosity coefficients in (2.7). Each solution is computed numerically,
as outlined in § 4.3, in the presence of the shear viscosity μ and an additional viscosity,
indicated in the text label on each panel of figure 8. Here, each such ηi = 0.01μ.

The viscosity coefficients that give rise to a non-zero azimuthal component to the flow
are ηo

R, ηe
Q,2, ηo

Q,2, ηe
Q,3, ηo

Q,3, ηo
1, ηo

2. We validate the numerical method in § 4.3 by solving
for the standard Stokeslet velocity field given in (G1). Figures 9 and 10 demonstrate the
agreement between theory and numerics for a slice of the velocity field without and with
the addition of odd viscosity, respectively.
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vφ ∙ μ/(ηiFz) ∙ 102

ηo
S  > 0

ηe
S  > 0

ηo
1 > 0 ηo

2 > 0ξ > 0

ηo
Q,3 > 0 ηe

A > 0 ηo
A > 0

ηo
Q,1 > 0

ηR,1 > 0 ηR,2 > 0

ηe
Q,2 > 0 ηe

Q,3 > 0

ηe
Q,1 > 0

ηo
Q,2 > 0

ηo
R > 0

Figure 8. The azimuthal component of the Stokeslet flow, computed numerically for all viscosity coefficients
allowed by cylindrical symmetry. The parity-violating viscosities are labelled in red. The azimuthal component
is non-zero only for parity-violating viscosities. The coefficients η

e/o
A are parity-violating, but do not lead to

an azimuthal flow, respectively because the flow is incompressible and because the corresponding term in the
Navier–Stokes equation can be absorbed in pressure (see main text).
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Figure 9. (a,b) A direct comparison of the theoretical Stokeslet solution in (G1) with the numerical solution
obtained using the method in § 4.3. We plot the solution for Fz = 1 and μ = 1, and x = y = 0.626. For the
numerical scheme, the spacing in Fourier space is δq = 0.07 and the maximum wavenumber is Q = 10.
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2/μ = 0.01 ηo
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Figure 10. A direct comparison of the theoretical Stokeslet solution in the presence of odd viscosity
coefficients (a) ηo

1, (b)ηo
2 and (c) ηo

R ((4.21), (4.22) and (4.28), respectively) with the numerical solution
obtained using the method in § 4.3. Each panel plots the solution for one of the odd viscosities in the
perturbative regime (ηo

α/μ = 0.01) with Fz = 1, μ = 1 and x = y = 0.626. For the numerical scheme, the
spacing in Fourier space is δq = 0.07 and the maximum wavenumber is Q = 10.

Appendix G. Stokeslet: exact solution for ηo
1 = −2ηo

2

Here, we provide additional details for the odd viscous Stokeslet calculation performed in
§ 4.4. For reference, the solution to the Stokeslet flow vStokes,0 with f = −ẑFzδ

3(x) in a
standard, isotropic fluid is given by

vStokes,0 = vr,0r̂ + vφ,0φ̂ + vr,0ẑ, (G1)

where

vr,0(r, θ) = − Fz

8πμ

sin θ cos θ

r ,

vφ,0(r, θ) = 0,

vz,0(r, θ) = − Fz

16πμ

3 + cos 2θ

r ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(G2)
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and the pressure

p0(r, θ) = − Fz

4π

cos θ

r2 . (G3)

Note the absence of an azimuthal component to the flow in the velocity field.
Starting from (4.14)–(4.15), we consider the special case where the two shear odd

viscosities satisfy the relation ηo
1 = −2ηo

2. This simplification reduces the fields in Fourier
space to

v̂(q) = Fz

(q2
⊥ + q2

z )(μ
2(q2

⊥ + q2
z ) + (ηo

2)
2q2

z )

⎡⎣ qz(η
o
2qy + μqx)

qz(−ηo
2qx + μqy)

−μq2
⊥

⎤⎦ , (G4)

p̂(q) = iFzqz[ηo
2(2q2

⊥ + q2
z ) + μ2(q2

⊥ + q2
z )]

(q2
⊥ + q2

z )(μ
2(q2

⊥ + q2
z ) + (ηo

2)
2q2

z )
. (G5)

To find the real-space solution, we apply (4.9) to the velocity and pressure fields above.
Let us demonstrate the general integration method on the x̂ component of the velocity.

Parameterizing q⊥ in polar coordinates (q⊥, qφ), we write qx = q⊥ cos qφ, qy =
q⊥ sin qφ and d2q⊥ = q⊥ dq⊥ dqφ . Then,

vx(r, z) = Fz

(2π)3

∫ ∞

0
dq⊥ q2

⊥
∫ 2π

0
dqφ (ηo

2 sin qφ + μ cos qφ) exp(iq⊥r cos (qφ − φ))

×
∫ ∞

−∞
dqz

qzeiqzz

(q2
⊥ + q2

z )(μ
2(q2

⊥ + q2
z ) + (ηo

2)
2q2

z )
. (G6)

The integral over qz can be taken as a contour integral in the complex plane and computed
using the residue theorem. The integrand has four poles along the imaginary axis at

qz = ±i|q⊥|, qz = ± iμ|q⊥|√
μ2 + (ηo

2)
2
. (G6a,b)

Then, say, for z > 0, we integrate over a semicircle in the upper half-plane to find

∫ ∞

−∞
dqz

qzeiqzz

(q2
⊥ + q2

z )(μ
2(q2

⊥ + q2
z ) + (ηo

2)
2q2

z )
= −

iπ

⎛⎝e−|q⊥|z − exp

⎛⎝− μ|q⊥|z√
(ηo

2)
2 + μ2

⎞⎠⎞⎠
(ηo

2)
2q2

⊥
.

(G7)

The remaining integrals over qφ and q⊥ are straightforward, and can be computed using
Mathematica or using an integral table. Integrating over the angular part yields a Bessel
function of the first kind, J1(q⊥r), and the final result is given by

vx(r, z) = −Fz(μ cos φ + ηo
2 sin φ)

4π(ηo
2)

2
z
r

⎛⎝ 1√
r2 + z2

− μ√
(ηo

2)
2r2 + μ2(r2 + z2)

⎞⎠ . (G8)

Repeating this calculation for the remaining velocity components and pressure field,
rewriting in spherical coordinates and in terms of γ = ηo

2/μ, we arrive at solutions given
in (4.16)–(4.19) in the main text.
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vφ/Fz ·
Figure 11. The structure of the azimuthal velocity component of the Stokeslet for a range of γ = ηo/μ values.
(a) The angular dependence of vφ on θ . As γ is increased, the lobes in the azimuthal component become
more pronounced, and swing out to approach the z axis in the limit γ → ∞. (b–e) The azimuthal component
visualized on the r–z plane for the same γ values as in (a). Note the migration of the lobes as γ is increased.

The exact solution allows us to visualize the Stokeslet flow for a range of γ values. In
figure 11(a), we plot the angular dependence of the azimuthal component of the velocity
field. As γ is increased from zero, the solution develops two lobes of opposite sign above
and below the z = 0 plane. For high values of γ , the lobes migrate to the z axis and grow in
magnitude, diverging in the γ → ∞ limit. Corresponding contour plots on the r–z plane
are shown in figure 11(b–e).

As discussed in Appendix C.1, the anti-symmetric viscosity does not contribute to
energy dissipation. It does, however, change the flow, so the energy dissipated by the
Stokeslet in the presence of a non-zero γ does differ from standard Stokeslet dissipation.
In figure 12, we show contour plots of ẇ = σij(∂jvi) for a range of γ values. Although the
contribution to the dissipation vanishes at first order in ηo

2/μ, for larger values of γ , the
regions of high dissipation rate are concentrated near the lobes of the azimuthal component
of the flow.

We note that the limit ηo ≡ ηo
1 − 2ηo

2 and μ ≡ μ1 = μ2 = μ3 has a simple geometric
interpretation. Restricting ourselves to the shear subspace, the matrix ηAB has the form
ηAB = ηoLAB

z + μδAB, where LAB
z is the generator of rotations about the ẑ axis. In this

sense, the μ seeks to cause contractions in shear space, and Lz generates azimuthal
rotations in shear space.

Appendix H. Stokeslet: perturbative solution for small ηo
1, ηo

2 and ηo
R

In this appendix, we present additional details for the calculations performed in § 4.5.
Here, we assume that the odd viscosity is small as compared to the even viscosity, and
consider each coefficient separately.

Let us demonstrate the method with ηo
1. Setting ηo

2 = 0, and expressing the viscosity
ratio as ε1 = ηo

1/μ 
 1, the velocity field in Fourier space (4.14) reduces to

v̂(q) = −Fz

μ

1
(q2

⊥ + q2
z )

3 + ε2
1q4

⊥q2
z

⎡⎣ qz(ε1qyq2
⊥ − qx(q2

⊥ + q2
z ))

qz(−ε1qxq2
⊥ − qy(q2

⊥ + q2
z ))

q2
⊥(q2

⊥ + q2
z )

⎤⎦ . (H1)
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Figure 12. The energy dissipation rate of the Stokeslet flow for (a–d) a range of γ = ηo/μ values, visualized
on the r–z plane. For small γ , the dissipation rate is not affected by the addition of odd viscosity. As γ is
significantly increased, the regions of high rate are concentrated near the lobes of the azimuthal flow (see
figure 11).

The zeroth-order field is simply the standard Stokeslet solution:

v̂0(q) = −Fz

μ

1
(q2

⊥ + q2
z )

3

⎡⎣−qzqx(q2
⊥ + q2

z )

−qzqy(q2
⊥ + q2

z )

q2
⊥(q2

⊥ + q2
z )

⎤⎦ . (H2)

Meanwhile, the leading-order correction is linear in ε1, and is given by

v̂1(q) = −ε1
Fz

μ

1
(q2

⊥ + q2
z )

3

⎡⎣ qzqyq2
⊥

−qzqxq2
⊥

0

⎤⎦ . (H3)

To obtain the real-space solution, we once again apply (4.9), and integrate as delineated
in Appendix G. In this case, the poles for the integral over qz are given by qz = ±i|q⊥|.
With this method, we find the emergence of an azimuthal component to the flow (4.21),
and no correction to the pressure at first order in ε1.

We proceed similarly for the remaining coefficients. For ε2 = ηo
2/μ, we set ηo

1 = 0 and
again expand the denominator in (4.14). For the rotational viscosities, we instead expand
the expressions in (4.25)–(4.27).

Unlike ηR,1 and ηo
R, the rotational viscosity ηR,2 does not affect the Stokeslet flow. To see

this, let us begin by inspecting the Stokes equation at first order in εR,2 = ηR,2/μ. Writing
v = v0 + εR,2v1, P = P0 + εR,2P1, we find the first-order equation to be

0 = −∇P1/μ + 	v1 + ΔηR,2v0. (H4)

Here ΔηR,2 in cylindrical coordinates is

ΔηR,2v =
⎡⎣ 0

−∂rωz
0

⎤⎦ , (H5)

where ωz is the ẑ component of the vorticity. From (G1), we find ωz,0 = 0, so the last term
in (H5) vanishes. Thus, the trivial solution v1 = 0, P1 = 0 satisfies (H5). In fact, the flow
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is unaffected at all orders; at order m in εR,2, the term ΔηR,2vm−1 is zero since vm−1 = 0,
so the trivial solution always satisfies the equation.

As an example, we compute the full Oseen tensor in the limit ηo ≡ ηo
2 = −ηo

1/2, in the
perturbative regime ε ≡ ηo/μ 
 1. We find

G = 1
8πμr3

⎡⎣2x2 + y2 + z2 xy xz
xy x2 + 2y2 + z2 yz
xz yz x2 + y2 + 2z2

⎤⎦
+ ε

8πμr3
⎡⎣ 0 x2 + y2 yz

−(x2 + y2) 0 −xz
−yz xz 0

⎤⎦ . (H6)

Appendix I. Viscous flow past a sphere

Here, we provide additional details for the calculation of odd viscous flow past a sphere
performed in § 5.1. For reference, in a standard isotropic fluid, the velocity and pressure
fields for viscous flow past a sphere in the ẑ direction are given by

vr,0(r, θ) = −3aU sin 2θ

8r + 3a3U sin 2θ

8r3 , (I1)

vφ,0(r, θ) = 0, (I2)

vz,0(r, θ) = U − 3aU(3 + cos 2θ)

8r + a3U(1 + 3 cos 2θ)

8r3 , (I3)

p0(r, θ) = −3aUμ cos θ

2r2 + const. (I4)

Note the absence of an azimuthal component to the flow.
As described in § 5.1, we work in a perturbative regime and assume that the pressure

correction vanishes at linear order. In this case, the Stokes flow equation reduces to the
Poisson equation for the first-order velocity field:

	v1 = −Δαv0. (I5)

In Cartesian coordinates, the Green function is given by

G(x, x′) = − 1
|x − x′| ≡ − 1

R
. (I6)

For ease of dealing with the boundary condition on the sphere, we work in spherical
coordinates and we obtain the vector Laplacian in spherical coordinates as follows. Writing
F = Δαv0, the solution to (I5) in Cartesian coordinates can be written as

v1(x) = −
∫

d3 x′G(x, x′)F (x′). (I7)

To convert a Cartesian vector to spherical coordinates, we apply the matrix T :⎡⎣ r̂̂φ
θ̂

⎤⎦ =
⎡⎣cos φ sin θ sin φ sin θ cos θ

− sin φ cos φ 0
cos φ cos θ sin φ cos θ − sin θ

⎤⎦⎡⎣x̂
ŷ
ẑ

⎤⎦ . (I8)
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Denoting vectors in spherical coordinates with a tilde, we write

ṽ1(x) = −
∫

d3 x′T (x)G(x, x′)F (x′)

= −
∫

d3 x′T (x)G(x, x′)T−1(x′)F̃ (x′)

= −
∫

d3 x′G̃(x, x′)F̃ (x′), (I9)

where G̃(x, x′) ≡ T (x)G(x, x′)T −1. We find that in spherical coordinates, G̃(x, x′) is
given by

− 1
R

⎡⎣ cos θ cos θ ′ + cos (φ − φ′) sin θ sin θ ′ sin θ sin (φ − φ′) sin θ cos θ ′ cos (φ − φ′) − cos θ sin θ ′
− sin θ ′ sin (φ − φ′) cos (φ − φ′) − cos θ ′ sin (φ − φ′)

− cos θ ′ sin θ + cos θ sin θ ′ cos (φ − φ′) cos θ sin (φ − φ′) cos θ cos θ ′ cos (φ − φ′) + sin θ sin θ ′

⎤⎦ .

(I10)

Since this Green function is not diagonal, the different source components mix. For the
odd viscosities, we have F = Fφφ̂, so

G̃(x, x′)F̃ (x′) = − 1
R

⎡⎣Fφ sin θ sin (φ − φ′)
Fφ cos (φ − φ′)

Fφ cos θ sin (φ − φ′)

⎤⎦ . (I11)

The odd source terms, written in spherical coordinates, are given below, for ηo
1, η

o
2 and

ηR, respectively:

Fφ(r, θ) = 3aU(5a2 − 9r2)
16r5 sin 2θ + 15aU(7a2 − 3r2)

16r5 cos 2θ sin 2θ, (I12)

Fφ(r, θ) = 3aU(5a2 − 3r2)
8r5 sin 2θ + 15aU(7a2 − 3r2)

8r5 cos 2θ sin 2θ, (I13)

Fφ(r, θ) = 9aU
4r3 sin 2θ. (I14)

We absorb the spherical corrections to the Green function into the source, and expand
the Cartesian Green function in spherical harmonics:

G(x, x′) = −
∞∑

�=0

�∑
m=−�

1
2� + 1
r�<
r�+1
>

Ym
� (θ, φ)Ȳm

� (θ ′, φ′). (I15)

This Green function, however, does not satisfy the boundary condition on the sphere (no
slip); it only guarantees a well-behaving solution at infinity. Instead, we need to use the
Dirichlet Green function, where we can impose v1(r = a, θ) = 0. The relevant Dirichlet
Green function is known: a direct electrostatics analogy for this problem is a conducting
spherical cavity of radius a with a point charge placed at x′ and a vanishing potential on
the surface of the sphere. The Green function for this problem can be found using the
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method of images (Jackson 1999), and is given by

GD(x, x′) = − 1
|x − x′| + a

r′
∣∣∣∣x − a2

r′2 x′
∣∣∣∣

= −
∞∑

�=0

�∑
m=−�

1
2� + 1

[ r�<
r�+1
>

− 1
a

(
a2

rr′
)�+1]

Ym
� (θ, φ)Ȳm

� (θ ′, φ′), (I16)

where

r�<
r�+1
>

− 1
a

(
a2

rr′
)�+1

=

⎧⎪⎪⎨⎪⎪⎩
1
r′�+1

(
r� − a2�+1

r�+1

)
, r < r′,

1
r�+1

(
r′� − a2�+1

r′�+1

)
, r > r′.

(I17)

Then, we evaluate the integral below with the Dirichlet Green function

ṽ1(x) = −
∫

d3 x′G̃D(x, x′)F̃ (x′) (I18)

by using the spherical harmonics expansion in (J20), and find the velocity fields given
in (5.3).

Appendix J. Viscous flow past a bubble

Here, we provide additional details for the calculation of odd viscous flow past a spherical
bubble performed in § 5.2. In a standard, isotropic fluid, the velocity field for the flow
outside the bubble is

vr(r, θ) = −5aU cos θ sin θ

8r + 3a3U cos θ sin θ

8r3 , (J1)

vφ(r, θ) = 0, (J2)

vz(r, θ) = U − 5aU(3 + cos 2θ)

16r + a3U(1 + 3 cos 2θ)

16r3 . (J3)

Inside the bubble, the fluid forms Hill’s spherical vortex, given by

vr(r, θ) = − U
4a2 r2 cos θ sin θ, (J4)

vφ(r, θ) = 0, (J5)

vz(r, θ) = − U
8a2 (2a2 − 3r2 + r2 cos 2θ). (J6)

As in the previous problems we consider, the standard flow is two-dimensional, with no
azimuthal component. To evaluate the effect of odd viscosity on the bubble flow, we work
in a perturbative regime, with ηo 
 μ.

Outside the bubble, the problem is remarkably similar to flow past a sphere, without
the requirement of the no-slip boundary conditions on the surface. We again look for a
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solution of the vector Poisson equation

	v1 = −Δαv0. (J7)

As in the case of the sphere, the odd source terms, F = Δαv0, only have an azimuthal
component, taking the form

Fφ(r, θ) = −15aU(a2 − 3r2)
32r5 sin 2θ − 15aU(7a2 − 5r2)

32r5 cos 2θ sin 2θ, (J8)

Fφ(r, θ) = −15aU(a2 − r2)
16r5 sin 2θ − 15aU(7a2 − 5r2)

16r5 cos 2θ sin 2θ, (J9)

Fφ(r, θ) = −15aU
8r3 sin 2θ. (J10)

Following the calculation leading to (I11), we absorb the spherical corrections to the
Green function into the source, and expand the Cartesian Green function in spherical
harmonics. This time, the standard expansion suffices (Jackson 1999):

G(x, x′) = − 1
|x − x′| (J11)

= −
∞∑

�=0

�∑
m=−�

1
2� + 1

[ r�<
r�+1
>

]
Ym

� (θ, φ)Ȳm
� (θ ′, φ′), (J12)

where

r�<
r�+1
>

=

⎧⎪⎨⎪⎩
r�
r′�+1 , r < r′
r′�
r�+1 , r > r′.

(J13)

Evaluating the integral in (I18) with this Green function, we find the velocity fields given
in (5.8).

Let us now consider the flow inside the bubble. Once again assuming p1 = 0, we are left
with (J7). In this case, however, the term Δαv0 = 0, so (J7) reduces to the vector Laplace
equation

	v1 = 0, (J14)

with the boundary condition v1,out(a, θ) = v1,in(a, θ). The velocity on the boundary in
spherical coordinates is given by

vφ(a, θ) = −1
7 U cos θ sin θ, (J15)

vφ(a, θ) = − 1
28 U cos θ sin θ, (J16)

vφ(a, θ) = 1
4 U cos θ sin θ, (J17)

for ηo
1, ηo

2 and ηo
R, respectively.

Here, as in the case of the sphere, we can make an analogy with electrostatics. Our
set-up is the vector version of the following situation: a spherical cavity, with no charge
inside, but a potential specified to be some function on the surface of the cavity. This is
known as the ‘Dirichlet problem’, and can be solved with the use of the Dirichlet Green
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function GD from (J20). In Cartesian coordinates, the solution to our Dirichlet problem is
given by

v1(x) = −
∫

d2 x′r̂′ · ∇x′GD(x′, x)v1,out(a, θ ′). (J18)

Again, it is convenient to work in spherical coordinates. Denoting vectors in spherical
coordinates with a tilde, we transform

ṽ1(x) = −
∫

d2 x′T (x)r̂′ · ∇x′GD(x′, x)v1,out(a, θ ′)

= −
∫

d2 x′T (x)r̂′ · ∇x′GD(x′, x)T −1(x′)ṽ1,out(a, θ ′)

= −
∫

d2 x′T (x)∂r′GD(x′, x)T −1(x′)ṽ1,out(a, θ ′)

= −
∫

d2 x′∂r′[T (x)GD(x′, x)T −1(x′)]ṽ1,out(a, θ ′)

= −
∫

d2 x′∂r′G̃D(x′, x)ṽ1,out(a, θ ′), (J19)

where G̃D(x, x′) ≡ T (x)GD(x, x′)T −1(x′), and T is defined in (I8).
Taking into account the mixing of the source components in (I10), we compute this

integral by expanding the Dirichlet Green function in spherical harmonics, as in (J20).
The relevant expansion for this ‘interior’ problem (Jackson 1999) is given by

GD(x, x′) = −
∞∑

�=0

�∑
m=−�

1
2� + 1

[ r�<
r�+1
>

− 1
a

(rr′
a2

)�
]

Ym
� (θ, φ)Ȳm

� (θ ′, φ′), (J20)

where

r�<
r�+1
>

− 1
a

(rr′
a2

)�

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r�
r′�+1 − 1

a

(rr′
a2

)�

, r < r′
r′�
r�+1 − 1

a

(rr′
a2

)�

, r > r′.
(J21)

The resulting velocity fields are given in (5.13).

REFERENCES

ABANOV, A.G. & MONTEIRO, G.M. 2019 Free-surface variational principle for an incompressible fluid with
odd viscosity. Phys. Rev. Lett. 122, 154501.

ALTMANN, S.L. 2013 Rotations, Quaternions, and Double Groups. Dover.
ARIMAN, T., TURK, M.A. & SYLVESTER, N.D. 1973 Microcontinuum fluid mechanics – a review. Intl J.

Engng Sci. 11 (8), 905–930.
AVRON, J.E. 1998 Odd viscosity. J. Stat. Phys. 92 (3–4), 543–557.
BANDURIN, D.A., et al. 2016 Negative local resistance caused by viscous electron backflow in graphene.

Science 351 (6277), 1055–1058.
BANERJEE, D., SOUSLOV, A., ABANOV, A.G. & VITELLI, V. 2017 Odd viscosity in chiral active fluids. Nat.

Commun. 8 (1), 1–12.
BATCHELOR, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
BATCHELOR, G.K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (2), 245–268.
BEENAKKER, J.J.M. & MCCOURT, F.R. 1970 Magnetic and electric effects on transport properties. Annu.

Rev. Phys. Chem. 21 (1), 47–72.

934 A23-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1079


Stokes flows in three-dimensional fluids

BERDYUGIN, A.I., et al. 2019 Measuring Hall viscosity of graphene’s electron fluid. Science 364 (6436),
162–165.

CANTWELL, B. 2002 Introduction to Symmetry Analysis. Cambridge University Press.
CHAJWA, R., MENON, N. & RAMASWAMY, S. 2019 Kepler orbits in pairs of disks settling in a viscous fluid.

Phys. Rev. Lett. 122, 224501.
CHAPMAN, S. 1939 The Mathematical Theory of Non-Uniform Gases; An Account of the Kinetic Theory of

Viscosity, Thermal Conduction, and Diffusion in Gases. Cambridge University Press.
CONDIFF, D.W. & DAHLER, J.S. 1964 Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7 (6),

842.
COOK, C.Q. & LUCAS, A. 2019 Electron hydrodynamics with a polygonal Fermi surface. Phys. Rev. B

99 (23), 235148.
CORTEZ, R. 2001 The method of regularized Stokeslets. SIAM J. Sci. Comput. 23 (4), 1204–1225.
DRISCOLL, M., DELMOTTE, B., YOUSSEF, M., SACANNA, S., DONEV, A. & CHAIKIN, P. 2016 Unstable

fronts and motile structures formed by microrollers. Nat. Phys. 13 (4), 375–379.
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