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On the positivity of

weak supersolutions of

non-uniformly elliptic equations

Neil S. Trudinger

The classical maximum principle for homogeneous, second order,

uniformly elliptic equations implies that non-negative, classical

supersolutions are either positive or vanish identically in the

interior of their domain of definition. This paper is concerned

with an extension of this result to weak supersolutions of non-

uniformly elliptic equations subject to only mild coefficient

restrictions.

This note is concerned with the positivity of weak non-negative

supersolutions of second order elliptic equations subject to only mild

coefficient restrictions. Specifically we consider operators of the form

(1) Lu = -D.\a JD.u+b u\ + a D.u + du ,
H 0 i i

with coefficients a , b , a , d (i, j = 1, ..., n) , measurable

functions on a domain ft in euclidean n space F . We call L

elliptic in ft if the principal coefficient matrix A = [a^] is positive

almost everywhere in ft . Letting X and A denote the minimum and

maximum eigenvalues of A , the symmetric part of A , we further assume
s

that X and A are locally integrable in ft , together with the

function \i defined by
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(2j u = a..(fcV7'+cV) + \d\ ,

where A" = [a. .] is the inverse of A . Finally we assume that there

exists a positive constant K such that

2
(3)

for all x € ft , £, r| € F . If A is symmetric, inequality (3) with

•K = 1 is an immediate consequence of the Cauchy Schwarz inequality. Hote

that in the expressions (l), (2), and (3), and in what follows, we are

employing the standard summation convention that repeated indices indicate

summation from 1 to n .

We now have the following theorem.

THEOREM. Let u be a non-negative function in the space H(k, y, ft)

satisfying the inequality, Lu 2 0 , weakly in ft . Then either u is

positive almost everywhere in ft or u vanishes almost everywhere in ft .

The spaces #(A, u, ft) are defined in the papers [3], [4]. Under the

stricter hypotheses, A"1 € £S(ft) , A, y € Lt(Q) , - + \ < - , Theorem 1
8 "0 Yl

is a consequence of the weak Harnack inequality established in [3]. In
this case we can conclude that either u vanishes almost everywhere in ft
or else

ess inf u > 0
ft'

for each domain ft1 strictly contained in ft . The special case of the

above theorem where A is symmetric, b = c = 0 and d > 0 was proved

in [?]. The proof given below which depends on an appropriate choice of

test function, is completely different to that in [/].

Proof. The weak inequality, Lu 2 0 , is equivalent to the integral

inequality

(!*) L(u,9 <p) = I a D,<pD .u+b uD.<p+c <pD.u+du(p\

5 0 for a l l <p > 0 , if € H°(A, p , ft) ; ( see [ 3 ] ) .
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Let us suppose that u vanishes on a subset E of Q of positive measure

and l e t B be any b a l l , s t r i c t l y contained in Q , such that B n E has

positive measure. We then choose as a tes t function in (.h),

where ? € C (Q) , t, = 1 on B , and e > 0 . Since

20?. i; £2D.w

it follows from the local integrability of A and y that

cp £ « (A, p, £2) and is accordingly a valid test function in (k) . We

therefore obtain, on substitution,

r, a'3D .uD .u r r ( . •, Z2b .uD .u

so that, writing

1 + EJ '
we have, by (3),

Consequently, by the Schwarz inequality,

,21*

ff ,-lPff 2 ij )£ (J/ J Ua'
a V V J

where C is a constant depending only on K . Since w vanishes in B
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on a set of positive measure,we have, by a variant of the Poincare

inequality (see [2, Theorem 6.!*]), that

+ —
>B

is bounded independently of e . Hence by letting e tend to zero, we

must have u = 0 almost everywhere in B . It then follows that u = 0

almost everywhere in Si . 0

By replacing u by -u , we see that a non-positive subsolution of

the equation Lu = 0 must either vanish or be negative almost everywhere

in n . Furthermore if the inequality

d - D.b1 > 0
If

holds weakly in J! , then a non-constant subsolution (supersolution) can

only attain a positive maximum (negative minimum) in Q on a set of

measure zero. The above theorem can thus be viewed as a "weak strong

maximum principle". Results of this nature can be applied to the study of

eigenfunctions of the operator L (see [/]).
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