SOME REMARKS ON A PAPER OF McCARTHY ${ }^{1)}$

P. Erdös
(received March 3, 1958)

As usual we denote the number of integers not exceeding n and relatively prime to n by Euler's ϕ function $\phi(\mathrm{n})$. Lehmer ${ }^{2}$) calls the $\phi(\mathrm{n})$ integers

$$
1=a_{1}<a_{2}<\ldots<a_{\phi(n)}=n-1
$$

the totatives of n.
Denote by $\phi(k, \ell, n)$ the number of a's satisfying

$$
\mathrm{n} \ell / \mathrm{k}<\mathrm{a}_{\mathrm{i}}<\mathrm{n}(\ell+1) / \mathrm{k} \quad \mathrm{n}>\mathrm{k}
$$

If $n \ell \equiv 0(\bmod k)$ or $n(\ell+1) \equiv 0(\bmod k)$ then, since $n>k$, $(\mathrm{n} \ell / \mathrm{k}, \mathrm{n})>1$ and $(\mathrm{n}(\ell+1) / \mathrm{k}, \mathrm{n})>1$ respectively. Thus $\phi(k, \ell, n)$ is the number of totatives of n satisfying

$$
n \ell / k \leq a_{i} \leq n(\ell+1) / k
$$

If
(1)

$$
\phi(\mathrm{k}, \boldsymbol{l}, \mathrm{n})=\phi(\mathrm{n}) / \mathrm{k}, \quad l=0,1,2, \ldots, \mathrm{k}-1
$$ Lehmer ${ }^{2)}$ says that the totatives are uniformly distributed with respect to k. To shorten the notation we say that $T(n, k)$ holds in this case. Lehmer ${ }^{2}$ further calls n exceptional with respect to k if either n is divisible by k^{2} or n has a prime factor of the form $k x+1$. He shows that for all exceptional $n, T(n, k)$ holds.

In a recent note McCarthy ${ }^{1)}$ proves that if k is a prime then $T(n, k)$ holds if and only if n is exceptional with respect to k. However, if k is not squarefree there is an integer $n>k$ which is not exceptional and for which $T(n, k)$ holds. He further asks if the second half of his theorem remains true if k is not a prime but is squarefree. We are going to prove this in this note.

Can. Math. Bull., vol. 1, no. 2, May 1958

It is clear that if $T(n, k)$ holds then $\phi(n) \equiv 0(\bmod k)$. We are going to show that if $k \neq p$ or $k \neq 2 p, p$ odd, then this condition is not sufficient, i.e. there exists an integer n for which $\phi(\mathrm{n}) \equiv 0(\bmod k)$ but $T(\mathrm{n}, \mathrm{k})$ does not hold. Lehmer ${ }^{2}$) observes that $n=21, k=4$ show that $\phi(n) \equiv 0(\bmod k)$ is not sufficient that $T(n, k)$ holds.

It would be of interest to determine all the integers n for which $T(n, k)$ holds but this problem we can solve only for very special values of k.

THEOREM 1. Let k be any integer which is not a prime. Then there are infinitely many n which are not exceptional and for which $T(n, k)$ holds.

First assume $k=p^{\alpha}, \alpha>1$. Then we can take $n=A p^{\alpha+1}$.
Assume next $k \neq p^{\alpha}$. Then $k=a b$ where $(a, b)=1, a>1$, $b>1$. By the well-known theorem of Dirichlet on primes in arithmetic progressions, there are infinitely many primes p and q such that

```
p\equiv1(mod a), p \equiv-1 (mod b);q\equiv-1 (moda), q\equiv1(mod b).
```

Clearly $n=p q$ is not exceptional. Now we show that (1) holds. It will be sufficient to show that for every l with $l \leq l \leq k$ the number of integers $m<\frac{l_{n}}{k}$ satisfying $(m, n)=1$ equals

$$
\begin{equation*}
\frac{l \phi(n)}{k}=\frac{l(p-1)(q-1)}{k} \tag{2}
\end{equation*}
$$

The number of such integers clearly equals

$$
\begin{equation*}
\left[\frac{\ell \mathrm{pq}}{\mathrm{k}}\right]-\left[\frac{\ell \mathrm{p}}{\mathrm{k}}\right]-\left[\frac{\ell \mathrm{q}}{\mathrm{k}}\right]+\left[\frac{\ell}{\mathrm{k}}\right]=\frac{\ell(\mathrm{p}-1)(\mathrm{q}-1)}{\mathrm{k}}-\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \varepsilon_{1}=\frac{\ell_{\mathrm{pq}}}{\mathrm{k}}-\left[\frac{\ell_{\mathrm{pq}}}{\mathrm{k}}\right], \quad \varepsilon_{2}=\frac{\ell_{\mathrm{p}}}{\mathrm{k}}-\left[\frac{\ell_{\mathrm{p}}}{\mathrm{k}}\right] \\
& \varepsilon_{3}=\frac{\ell_{\mathrm{q}}}{\mathrm{k}}-\left[\frac{\ell \mathrm{q}}{\mathrm{k}}\right], \quad \varepsilon_{4}=\frac{\ell}{\mathrm{k}}-\left[\frac{\ell}{\mathrm{k}}\right]
\end{aligned}
$$

We must show

$$
\begin{equation*}
\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}+\varepsilon_{4}=0 \tag{4}
\end{equation*}
$$

When $\ell=k, \varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\varepsilon_{4}=0$ and we are done. Assume $\ell<k$. Since $p q \equiv-1(\bmod k)$, we have

$$
\varepsilon_{1}=\frac{\ell_{\mathrm{pq}}}{\mathrm{k}}-\left[\frac{\ell \mathrm{pq}}{\mathrm{k}}\right]=\frac{\mathrm{k}-\ell}{\mathrm{k}}, \varepsilon_{4}=\frac{\ell}{\mathrm{k}}
$$

or

$$
\varepsilon_{1}+\varepsilon_{4}=1
$$

Clearly $0<\varepsilon_{2}<1$ and $0<\varepsilon_{3}<1$. Hence $0<\varepsilon_{2}+\varepsilon_{3}<2$ and $-1<\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}+\varepsilon_{4}<1$; but $\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}+\varepsilon_{4}$ is the difference of two integers and therefore itself an integer. This proves (4) and completes the proof.

In McCarthy's paper the example $\mathrm{k}=6, \mathrm{n}=9$ is given. Here 9 is a power of a prime, it is not exceptional with respect to 6 , and $T(9,6)$ holds. We now show that this situation can occur if and only if

$$
\begin{equation*}
\mathrm{k}=\mathrm{p}^{\alpha} \mathrm{b} \quad, \quad \mathrm{p} \equiv \mathrm{l}(\bmod \mathrm{~b}), \mathrm{n}=\mathrm{p}^{\alpha+i}, 1 \leq \mathrm{i}<\infty \tag{5}
\end{equation*}
$$

(i< α if $b=1$).
Clearly, if (5) is satisfied then n is not exceptional. Furthermore we have in this case that the number of integers $\mathrm{m} \leq \ln / \mathrm{k}$ with $(\mathrm{m}, \mathrm{n})=1$ equals

$$
\left[\frac{\ell n}{k}\right]-\left[\frac{\ell n}{k p}\right]=\frac{\ell}{\mathrm{k}} \phi(\mathrm{n})-\varepsilon_{1}+\varepsilon_{2}(1 \leqslant \ell \leqslant k) ;
$$

but $\phi(\mathrm{n}) \equiv 0(\bmod k)$ implies $\varepsilon_{1}-\varepsilon_{2}$ is an integer with $0<\varepsilon_{1}<1,0<\varepsilon_{2}<1$ so that $\varepsilon_{1}-\varepsilon_{2}=0$. Hence (5) also implies that $\mathrm{T}(\mathrm{n}, \mathrm{k})$ holds.

Suppose conversely that $n=p^{\beta}, T(n, k)$ holds and n is not exceptional with respect to k. Put $k=p^{\alpha} b,(p, b)=1$.

If $b=1$, clearly $\alpha>\beta / 2$ (since n is not exceptional). Thus we may assume $b>1$. Since $T(n, k)$ holds we must have

$$
\phi(n)=p^{\beta-1}(p-1) \equiv 0\left(\bmod p^{\alpha} b\right)
$$

or $\alpha<\beta \quad$ and $p \equiv 1(\bmod b)$ as stated.
Suppose that $k=2 p$ (p odd), n is not exceptional with respect to k, and $T(n, k)$ holds. First of all we must have $\phi(n) \equiv 0$ $(\bmod 2 p)$. Furthermore n can have no prime factor $\equiv 1(\bmod p)$; for such a factor would have to be $\equiv 1(\bmod 2 p)$ and n would be exceptional. Thus $n \equiv 0\left(\bmod p^{2}\right)$. Conversely, if $n \equiv 0(\bmod$ p^{2}) and $\mathrm{n} \neq 0(\bmod 4)$ then $\mathrm{T}(\mathrm{n}, \mathrm{k})$ holds and n is not exceptional. Thus if $k=2 p, \phi(n) \equiv 0(\bmod k)$ is necessary and sufficient for $T(n, k)$ to hold. Now we prove

THEOREM 2. If $k \neq p$ and $k \neq 2 p$ (p odd), then there always exists an n for which $\phi(n) \equiv 0(\bmod k)$ and $T(n, k)$ does not hold.

If $k=4$ we can take $n=21$ (this is Lehmer's example). If $k=8$ we can take $n=35$. Every other k can be factored in the form

$$
k=a b \quad, \quad a>2, \quad b>2
$$

It is not difficult to see that for such k there exist infinitely many primes p and q satisfying

$$
\begin{align*}
& \mathrm{p} \equiv 1(\bmod a) \quad, \quad \mathrm{p} \equiv 1(\bmod b), \mathrm{pq} \equiv-1(\bmod k) \tag{6}\\
& \frac{\mathrm{p}}{\mathrm{k}}-\left[\frac{\mathrm{p}}{\mathrm{k}}\right]>\frac{1}{2}, \quad \frac{\mathrm{q}}{\mathrm{k}}-\left[\frac{\mathrm{q}}{\mathrm{k}}\right]>\frac{1}{2}
\end{align*}
$$

Put $n=p q$; clearly $\phi(n) \equiv 0(\bmod k)$ and n is not exceptional. Now, as in (3),

$$
\phi(k, \lambda, n)=\frac{(p-1)(q-1)}{k}-\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4}
$$

Since $\mathrm{pq} \equiv-1(\bmod k), \quad \varepsilon_{1}+\varepsilon_{4}<1$. But by the second line of (6), $\varepsilon_{2}+\varepsilon_{3}>1$; thus, since $\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}+\varepsilon_{4}$ is an integer, it must be -1 and

$$
\phi(k, 1, n)=\frac{(p-1)(q-1)}{k}+1
$$

Hence (1) is not satisfied and the proof of Theorem 2 is complete.
Let k be an integer, $\mathrm{n}=\mathrm{pq}$ not exceptional with respect to k and $n \neq-1(\bmod k)$. I conjecture that $T(n, k)$ does not hold, but I have not been able to decide this question.

FOOTNOTES

1. Amer. Math. Monthly, 64 (1957), 585-586.
2. Canad. J. of Math. 7 (1955), 347-357.
