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Beyond the Standard Model
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The past decade has witnessed dramatic developments in the fields of experimental and
theoretical particle physics and cosmology. This Second Edition is a comprehensive
introduction to these recent developments and brings this self-contained textbook right
up to date. Brand-new material for this edition includes the ground-breaking Higgs
discovery and results of the WMAP and Planck experiments. Extensive discussion
of theories of dynamical electroweak symmetry breaking, metastable supersymmetry
breaking, an expanded discussion of inflation and a new chapter on the landscape, as well
as a completely rewritten coda on future directions, give readers a modern perspective
on this developing field. A focus on three principal areas — supersymmetry, string
theory and astrophysics and cosmology — provides the structure for this book, which
will be of great interest to graduates and researchers in the fields of particle theory,
string theory, astrophysics and cosmology. The book contains several problems, and
password-protected solutions will be available to lecturers at www.cambridge.org/
9781107048386. This title, first published in 2016, has been reissued as an
Open Acess publication on Cambridge Core.

Michael Dine is Professor of Physics at the University of California, Santa Cruz. He is an
A. P. Sloan Foundation Fellow, a Fellow of the American Physical Society and a Fellow of
the American Academy of Arts and Sciences. Prior to this, Professor Dine was a Research
Associate at the Stanford Linear Accelerator Center, a long-term member of the Institute
for Advanced Study and Henry Semat Professor at the City College of the City University
of New York.
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Reviews of the first edition

“An excellent and timely introduction to a wide range of topics concerning physics beyond
the standard model, by one of the most dynamic researchers in the field. Dine has a gift
for explaining difficult concepts in a transparent way. The book has wonderful insights to
offer beginning graduate students and experienced researchers alike.”

Nima Arkani-Hamed, Harvard University

“How many times did you need to find the answer to a basic question about the
formalism and especially the phenomenology of general relativity, the Standard Model,
its supersymmetric and grand unified extensions, and other serious models of new physics,
as well as the most important experimental constraints and the realization of the key models
within string theory? Dine’s book will solve most of these problems for you and give you
much more, namely the state-of-the-art picture of reality as seen by a leading superstring
phenomenologist.”

Lubos Motl, Harvard University

“This book gives a broad overview of most of the current issues in theoretical high energy
physics. It introduces and discusses a wide range of topics from a pragmatic point of view.
Although some of these topics are addressed in other books, this one gives a uniform
and self-contained exposition of all of them. The book can be used as an excellent text
in various advanced graduate courses. It is also an extremely useful reference book for
researchers in the field, both for graduate students and established senior faculty. Dine’s
deep insights and broad perspective make this book an essential text. I am sure it will
become a classic. Many physicists expect that with the advent of the LHC a revival of
model building will take place. This book is the best tool kit a modern model builder will
need.”

Nathan Seiberg, Institute for Advanced Study, Princeton
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Preface to the First Edition

As this is being written, particle physics stands on the threshold of a new era, with the
commissioning of the Large Hadron Collider (LHC) not even two years away. In writing
this book, I hope to help prepare graduate students and postdoctoral researchers for what
will hopefully be a period rich in new data and surprising phenomena.

The Standard Model has reigned triumphant for three decades. For just as long,
theorists and experimentalists have speculated about what might lie beyond. Many of these
speculations point to a particular energy scale, the teraelectronvolt (TeV) scale, which will
be probed for the first time at the LHC. The stimulus for these studies arises from the most
mysterious — and still missing — piece of the Standard Model: the Higgs boson. Precision
electroweak measurements strongly suggest that this particle is elementary (in that any
structure is likely to be far smaller than its Compton wavelength), and that it should be in a
mass range where it will be discovered at the LHC. But the existence of fundamental scalars
is puzzling in quantum field theory, and strongly suggests new physics at the TeV scale.
Among the most prominent proposals for this physics is a hypothetical new symmetry of
nature, supersymmetry, which is the focus of much of this text. Others, such as technicolor,
and large or warped extra dimensions, are also treated here.

Even as they await evidence for such new phenomena, physicists have become more
ambitious, attacking fundamental problems of quantum gravity and speculating on possible
final formulations of the laws of nature. This ambition has been fueled by string theory,
which seems to provide a complete framework for the quantum mechanics of gauge theory
and gravity. Such a structure is necessary to give a framework to many speculations
about Beyond the Standard Model physics. Most models of supersymmetry breaking and
theories of large extra dimensions or warped spaces cannot be discussed in a consistent
way otherwise.

It seems, then, quite likely that a twenty-first-century particle physicist will require
a working knowledge of supersymmetry and string theory, and in writing this text I
hope to provide this. The first part of the text is a review of the Standard Model. It
is meant to complement existing books, providing an introduction to perturbative and
phenomenological aspects of the theory, but with a lengthy introduction to non-perturbative
issues, especially in the strong interactions. The goal is to provide an understanding of
chiral symmetry breaking, anomalies and instantons that is suitable for thinking about
possible strong dynamics and about dynamical issues in supersymmetric theories. The first
part of the book also introduces grand unification and magnetic monopoles.

The second part of the book focuses on supersymmetry. In addition to global supersym-
metry in superspace, there is a study of the supersymmetry currents, which are important
for understanding dynamics and also for understanding the BPS conditions which play an

Xv
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XVi Preface to the First Edition

important role in field theory and string theory dualities. The Minimal Supersymmetric
Standard Model (MSSM) is developed in detail, as well as the basics of supergravity and
supersymmetry breaking. Several chapters deal with supersymmetry dynamics, including
dynamical supersymmetry breaking, Seiberg dualities and Seiberg—Witten theory. The
goal is to introduce phenomenological issues (such as dynamical supersymmetry breaking
in hidden sectors and its possible consequences), and also to illustrate the control that
supersymmetry provides over dynamics.

I then turn to another critical element of Beyond the Standard Model physics: general
relativity, cosmology and astrophysics. The chapter on general relativity is meant as a
brief primer. The approach is more field theoretic than geometrical, and the uninitiated
reader will learn the basics of curvature, the Einstein Lagrangian, the stress tensor and the
equations of motion and will encounter the Schwarzschild solution and its features. The
subsequent two chapters introduce the basic features of the Friedmann—Robertson—Walker
(FRW) cosmology, and then very early universe cosmology: cosmic history, inflation,
structure formation, dark matter and dark energy. Supersymmetric dark matter and axion
dark matter, and mechanisms for baryogenesis, are all considered.

The third part of the book is an introduction to string theory. My hope, here, is to be
reasonably comprehensive while not being excessively technical. These chapters introduce
the various string theories, and quickly compute their spectra and basic features of their
interactions. Heavy use is made of light cone methods. The full machinery of conformal
and superconformal ghosts is described but not developed in detail, but conformal field
theory techniques are used in the discussion of string interactions. Heavy use is also made
of effective field theory techniques, both at weak and strong coupling. Here, the experience
in the first half of the text with supersymmetry is invaluable; again supersymmetry
provides a powerful tool to constrain and understand the underlying dynamics. Two
lengthy chapters deal with string compactifications; one is devoted to toroidal and orbifold
compactifications, which are described by essentially free strings; the other introduces the
basics of Calabi—Yau compactification. Four appendices make up the final part of this
book.

The emphasis in all of this discussion is on providing tools with which to consider
how string theory might be related to observed phenomena. The obstacles are made clear,
but promising directions are introduced and explored. I also attempt to stress how string
theory can be used as a testing ground for theoretical speculations. I have not attempted a
complete bibliography. The suggested reading in each chapter directs the reader to a sample
of reviews and texts.

What I know in field theory and string theory is the result of many wonderful colleagues.
It is impossible to name all of them, but Tom Appelquist, Nima Arkani-Hamed, Tom
Banks, Savas Dimopoulos, Willy Fischler, Michael Green, David Gross, Howard Haber,
Jeff Harvey, Shamit Kachru, Andre Linde, Lubos Motl, Ann Nelson, Yossi Nir, Michael
Peskin, Joe Polchinski, Pierre Ramond, Lisa Randall, John Schwarz, Nathan Seiberg,
Eva Silverstein, Bunji Sakita, Steve Shenker, Leonard Susskind, Scott Thomas, Steven
Weinberg, Frank Wilczek, Mark Wise and Edward Witten have all profoundly influenced
me, and this influence is reflected in this text. Several of them offered comments on the text
or provided specific advice and explanations, for which I am grateful. I particularly wish
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Xvii Preface to the First Edition

to thank Lubos Motl for reading the entire manuscript and correcting numerous errors.
Needless to say, none of them are responsible for the errors which have inevitably crept
into this book.

Some of the material, especially on anomalies and aspects of supersymmetry phe-
nomenology, has been adapted from lectures given at the Theoretical Advanced Study
Institute, held in Boulder, Colorado. I am grateful to K. T. Manahathapa for his help
during these schools, and to World Scientific for allowing me to publish these excerpts.
The lectures “Supersymmetry phenomenology with a broad brush” appeared in Fields,
Strings and Duality, eds. C. Efthimiou and B. Greene (Singapore: World Scientific, 1997),
“TASI lectures on M theory phenomenology” appeared in Strings, Branes and Duality,
eds. C. Efthimiou and B. Greene (Singapore: World Scientific, 2001) and “The strong
CP problem” in Flavor Physics for the Millennium: Proc. TASI 2000, ed. J. L. Rosner
(Singapore: World Scientific, 2000).

I have used much of the material in this book as the basis for courses, and I am also
grateful to students and postdocs (especially Patrick Fox, Assaf Shomer, Sean Echols, Jeff
Jones, John Mason, Alex Morisse, Deva O’Neil and Zheng Sun) at Santa Cruz, who have
patiently suffered through much of this material as it was developed. They have made
important comments on the text and in the lectures, often filling in missing details. As
teachers, few of us have the luxury of devoting a full year to topics such as this. My
intention is that the separate supersymmetry or string parts are suitable for a one-quarter or
one-semester special topics course.

Finally, I wish to thank Aviva, Jeremy, Shifrah and Melanie for their love and support.
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Preface to the Second Edition

Much has happened since the appearance of Supersymmetry and String Theory: Beyond
the Standard Model in 2006. The LHC, after a somewhat bumpy start, has performed
spectacularly, discovering what is almost certainly the Higgs particle of the simplest
version of the Standard Model in 2012, reproducing and improving a broad range of other
Standard Model measurements and excluding significant swathes of the parameter space
of proposed ideas for Beyond the Standard Model (BSM) physics.

There have also been important observational and experimental developments in astro-
physics and cosmology. The Wilkinson Microwave Anisotropy Probe (WMAP), the Planck
satellite and a variety of other experiments have greatly improved our understanding of
the cosmic microwave radiation background. We have more reliable measures of the dark
matter and dark energy densities and a good measurement of the spectral index, n,. It is
likely that we will soon have some information on, and possibly a measurement of, the
scale of inflation coming from studies of B-mode polarization. At the same time, direct
and indirect searches for weakly interacting massive particle (WIMP) dark matter have
significantly constrained the space of masses and couplings. However, there remain, as of
the time of writing, some intriguing anomalies. Furthermore, axion searches have made
significant progress and are probing significant parts of the plausible parameter space.

On the theoretical side there have been a number of developments. Within the study
of the Standard Model, there has been enormous progress in QCD computations; indeed,
these have played an important role in the Higgs discovery. Lattice gauge theorists have
continued to make strides in computation of quantum chromodynamics (QCD) quantities,
such as quark masses, while embarking on the study of theories relevant to issues in BSM
physics. Within supersymmetric models, metastable dynamical supersymmetry breaking
has emerged as both an interesting feature of supersymmetric dynamics and a possible
mechanism for supersymmetry realization in nature. Other important new ideas include
general gauge mediation.

But perhaps the most important theoretical development has been the response to the
Higgs discovery, as well as BSM (particularly supersymmetry) exclusions. The observed
Higgs mass is compatible with supersymmetry only if the superpartners are quite heavy
(tens of TeV) or under special circumstances. Many other BSM ideas face similar
challenges. This has sparked a search for alternatives and also a rethinking of notions of
naturalness. The big questions are:

1. Is there some form of new physics that accounts for the hierarchy between the weak
and other scales, which is perhaps difficult to see or which occurs at a scale somewhat
above the current LHC reach?

Xviii
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XiX Preface to the Second Edition

2. Are our ideas about naturalness somehow misguided? Would a more refined viewpoint
point to some energy scale slightly higher than a TeV, which might be accessible to
future LHC experiments or some higher-energy accelerator? This has focused renewed
attention on ideas such as little Higgs models and Randall-Sundrum models, as well as
the possibility that the scale of supersymmetry breaking is simply higher.

3. The possibility that simple-minded notions of naturalness may not be correct has
increased interest in the landscape hypothesis.

In this present edition of this book I have attempted to incorporate these developments
and to provide some possible directions for investigations of BSM physics. Additions
include:

1. new sections on the Higgs discovery;
2. discussion of developments in perturbative QCD computations;
3. expanded discussion of lattice gauge theory, with an emphasis on results of the
simulations for quantities such as quark masses;
. updated discussion of dark matter experiments;
. updated discussion of the neutrino mass matrix;
. updated discussion of inflation in light of WMAP, Planck and other experiments;
. more extensive discussion of solutions to the hierarchy problem outside supersymme-
try, especially the little Higgs and Randall-Sundrum models;
8. sections on metastable dynamical supersymmetry breaking that include the Intriligator,
Shih and Seiberg models but treat the issue quite generally;
9. an introduction to general gauge mediation;
10. more extensive discussion of the landscape, hypothesis and its connection to and
possible implications for notions of naturalness;
11. replacement of the previous “Coda” by a discussion of possible future directions in
light of the first four years of LHC, dark matter searches, cosmological observations
and theoretical developments.

~N N D A

I have also taken the opportunity to correct many errors in the first edition. I am grateful
to the many readers who have pointed these out. I am sure that errors will remain, and |
have only myself to blame for these.

Michael Dine

Santa Cruz, California
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A note on the choice of metric

There are two popular choices for the metric of flat Minkowski space. One, often referred
to as the West Coast metric, is particularly convenient for particle physics applications.
Here

ds? = di* — di* = nypdxtdx’. (0.1)

This has the virtue that p> = E> — p? = m?. It is the metric of many standard texts in
quantum field theory. But it has the annoying feature that ordinary space-like intervals —
conventional lengths — acquire a minus sign. So, in most general relativity textbooks as
well as string theory textbooks, the East Coast metric is standard:

ds* = —df* + dx . (0.2)

Many physicists, especially theorists, become so wedded to one form or another that they
resist — or even have difficulty — switching back and forth. This is a text, however, that is
intended to deal with particle physics, general relativity and string theory. So, in the first
half of the book, which deals mostly with particle physics and quantum field theory, we will
use the West Coast convention (0.1). In the second half, dealing principally with general
relativity and string theory, we will switch to the East Coast convention (0.2). For both
author and readers this may be somewhat disconcerting. While I have endeavored to avoid
errors from this somewhat schizophrenic approach, some will have surely slipped in. But I
believe that this freedom to move back and forth between the two conventions will be both
convenient and healthy. If nothing else, this may be the first textbook in physics in which
the author has deliberately used both conventions (many have done so inadvertently).

At a serious level, in computations the researcher must always be careful to be
consistent. It is particularly important to be careful when borrowing formulas from papers
and texts, and especially when downloading computer programs, to make sure that one has
adequate checks on such matters as signs. I will appreciate being informed of any such
inconsistencies, as well as of other errors both serious and minor, which have crept into
this text.

XX
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Text website

Even as this book was going to press, there were important developments in a number of
these subjects. The website http://scipp.ucsc.edu/~dine/book/book.html contains updates,
errata, solutions of selected problems and additional selected reading.

XXi
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Before the Standard Model

Two of the most profound scientific discoveries of the early twentieth century were
special relativity and quantum mechanics. With special (and general) relativity came the
notion that physics should be local. Interactions should be carried by dynamical fields in
space—time. Quantum mechanics altered the questions which physicists ask about phe-
nomena; the rules governing microscopic (and some macroscopic) phenomena were not
those of classical mechanics. When these ideas were combined they took on their full
force, in the form of quantum field theory: particles themselves are localized, finite-energy,
excitations of fields. Otherwise mysterious phenomena, such as the connection of spin
and statistics, were immediate consequences of this marriage. But quantum field theory
posed serious challenges for its early practitioners. The Schrodinger equation seems to
single out time, making a manifestly relativistic description difficult. More seriously, but
closely related, in quantum field theory the number of degrees of freedom is infinite,
in contrast with the quantum mechanics of atomic systems. In the 1920s and 1930s,
physicists performed conventional perturbation theory calculations in the quantum theory
of electrodynamics, namely quantum electrodynamics (QED), and obtained expressions
which were neither Lorentz invariant nor finite. Until the late 1940s these problems stymied
any quantitative progress, and there was serious doubt whether quantum field theory was a
sensible framework for physics.

Despite these concerns, quantum field theory proved a valuable tool with which to
consider problems of fundamental interactions. Yukawa proposed a field theory of the
nuclear force in which the basic quanta were mesons. The corresponding particle was
discovered shortly after the Second World War. Fermi was aware of Yukawa’s theory and
proposed that weak interactions arose through the exchange of some massive particle —
essentially the W bosons, which were finally discovered in the 1980s. The large mass
of these particles accounted for both the short range and the strength of the weak force.
Because of its very short range, one could describe it in terms of four fields interacting at a
point. In the early days of the theory, these were the proton, neutron, electron and neutrino.
Viewed as a theory of four-fermion interactions Fermi’s theory was very successful,
accounting for all experimental weak interaction results until well into the 1970s. Yet
the theory raised even more severe conceptual problems than QED. At high energies the
amplitudes computed in the leading approximation violated unitarity, and the higher-order
terms in perturbation theory were very divergent.

The difficulties of QED were overcome in the late 1940s, by Bethe, Dyson, Feynman,
Schwinger, Tomanaga and others, as experiments in atomic physics demanded high-
precision QED calculations. As a result of their work, it was now possible to perform
perturbative calculations in a manifestly Lorentz-invariant fashion. Exploiting covariance
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4 Before the Standard Model

the infinities could be controlled and, over time, their significance came to be understood.
Quantum electrodynamics achieved enormous successes, explaining the magnetic moment
of the electron to extraordinary precision as well as the Lamb shift in hydrogen and other
phenomena. One now, for the first time, had an example of a system of physical law that
was consistent both with Einstein’s principles of relativity and with quantum mechanics.

There were, however, many obstacles to extending this understanding to the strong and
weak interactions, and at times it seemed that some other framework might be required.
The difficulties came in various types. The infinities of Fermi’s theory of weak interactions
could not be controlled as in electrodynamics. Even postulating the existence of massive
particles to mediate the force did not solve the problems. But the most severe difficulties
came in the case of the strong interactions. The 1950s and 1960s witnessed the discovery
of hundreds of hadronic resonances. It was hard to imagine that each should be described
by still another fundamental field. Some theorists pronounced field theory dead and sought
alternative formulations (among the outgrowths explorations was string theory, which has
emerged as the most promising setting for a quantum theory of gravitation). But Gell-
Mann and Zweig realized that quarks could serve as an organizing principle. Originally,
there were only three, u, d and s, with baryon number 1/3 and charges 2/3, —1/3 and —1/3
(in units of the electric charge) respectively. All the known hadrons could be understood as
bound states of objects with these quantum numbers. Still, there remained difficulties. First,
quarks were strongly interacting and there were no successful ideas for treating strongly
interacting fields. Second, those searching for quarks came up empty handed.

In the late 1960s a dramatic series of experiments at SLAC, and a set of theoretical
ideas due to Feynman and Bjorken, changed the situation again. Feynman had argued that
one should take seriously the idea of quarks as dynamical entities (for a variety of reasons
he hesitated to call them quarks, referring to them as partons). He conjectured that these
partons would behave as nearly free particles in situations where momentum transfers were
large. He and Bjorken realized that this picture implied a scaling in deep inelastic scattering
phenomena. The experiments at SLAC exhibited just this phenomenon and showed that the
partons carried the electric charges of the u and d quarks.

But this situation was still puzzling. Known field theories did not behave in the fashion
conjectured by Feynman and Bjorken. The interactions of particles typically became
stronger as the energies and momentum transfers grew. This is the case, for example, in
quantum electrodynamics and a simple quantum mechanical argument, based on unitarity
and relativity, would seem to suggest it is true in general. But there turned out to be an
important class of theories with the opposite property.

In 1954 Yang and Mills wrote down a generalization of electrodynamics where the U(1)
symmetry group is enlarged to a non-Abelian group, with massless gauge bosons trans-
forming in the adjoint representation of the group. While mathematically quite beautiful,
these non-Abelian gauge theories remained oddities for some time. First, their possible
place in the scheme of things was not known (Yang and Mills themselves suggested
that perhaps their vector particles were the p mesons). Moreover, their quantization was
significantly more challenging than that of electrodynamics. It was not at all clear that
these theories really made sense at the quantum level, that is, that they respected the
principles of both Lorentz invariance and unitarity. The first serious effort to quantize
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5 Before the Standard Model

Yang—Mills theories was probably due to Schwinger, who chose a non-covariant but
manifestly unitary gauge and carefully verified that the Poincaré algebra was satisfied. The
non-covariant gauge, however, was exceptionally awkward. Real progress in formulating
a covariant perturbation expansion was made by Feynman, who noted that naive Feynman
rules for these theories were not unitary but that this difficulty could be removed, at
least in low orders, by adding a set of fictitious fields (“ghosts”). A general formulation
was provided by Faddeev and Popov, who derived Feynman’s covariant rules in a path
integral formulation and showed their formal equivalence to Schwinger’s manifestly
unitary formulation. A convincing demonstration that these theories are unitary, covariant
and renormalizable was finally given in the early 1970s by ’t Hooft and Veltman, who
developed elegant and powerful techniques for performing real calculations as well as
formal proofs.

In the original Yang—Mills theories the vector bosons were massless and their possible
connections to known phenomena were obscure. However, Carl R. Hagen, Francois
Englert, Gerald S. Guralnik, Peter W. Higgs, Robert Brout, and T. W. B. Kibble discovered
a mechanism by which these particles could become massive. In 1967, Weinberg and
Salam wrote down a Yang—Mills theory of weak interactions based on what has come
to be referred to as the “Higgs mechanism”. This finally realized Fermi’s idea that weak
interactions arise from the exchange of a very massive particle. To a large degree this work
was ignored until ’t Hooft and Veltman proved the unitarity and renormalizability of these
theories. At this point the race to find precisely the correct theory and study its experimental
consequences was on; Weinberg’s and Salam’s first guess turned out to be correct.

The possible role of Yang—Mills fields in strong interactions was, at first sight, even
more obscure. To complete the story required another important fact of hadronic physics.
While the quark model was very successful, it was also puzzling. The quarks were spin-1/2
particles, yet models of the hadrons seemed to require that the hadronic wave functions
were symmetric under the interchange of quark quantum numbers. A possible resolution,
suggested by Greenberg, was that the quarks carried an additional quantum number, called
color, coming in three possible types. The statistics puzzle was solved if the hadron
wave functions were totally antisymmetric in color. This hypothesis required that the
color symmetry, unlike, say, isospin, should be exact and thus special. While seemingly
contrived, it explained two other facts: the width of the 7% meson and the value of the
e~ cross section to hadrons, each of which was otherwise was too large by a factor
three.

To a number of researchers the exactness of this color symmetry suggested a possible
role for Yang-Mills theory. So, in retrospect there was an obvious question: could it be
that an SU(3) Yang—Mills theory, describing the interactions of quarks, would exhibit the
property required to explain Bjorken scaling, i.e. that the interactions become weak at
short distances? Of course, things were not quite so obvious at the time.The requisite
calculation had already been done by ’t Hooft but the result seems not to have been
widely known nor its significance appreciated. David Gross and his student Frank Wilczek
set out to prove that no field theory had the required scaling property, while Sidney
Coleman, apparently without any particular prejudice, assigned the problem to his graduate
student David Politzer. All soon realized that Yang—Mills theories do have the property of

e
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6 Before the Standard Model

asymptotic freedom: the interactions become weak at high momentum transfers or at short
distances.

Experiment and theory now entered a period of remarkable convergence. Alternatives
to the Weinberg—Salam theory were quickly ruled out. The predictions of quantum
chromodynamics (QCD) were difficult, at first, to verify in detail. The theory predicted
small violations of Bjorken scaling, depending logarithmically on energy, and it took
many years to measure them convincingly. But there was another critical experimental
development which clinched the picture. The existence of a heavy quark beyond the u, d
and s had been predicted by Glashow, Iliopoulos and Maiani and was a crucial part of the
developing Standard Model. The mass of this charm quark had been estimated by Gaillard
and Lee. Appelquist and Politzer predicted, almost immediately after the discovery of
asymptotic freedom, that heavy quarks would be bound in narrow vector resonances. In
1974 a narrow resonance was discovered in eTe™ annihilation, the J/1 particle, which
was quickly identified as a bound state of a charm quark and its antiparticle.

Over the next 25 years, this Standard Model was subjected to more and more refined
tests. One feature absent from the original Standard Model was CP(T) violation. Kobiyashi
and Maskawa pointed out that if there were a third generation of quarks and leptons, then
the theory could accommodate the observed CP violation in the K meson system. Two more
quarks and a lepton were discovered, and their interactions and behavior were as expected
within the Standard Model. Jets of particles which could be associated with gluons were
seen in the late 1970s. The W and Z particles were produced in accelerators in the early
1980s. At CERN and SLAC, precision measurements of the Z mass and width provided
stringent tests of the weak-interaction part of the theory. Detailed measurements in deep
inelastic scattering and in jets provided precise confirmation of the logarithmic scaling
violations predicted by QCD. The Standard Model passed every test.

At the time at which the first edition of this book went to press, the Standard Model
had triumphed in almost every realm. The low-energy weak interactions were completely
described by the Weinberg—Salam theory with corrections from the strong interactions,
many well understood. At high energies the W and Z particles had been produced in
great numbers in accelerators, and their properties — i.e. production rates and decays —
compared with the theory, including the effects of QCD, at the one part per mil level.
The Tevatron had performed precise studies of jet production in excellent agreement with
QCD and lattice gauge theory had witnessed an enormous leap in reliability and precision,
reproducing features of the hadron spectrum and yielding quantities of importance for the
study of the weak decays of B mesons, for example. The only missing piece was the
Higgs particle, or whatever entity was responsible for the breaking of the electroweak
symmetry. In 2012, that changed. The 50 discovery of a scalar particle was announced at
CERN on July 4. By the end of the first run of the LHC at the end of the year, a good
deal of circumstantial evidence had accumulated that this particle was indeed the Higgs
scalar of the simplest Standard Model. ’t Hooft and Veltman had received the Nobel Prize
for their work on non-Abelian gauge theories in 1999. During the first 14 years of the
new millennium, these successes have been recognized by several Nobel Prizes: Gross,
Politzer and Wilczek for the understanding of strong interactions (2004); Nambu for his
work on spontaneous symmetry breaking; Kobayashi and Maskawa for the mechanism of
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7 Suggested reading

CP violation in the Standard Model (2008); and Englert and Higgs for the proposal of the
Higgs particle (2013). Since the publication of the first edition of this book, a Nobel Prize
has been awarded for the discovery of dark energy (Perlmutter, Reiss and Schmidt, 2011).

So the question which I raised in 2006, Why write a book about Beyond the Standard
Model physics?, is all the sharper now. It is still true that, for all its simplicity and success in
reproducing the interactions of elementary particles, the Standard Model cannot represent
a complete description of nature. In the first few chapters of this book we will review the
Standard Model and its successes, including the recent discovery of the Higgs particle,
which is a triumph not only for our understanding of the electroweak theory but of QCD
as well. Then we will discuss some of the Standard Model’s limitations. These include the
hierarchy problem, which, at its most primitive level, represents a failure of dimensional
analysis; the presence of a large number of parameters; the strong CP problem, i.e. the
presence of a very small dimensionless number which violates CP. We will confront
the incompatibility of quantum mechanics with Einstein’s theory of general relativity,
the inability of the Standard Model to account for the small but non-zero value of the
cosmological constant (an even more colossal failure of dimensional analysis) and its
failure to account for basic features of our universe, the excess of baryons over antibaryons,
dark matter and structure. Then we will set out on an exploration of possible phenomena
which might address these questions. These include: supersymmetry, technicolor and
large or warped extra dimensions as possible solutions to the hierarchy problem; grand
unification as a partial solution to the overabundance of parameters; and the axion for the
strong CP problem. Still more ambitious is superstring theory, as a possible solution to the
problem of quantizing gravity, which incorporates many features of these other proposals.
We will consider the experimental constraints on new physics, which have become more
severe with the first LHC run, and discuss the prospects for the future at the LHC and
beyond. Finally, we will acknowledge the possibility that the resolution of some of these
puzzles might involve a landscape or multiverse.

Suggested reading
|

A complete bibliography of the Standard Model would require a book by itself. A good
deal of the history of special relativity, quantum mechanics and quantum field theory can
be found in Inward Bound, by Abraham Pais (1986), which also includes an extensive
bibliography. The development of the Standard Model is also documented in this very
readable book. As a minor historical note I would add that the earliest reference in which I
came across the observation that a Yang—Mills theory might underlie the strong interactions
is due to Feynman, in about 1963 (Roger Dashen, personal communication, 1981), who
pointed out that in an SU(3) Yang-Mills theory three quarks would be bound together, as
would quark—antiquark pairs.
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The Standard Model

The interactions of the Standard Model give rise to the phenomena of our day to day
experience. They explain virtually all the particles and interactions which have been
observed in accelerators. Yet the underlying laws can be summarized in a few lines. In this
chapter we describe the ingredients of this theory and some of its important features. Many
dynamical questions will be studied in subsequent chapters. For detailed comparisons of
theory and experiment there are a number of excellent texts, described in the suggested
reading at the end of the chapter.

2.1 Yang-Mills theory

By the early 1950s physicists were familiar with approximate global symmetries such
as isospin. Yang and Mills argued that the lesson of Einstein’s general theory was that
symmetries, if exact, should be local. In ordinary electrodynamics the gauge symmetry is a
local Abelian symmetry. Yang and Mills explained how to generalize this to a non-Abelian
symmetry group. Let’s first review the case of electrodynamics. The electron field ¥ (x)
transforms under a gauge transformation as follows:

Y (x) = DY (x) = go ()Y (x). 2.1)

We can think of g, (x) = €™ as a group element in the group U(1). The group is Abelian:
8a88 = ZB8« = 8Sua+p- Quantities such as Y are gauge invariant, but derivative terms
such as iy §, are not. In order to write down the derivative terms in an action or equation
of motion, one needs to introduce a gauge field 4, transforming under the symmetry
transformation as

Ay — Ay + 00
=4, +ig(x)d,g (x). (2.2)

This second form allows more immediate generalization to the non-Abelian case. Given
A,, and its transformation properties, we can define a covariant derivative,

Dy = (8, —id)Y. (2.3)
This derivative has the property that it transforms like v itself under the gauge symmetry:
Dy — gx)Dy . (2.4)
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9 2.1 Yang—Mills theory

We can also form a gauge-invariant object from the gauge fields 4, themselves. A simple
way to do this is to construct the commutator of two covariant derivatives,

Fuy =ilDy,Dy] = 0,4, — 9,4,. 2.5

This form of the gauge transformations may be somewhat unfamiliar. Note in particular
that the charge of the electron, e (the gauge coupling) does not appear in the transfor-
mation laws. Instead, the gauge coupling appears when we write down a gauge-invariant
Lagrangian:

_ - 1
L=iY Py —myy — = F, (2.6)

where the “slash” notation is defined by ¢ = a*y,. The more familiar formulation is
obtained if we make the replacement

A, — ed,. 2.7
In terms of this new field the gauge transformation law is
Ay — Ay + é(’iua (2.8)
and the covariant derivative is
Dy = (0, — ied, ). (2.9)

We can generalize this to a non-Abelian group, G, by taking v to be a field (fermion or
boson) in some representation of the group; g(x) is then a matrix which describes a group
transformation acting in this representation. Formally, the transformation law is the same

as before,
Y — gy x), (2.10)
but the group composition law is more complicated:
8ugB 7 &B8a- (2.11)
The gauge field 4,, is now a matrix-valued field, transforming in the adjoint representation
of the gauge group:
Ay — gAug ™ +ig()d,e7 (). (2.12)
Formally, the covariant derivative also looks exactly as before:
Dy = 0y —id )V, Dy — gx)Dyir. (2.13)

Like A,,, the field strength is a matrix-valued field:
Fuy=ilDy,Dy] = 0,4y — 04y, — i[A,, 4Av]. (2.14)
Note that 7, is not gauge invariant but, rather, covariant:
Fuy — gFung ™, (2.15)

i.e. it transforms like a field in the adjoint representation, with no inhomogeneous term.
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10 The Standard Model

The gauge-invariant action £ is formally almost identical to that of the U(1) theory:
- - 1
L=iy pw—mww—?TrFfw. (2.16)

Here we have changed the letter we use to denote the coupling constant: we will usually
reserve e for the electron charge and use g for a generic gauge coupling. Note also that it
is necessary to take the trace of 2 to obtain a gauge-invariant expression.

The matrix form for the fields may be unfamiliar, but it is very powerful. One can recover
expressions in terms of more conventional fields by defining

Ay = AZTaa (2.17)

where T, are the group generators in the representation appropriate to . Then, for SU(N),
for example, if the 7,;s are in the fundamental representation, we have

1 N
To(TaTy) = 58w, [T.T°1 = if T, (2.18)

where %€ are the structure constants of the group and
Ay =2Te(T,A"),  Fp, = 0,4y — 0y, +fabcAZA€. (2.19)

While they are formally almost identical, there are great differences between the Abelian
and non-Abelian theories. Perhaps the most striking is that the equations of motion for
the A,s are non-linear in non-Abelian theories. This behavior means that, unlike the
case of Abelian gauge fields, a theory of non-Abelian fields without matter is a non-
trivial, interacting, theory with interesting properties. With and without matter fields,
this will lead to much richer behavior even classically. For example, we will see that
non-Abelian theories sometimes contain solitons, localized finite-energy solutions of the
classical equations. The most interesting of these are the magnetic monopoles. At the
quantum level these non-linearities lead to properties such as asymptotic freedom and
confinement.

Using the form in which we have written the action, the matter fields i can appear in any
representation of the group; one just needs to choose appropriate matrices 7¢. We can also
consider scalars, as well as fermions. For a scalar field ¢, we define the covariant derivative
D,,¢ as before and add to the action a term |DM¢>|2 for a complex field or (Du¢)2 /2 for a
real field.

2.2 Realizations of symmetry in quantum field theory
I

The most primitive exercise we can do with the Yang—Mills Lagrangian is to set g = 0 and
examine the equations of motion for the fields A*. If we choose the gauge 3,4"* = 0, all
the gauge fields obey

9244 = 0. (2.20)
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n 2.2 Realizations of symmetry in quantum field theory

So, like the photon, all the gauge fields 4), of the Yang-Mills theory are massless. At first
sight there is no obvious place for these fields in either the strong or the weak interactions.
But it turns out that in non-Abelian theories the possible ways in which the symmetry
may be realized are quite rich. First, the symmetry can be realized in terms of massless
gauge bosons; this is known as the Coulomb phase. This possibility is not relevant to the
Standard Model but will appear in some of our more theoretical considerations later. A
second way is known as the Higgs phase. In this phase, the gauge bosons are massive. In
the third, the confinement phase, there are no physical states with the quantum numbers
of isolated quarks (particles in the fundamental representation), and the gauge bosons are
also massive. The second phase is relevant to the weak interactions; the third, confinement,
phase to the strong interactions. !

2.2.1 The Goldstone phenomenon

Before introducing the Higgs phase it is useful to discuss global symmetries. While we will
frequently argue, like Yang and Mills, that global symmetries are less fundamental than
local ones, they are important in nature. Examples are isospin, the chiral symmetries of the
strong interactions and baryon number. We can represent the action of such a symmetry
much as we represented the symmetry action in Yang—Mills theory:

® — g4, (221

where @ is some set of fields and g is now a constant matrix, independent of spatial
position. Such symmetries are typically accidents of the low-energy theory. Isospin, for
example, as we will see arises because the masses of the u and d quarks are small compared
with other scales of quantum chromodynamics. Then g is the matrix

ga = e@/? (2.22)

acting on the u and d quark doublet. Note that & is not a function of space but a continuous
parameter, so we will refer to such symmetries as continuous global symmetries. In the
case of isospin it is also important that the electromagnetic and weak interactions, which
violate this symmetry, are small perturbations on the strong interactions.

The simplest model of a continuous global symmetry is provided by a complex field ¢
transforming under a U(1) symmetry,

» — €%. (2.23)
We can take for the Lagrangian for this system

L= 3,¢* —m*|p|* — %wr‘. (2.24)

If m?> > 0and A is small, this is simply a theory of a weakly interacting, complex scalar. The
states of the theory can be organized as states of definite U(1) charge. This is the unbroken

! The differences between the confinement and Higgs phases are subtle, as was first stressed by Fradkin, Shenker
and ’t Hooft. But we now know that the Standard Model is well described by a weakly coupled field theory in
the Higgs phase.
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12 The Standard Model

Scalar potential with negative mass-squared. The stable minimum leads to broken symmetry.

phase. However, m? is just a parameter and we can ask what happens if m> = —u? < 0.
In this case the potential,

Vg) = —12lg> + Al I, (2.25)
looks as in Fig. 2.1. There is a set of degenerate minima,
M i
= —“%. 2.26
(D)o i) (2.26)

These ground states are obtained from one another by symmetry transformations; in
somewhat more mathematical language, we say that there is a manifold of vacuum states.
Quantum mechanically it is necessary to choose a particular value of «. As will be
explained in the next section, if one chooses « then no local operator, e.g. no small
perturbation, will take the system into a state of different . To simplify the writing, take
o = 0. Then we can parameterize the complex field ¢ in terms of real fields o and 7:

1 - 1
= —[+o®]E™V x —[v+ o) +irX)]. 2.27
¢ 7 (x) 7 () () (2.27)
Here v = j1/+/A is known as the vacuum expectation value (vev) of the field ¢. In terms
of o and 7, the Lagrangian takes the form

L= %[(a,w)z +(@um)? = 210% + O(0, 7)), (2.28)

So we see that ¢ is an ordinary real, scalar field of mass-squared 2u2, while the 7 field is
massless. The fact that it is massless is not a surprise: the mass represents the energy cost
of turning on a zero-momentum excitation of 7z, but such an excitation is just a symmetry
transformation v — ve™© of ¢. So there is no energy cost.

The appearance of massless particles when a symmetry is broken is quite general and is
known as the Nambu—Goldstone phenomenon; 7 is called a Nambu—Goldstone boson. In
any theory with scalars, the choice of a minimum may break some symmetry. This means
that there is a manifold of vacuum states. The broken-symmetry generators are those which
transform the system from one point on this manifold to another. Because there is no energy
cost associated with such a transformation, there is a massless particle associated with each
broken-symmetry generator. This result is very general. Symmetries can be broken not only
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13 2.2 Realizations of symmetry in quantum field theory

by the expectation values of scalar fields but also by the expectation values of composite
operators, and the theorem holds. A proof of this result is provided in Appendix B. In nature
there are a number of excitations which can be identified as Goldstone or almost-Goldstone
(“pseudo-Goldstone™) bosons. These include spin waves in solids and the pi mesons. We
will have much more to say about pions later.

2.2.2 Aside: choosing a vacuum

In quantum mechanics there is no notion of a spontaneously broken symmetry. If one
has a set of degenerate classical configurations, the ground state will invariably involve
a superposition of these configurations. If we took o and 7 in Eq. (2.27) to be functions
only of the time ¢ then the o—m system would just be an ordinary quantum mechanical
system with two degrees of freedom. Here o would correspond to an anharmonic oscillator
of frequency @ = +/2u. Placing this particle in its ground state, one would be left
with the coordinate 7. Note that , in Eq. (2.27), is an angle, like the azimuthal angle,
in ordinary quantum mechanics. We could call its conjugate variable L,. The lowest
lying state would be the zero-angular-momentum state, a uniform superposition of all
values of 7. In field theory at finite volume, the situation is similar. The zero-momentum
mode of m is again an angular variable, and the ground state is invariant under the
symmetry. At infinite volume, however, the situation is different. One is forced to choose
avalue of 7.

This issue is most easily understood by considering a different problem: rotational
invariance in a magnet. Consider Fig. 2.2, which shows a ferromagnet with spins aligned
at an angle 6. We can ask: what is the overlap of two states, one with & = 0, one at 0, i.e.
what is (0|0)? For a single site the overlap between the state |[+) with & = 0 and the rotated
state is

(+ |82 +) = cos(6/2). (2.29)

S0 S
S0
S0 S

In a ferromagnet the spins are aligned but their direction is arbitrary.
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14 The Standard Model

If there are N such sites, the overlap behaves as follows:
(610) ~ [cos(®/2)1", (2.30)

i.e. it vanishes exponentially rapidly with the “volume”, N.

For a continuum field theory, states with differing values of the order parameter v also
have no overlap in the infinite-volume limit. This is illustrated by the theory of a scalar
field ¢ with Lagrangian

1
L= 5(3,@)2. (2.31)

For this system there is no potential, so the expectation value ¢ = v is not fixed. The
Lagrangian has a symmetry, ¢ — ¢ + §, for which the charge is just

0= / AxT1(¥) (2.32)
where IT is the canonical momentum. So we want to study
(v/0) = (0]¢°10). (2.33)

‘We must be careful how we take the infinite-volume limit. We will insist that this be done
in a smooth fashion, so we will define

0= /d3x % (d)e_;cz/Vm)

3 1/3\3 . . .
= %g (%) VPR — ot (1. (2.34)

Now one can evaluate the matrix element, using

oA+B _ A B ,—l4,B1/2

(provided that the commutator is a c-number), obtaining
(01¢2]0) = e~V (2.35)

where ¢ is a numerical constant. So the overlap vanishes with the volume. You can convince
yourself that the same holds for matrix elements of local operators. This result does not
hold in 0+1 and 141 dimensions, because of the severe infrared behavior of theories in low
dimensions. This is known to particle physicists as Coleman’s theorem, and to condensed
matter theorists as the Mermin—Wagner theorem. This theorem will make an intriguing
appearance in string theory, where it is the origin of energy—momentum conservation.

2.2.3 The Higgs mechanism

Suppose that the U(1) symmetry of the previous section is local. In that case, even a
spatially varying m(x) represents a symmetry transformation and, by a suitable gauge
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15 2.2 Realizations of symmetry in quantum field theory

choice, it can be eliminated. In other words, by a gauge transformation we can bring the
field ¢ to the form

¢ = %[v + 0o ()] (2.36)

In this gauge, the gauge-invariant kinetic term for ¢ takes the form
1 1
2 2 2.2
[Dug|” = E(au") + EAMV +-e (2.37)

The second term is a mass term for the gauge field 4,,. To determine the actual value of the
mass, we need to examine the kinetic term for the gauge fields,

1 2
_@(%AV) I (2.38)

So the gauge field must have mass mi = gh2.

This phenomenon, that the gauge boson becomes massive when the gauge symmetry
is spontaneously broken, is known as the Higgs mechanism. While formally quite similar
to the Goldstone phenomenon, it is also quite different. The fact that there is no massless
particle associated with motion along the manifold of ground states is not surprising — these
states are all physically equivalent. Symmetry breaking, in fact, is a paradoxical notion in
gauge theories, since gauge transformations describe entirely equivalent physics (gauge
symmetry is often referred to as a redundancy in the description of a system). Perhaps the
most important lesson here is that gauge invariance does not necessarily mean, as it does
in electrodynamics, that the gauge bosons are massless.

2.2.4 Goldstone and Higgs phenomena for non-Abelian symmetries

Both the Goldstone and Higgs phenomena generalize to non-Abelian symmetries. In the
case of global symmetries, for every generator of a broken global symmetry there is a
massless particle. For local symmetries, each broken generator gives rise to a massive
gauge boson.

As an example, relevant both to the strong and the weak interactions, consider a theory
with a symmetry SU(2)L x SU(2)Rr. Take M to be a Hermitian matrix field,

M=ocl+in-o. (2.39)
Under the above symmetry, which we first take to be global, M transforms as follows:
M — g Mgr (2.40)
with g and gr SU(2) matrices. We can take the Lagrangian to be
L= Tr(d,M 3*M) — V(Tr(M' M)). (2.41)

This Lagrangian respects the symmetry. If the curvature of the potential at the origin is
negative, M will acquire an expectation value. If we take:

(M) = (o)1 (2.42)
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16 The Standard Model

then some of the symmetry is broken. However, the expectation value of M is invariant
under the subgroup of the full symmetry group with g = g]z. In other words, the unbroken
symmetry is SU(2). Under this symmetry, the fields 7 transform as a vector. In the case of
the strong interactions, this unbroken symmetry can be identified with isospin. In the case
of the weak interactions, there is an approximate global symmetry reflected in the masses
of the W and Z particles, as we will discuss later.

2.2.5 Confinement

There is still another possible realization of gauge symmetry: confinement. This is crucial
to our understanding of strong interactions. As we will see, Yang—Mills theories, in the
case where there is not too much matter, become weak at short distances and strong at
large distances. This is just what is required to understand the qualitative features of the
strong interactions: free-quark and free-gluon behavior at very large momentum transfers,
but strong forces at larger distances so that there are in fact no free quarks or gluons.
As is the case for the Higgs mechanism, there are no massless particles in the spectrum
of hadrons: QCD is said to have a “mass gap.” These features of strong interactions are
supported by extensive numerical calculations, but they are hard to understand through
simple analytical or qualitative arguments (indeed, if you can offer such an argument, you
could win a Clay prize of $1 million). We will have more to say about the phenomenon of
confinement when we discuss lattice gauge theories.

One might wonder: what is the difference between the Higgs mechanism and confine-
ment? This question was first raised by Fradkin and Shenker and by ’t Hooft, who also
gave an answer: there is often no qualitative difference. The qualitative features of a theory
without massless gauge fields as a result of the Higgs phenomenon can be reproduced by
a confined strongly interacting theory. However, the detailed predictions of the weakly
interacting Weinberg—Salaam theory are in close agreement with experiment but those of
the strongly interacting theory are not.

2.3 The quantization of Yang—Mills theories
|

In this book we will encounter a number of interesting classical phenomena in Yang—Mills
theory but, in most of the situations in nature on which we are focusing, we will
be concerned with the quantum behavior of the weak and strong interactions. Abelian
theories such as QED already present considerable challenges. One can perform canonical
quantization in a gauge, such as the Coulomb gauge or a light cone gauge, in which
unitarity is manifest — all the states have positive norm. But, in such a gauge the covariance
of the theory is hard to see. Or one can choose a gauge where Lorentz invariance is
manifest, but not unitarity. In QED it is not too difficult to show, at the level of Feynman
diagrams, that these gauge choices are equivalent. In non-Abelian theories, canonical
quantization is still more challenging. Path integral methods provide a much more powerful
approach to the quantization of these theories than the canonical methods mentioned above.
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17 2.3 The quantization of Yang—Mills theories

A brief review of path integration appears in Appendix C. Here we discuss gauge fixing
and derive the Feynman rules. We start with the gauge fields alone; adding the matter
fields — scalars or fermions — is not difficult. The basic path integral is

f [dA, e (2.43)

The problem is that this integral includes a huge redundancy: the gauge transformations.
To deal with this, we need to make a gauge choice, for example

Ga(AZ) = 9,4"* = 0. (2.44)

We insert unity in the form
1= / [dg]8(G(4%)) AlAl. (2.45)

Here we have reverted to our matrix notation: G is a general gauge-fixing condition; A;ﬁ
denotes the gauge transform of 4,, by g. The quantity A is a functional determinant known
as the Faddeev—Popov determinant. Note that A is gauge invariant: A[A"] = A[A]. This
follows from the definition

/ [dg15(G(4"¢)) = / [dg15(G(4%)), (2.46)

where, in the last step, we have made the change of variables g — h~!g. We can write a
more explicit expression for A as a determinant. To do this, we first need an expression
for the variation of the 4s under an infinitesimal gauge transformation. Writing g = 1 + iw,
and using the matrix form for the gauge field, we have

84, = du0 + ilw,4,,]. (2.47)

This can be written elegantly as a covariant derivative of w, where w can be thought of as
a field in the adjoint representation:

84, = Dyo. (2.48)

If we make the specific choice G = 0,4" then to evaluate A we need to expand G about
the field 4,, for which G = 0:

GA +84) = 8,D"w = 3*w + i[A,,, I, 0] (2.49)
or, in index form,
G(A%) = (3%6° + £ 4" Py,) 0. (2.50)
So
A[A] = det(9%89 + fbeqi by, =12, (2.51)

We will discuss strategies to evaluate this determinant shortly.
At this stage, we have reduced the path integral to

Z= / [dA,,18(G(A) A[A]e" (2.52)
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18 The Standard Model

and we can write down the Feynman rules. The §-function remains rather awkward to deal
with, though, and this expression can be simplified through the following trick. Introduce
a function @ (not to be confused with the w of Eq. (2.48)) and average over w with a
Gaussian weight factor:

Z= / [dw)e! [ F¥@/6) $™ / [dA4,,15(G(4) — w) A[4]". (2.53)

We can do the integral over the §-function. The quadratic terms in the exponent are now
given by

1
/d4x Ak [—azn,w + 9,0, (1 - g)} Av. (2.54)
We can invert this to find the propagator. In momentum space,

_n;w + (¢ — 1)k//,kv/k2
K2+ ie ’

Dy = (2.55)

To write down explicit Feynman rules, we need also to deal with the Faddeev—Popov
determinant. Feynman long ago guessed that the unitarity problems of Yang—Mills theories
could be dealt with by introducing fictitious scalar fields with the wrong statistics. Our
expression for A can be reproduced by a functional integral for such particles:

A= f [dc®[dc® Texp <i / d*x[c?T (9789 4 fabe g CBM)ch]) . (2.56)

From this we can read off the Feynman rules for Yang—Mills theories, including matter
fields. They are summarized in Fig. 2.3.

2.3.1 Gauge fixing in theories with broken gauge symmetry

Gauge fixing in theories with broken gauge symmetries raises some new issues. We con-
sider first a U(1) gauge theory with a single charged scalar field ¢. We suppose that the
potential is such that (¢) = v/~/2. We call e the gauge coupling and take the conventional
scaling for the gauge kinetic terms. We can, again, parameterize the field ¢ as

1 .

¢ =—=v+o@le™". (2.57)
V2

Then we can again choose a gauge in which 7 (x) = 0. This gauge is known as the unitary

gauge since, as we have seen, in this gauge we have exactly the degrees of freedom we

expect physically: a massive gauge boson and a single real scalar. But this gauge is not

convenient for calculations. The gauge boson propagator in this gauge is

i kky
(Audy) = ———— (n,w - "—) ) (2.58)
k2 — M M?

Because of the momentum factors in the second term, individual Feynman diagrams have
a bad high-energy behavior. A more convenient set of gauges, known as Rg gauges,
avoids this difficulty at the price of keeping the 7 field (sometimes misleadingly called the
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19 2.3 The quantization of Yang—Mills theories

a b _l'g,uv p
s k2 i J P

T = igy"t”

a,
b, v abc
p“*/\f:k = gf g (k—p)P + gP(p — ¥ + gP(q — kY]

c,pd
a, u b, v
ST L e g
c,p d, o + facefbde (g,uvgpa _ guogvp)
+ fadephee (ghvgh? — ghPgh?)]
a b 0%
———>—— = —
p
N i N b) Y24 abc

I = g Pt

Feynman rules for Yang—Mills theory.

Goldstone particle) in the Feynman rules. We take, in the path integral, the gauge-fixing
function

1
VE
The extra term has been judiciously chosen so that when we exponentiate the gauge
condition, as in Eq. (2.53), the 4" 9,7 terms in the action cancel. Explicitly, we have

G= [0,4"E — evr (x)]. (2.59)

1 1
L= — S [;ﬂ”az - (1 — §> Y — (ezvz)n’“’j|Av

1 2 1 2 2 1 2 %_
+ 5(8MU) —Emga +§(3M7T) —5

If we choose & = 1 (corresponding to the ’t Hooft-Feynman gauge), the propagator for the

(ev)?n? + O@@>). (2.60)

gauge boson is then simply

—i
(Audy) = ——— 1 (2.61)
K- M

with M I% = &%V, but we have also the field 7 explicitly in the Lagrangian, and it has the
propagator
i

—_—. 2.62
ERyvE (2.62)

() =

The mass here is just the mass of the vector boson (for other choices of &, this is not true).
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20 The Standard Model

This gauge choice is readily extended to non-Abelian theories with similar results:
the gauge bosons have simple propagators, like those of massive scalars but multiplied
by n,v. The Goldstone bosons appear explicitly in perturbation theory, with propagators
appropriate to massive fields. The Faddeev—Popov ghosts have couplings to the scalar
fields.

2.4 The particles and fields of the Standard Model: gauge bosons

and fermions
|

We are now in a position to write down the Standard Model. It is amazing that, at a
microscopic level, almost everything we know about nature is described by such a simple
structure. The gauge group is SU3) x SU(2)L x U(1)y. The subscript ¢ denotes color,
L means left-handed and Y is the hypercharge. Corresponding to these different gauge
groups, there are gauge bosons: 4%, a =1,...,8; W‘I'L, i=1,2,3;and B,.

One of the most striking features of the weak interactions is the violation of parity. In
terms of four-component fields, this means that factors of 1 — ys appear in the couplings of
fermions to the gauge bosons. In such a situation it is more natural to work with two-
component spinors. For the reader unfamiliar with such spinors, a simple introduction
appears in Appendix A. These spinors are the basic building blocks of the four-dimensional
spinor representations of the Lorentz group. All spinors can be described as two-component
quantities, with various quantum numbers. For example, quantum electrodynamics, which
is parity invariant and has a massive fermion, can be described in terms of two left-handed
fermions, e and e, with electric charges —e and +e respectively. The Lagrangian takes the
form

L =iec"D,e* +iec" D e* — mee — me*e*. (2.63)

The covariant derivatives are those approprlate to fields of charge e and —e. Parity is
symmetry under X — —X, e <> &* and 4 — —A.

We can specify the fermion content of the Standard Model by giving the gauge quantum
numbers of the left-handed spinors. So, for example, there are quark doublets which are
in the 3 (fundamental) representation of color and doublets of SU(2) and which have
hypercharge 1/3: O = (3,2)1,3. The appropriate covariant derivative is:

o "1
DO = (3ﬂ — igod T — igW, T' — i% §BM> 0, (2.64)

where g is the strong coupling constant. Here the T's are the generators of SU(2);
T! = ¢! /2. These are normalized as follows:

. 1 ..
(') = 557, (2.65)

The T¢ are the generators of SU(3); in terms of Gell-Mann’s SU(3) matrices, 7% = A?/2.
They are normalized in the same way as the SU(2) matrices: Tr (T4T b) = /Z)S”b .
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21 2.4 The particles and fields of the Standard Model: gauge bosons and fermions

Table 2.1 Fermions of the Standard Model
and their quantum numbers

SU(3) SU(2) Uy

o 3 2 1/3
iif 3 1 —4/3
dr 3 1 2/3
Ly 1 2 |
e 1 1 2

We have followed the customary definition in coupling B,, to half the hypercharge
current. We have also scaled the fields so that the couplings appear in the covariant
derivative and have labeled the SU(3)., SU(2)r, and U(1)y coupling constants as g, g,
and g, respectively. Using matrix-valued fields, defined with the couplings in front of the
gauge kinetic terms, this covariant derivative can be written in a very compact manner:

. . il
D0 = (au —id, — W, — 55&) 0. (2.66)

As another example, the Standard Model contains lepton fields L with no SU(3) quantum
numbers but which are SU(2) doublets with hypercharge —1. The covariant derivative is
ig’

DL = <8u — igh, T' — 7Bu) L. (2.67)

We have summarized the fermion content in the Standard Model in Table 2.1. Here f
labels the quark or lepton flavor, i.e. the generation number: f'= 1,2, 3. For example,

L= (”:) Ly = <'Z:) Ly = (”;) (2.68)

The reason why there is this repetitive structure, these three generations, is one of the great
puzzles of the Standard Model, to which we will return. In terms of these two-component
fields (indicated generically by v;), the gauge-invariant kinetic terms have the form

Lyg=—iy_ YiDuo"y}, (2.69)

where the covariant derivatives are those appropriate to the representation of the gauge
group.

Unlike QED (where, in two-component language, parity interchanges e and e*), the
model does not have a parity symmetry. The fields Q and &, d transform under different
representations of the gauge group. There is simply no discrete symmetry that one can find
which is the analog of the parity symmetry in QED.
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22 The Standard Model

2.5 The particles and fields of the Standard Model: Higgs scalars and
the complete Standard Model

In order to account for the masses of the # and Z bosons and those of the quarks and
leptons, the simplest approach is to include a scalar, ¢, which transforms as a (1,2);
representation of the Standard Model gauge group. This Higgs field possesses both self-
couplings and also Yukawa couplings to the fermions. Its kinetic term is simply

Lok = Duol*. (2.70)
The Higgs potential is similar to that of our toy model (2.24):
V@) = 111> + 1IgI". 2.71)

This is completely gauge invariant. But if x? is negative, the gauge symmetry is broken as
before. We will describe this breaking, and the mass matrix of the gauge bosons, shortly.

We could consider a more complicated Higgs sector. For example, we could include
multiple Higgs doublets. Or, as we will see in Chapter 8, electroweak symmetry breaking
might be the result of some new strong dynamics. But the single Higgs doublet is truly
the simplest possibility, in the sense that it represents the smallest number of degrees
of freedom we can include that will give rise to the observed pattern of gauge boson
masses. As of this writing, at the level of precision of the two major LHC experiments,
there is evidence for one such doublet and no evidence for additional doublets. Any
additional scalars are likely to be heavy compared with the observed Higgs particle and
so, if discovered or required by some other theoretical considerations, they can properly be
referred to as Beyond the Standard Model physics.

At this point we have written down the most general renormalizable self-couplings of
the scalar fields. Renormalizability and gauge invariance permit one other set of couplings
in the Standard Model: Yukawa couplings of the scalars to the fermions. The most general
such couplings are given by

Ly =y p Qritp02¢™ + 3 Ordpd + v pLrep . (2.72)

Here yY, y? and y’ are general matrices in the space of flavors.

We can simplify the Yukawa coupling matrices significantly by redefining fields. Any
3 x 3 matrix can be diagonalized by separate left and right U(3) matrices. To see this,
suppose that one has some matrix M, not necessarily Hermitian. The matrices

A=MM', B=MM (2.73)

will be Hermitian; 4 can be diagonalized by a unitary transformation Uy, say, and B by a
unitary transformation Ur. In other words

UMU,, UrM'U' (2.74)
L

are diagonal. By redefining fields, we can take yy as diagonal and My = VcegmM)) as
diagonal; Vv is the Cabibbo—Kobayashi-Maskawa (CKM) matrix. This matrix is not
unique, and we will present various conventional forms in Section 3.3.
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23 2.6 The gauge boson masses

To summarize, the entire Lagrangian of the Standard Model consists of the following:

1. gauge-invariant kinetic terms for the gauge fields,

1 1 1
Lo=——5G2 — —W? — —F? (2.75)

4g§ My 4g2 mv 4g/2 My

(here we have returned to our scaling with the couplings in front and G,,,, W, and F,,,
are the SU(3), SU(2) and U(1) field strengths);

2. gauge-invariant kinetic terms for the fermion and Higgs fields, Lz, Lg

. Yukawa couplings of the fermions to the Higgs field, Lyyk;

4. the potential for the Higgs field, V(¢).

W

If we require renormalizability, i.e. that all the terms in the Lagrangian be of dimension
four or less, then this is all that we can write down. It is extraordinary that this simple
structure incorporates over a century of investigation of elementary particles.

2.6 The gauge boson masses
|

The field ¢ has an expectation value, which we can take to be as follows:
L (/0
(9)=—= ( ) (2.76)

where v = u/+/A. Expanding around this expectation value, the Higgs field can be
written as

NN | 0
i (x)-0/2v
b=e V2 <v+ a(x)) ' @77)

By a gauge transformation we can set 7 = 0. Not all the gauge symmetry is broken by
(¢). It is invariant under the U(1) symmetry generated by
Y
0= T3+§. (2.78)
This is the electric charge. If we write:

() o)

then v has charge 0 and e has charge —1; u has charge 2/3 and d has charge —1/3. The
charges of the singlets also work out correctly.

With this gauge choice we will examine the scalar kinetic terms in order to determine
the gauge boson masses. Keeping only terms quadratic in the fluctuating fields (o and the
gauge fields), these now have the form

1

1 1 ;o' ig! ol g’ 0
2 _ 2 . .
D¢l E(aﬂa ) + 5(0 V) (ngL—z + > Bu) <—lgWW—2 > BH ,):

(2.80)
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24 The Standard Model

It is convenient to define the complex fields
1
+ )
Wi = E(Wu +iW;) (2.81)
These are states of definite charge, since they carry zero hypercharge and 75 = +1. In
terms of these fields, the gauge boson mass and kinetic terms take the form

1 1
B Wt + 5 w3ar w3 4 5 By B’

155 _ 1 3 2
+ 287 wiEwh + gvz(gWM —g'B,)". (2.82)

Examining the terms involving the neutral fields, B,, and W3, it is natural to redefine
Ay = cos by By, +sinby W3, Z, = sinby B, + cos by Wli (2.83)

where

/

£
is known as the Weinberg angle. The field 4,, is massless, while the Ws and Zs have the
following masses:

sinfy, = (2.84)

1 1 M},
MZ — 2, M2=_ 2 ’2 2= w . 285
=g M=t g V= (2.85)
We can immediately see that 4,, couples to the current
. 1. . .
Jom = g’ cos By, E]Z + g sinfyj,,
1 Y 3
= e EJM +]I,L 5 (286)
where
!
e= 2% (2.87)

/ g2 + g/ 2
is the electric charge. So 4,, couples precisely as we expect the photon to couple and wrE
couple to the charged currents of the four-fermion theory. The Z boson couples to:

1
ji = —g’sinfy, EJZ + g cos Owji. (2.88)

2.7 Quark and lepton masses

On substituting the expectation value for the Higgs field into the expression for the quark
and lepton Yukawa couplings, Eq. (2.72) leads directly to masses for the quarks and
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25 2.8 The Higgs field and its couplings

leptons. The lepton masses and the masses for the u quarks follow immediately:
v v
Mef = J’efﬁ, myf = J’ufﬁ~ (2.89)

So, for example, the Yukawa coupling of the electron is ne~/2/v.
The masses for the d quarks are somewhat more complicated. Because yp is not
diagonal, we have a matrix in flavor space for the d quark masses:

(ma) = (yd)ﬁw%. (2.90)

As we have seen, any matrix can be diagonalized by separate unitary transformations acting
on from left or the right. So we can diagonalize this matrix by separate rotations of the
d quarks (within the quark doublets) and of the d quarks. The rotation of the d quarks
corresponds to a simple redefinition of these fields. But the rotation of the d quarks is more
significant, since it does not commute with SU(2)r. In other words the quark masses are
not diagonal in a basis in which the ¥ boson couplings are diagonal. The basis in which
the mass matrix is diagonal is known as the mass basis (the corresponding fields are often
called mass eigenstates).

The unitary matrix V acting on the d quarks is known as the Cabibbo—Kobayashi—
Maskawa, or CKM, matrix. In terms of this matrix the coupling of the quarks to the W+
fields can be written as

W uradi Vi + W, deauf Vi (2.91)

There is a variety of parameterizations of ¥, which we will discuss shortly. One interesting
feature of the model is the Z couplings. Because V is unitary, these are diagonal in
flavor. This explains why Z bosons do not mediate processes which change flavor, such as
K. — pT . The suppression of these flavor-changing neutral currents was one of the
early, and critical, successes of the Standard Model.

2.8 The Higgs field and its couplings

In the simplest Higgs theory, the couplings of the Higgs are fixed. This includes the
couplings to gauge bosons, to fermions and to the Higgs field itself. At tree, or classical,
level these can be read off the Lagrangian, as follows.

1. There is a Higgs—ZZ coupling and a Higgs—W T W~ coupling arising from the replace-
ment of ¢ by \/Li(v + o) in the Higgs kinetic term.

2. There is a Yukawa coupling to all fermions, which is proportional to their masses.

3. There are cubic and quartic self-couplings of the Higgs.

We will discuss these couplings in the context of the Higgs search in the next chapter.
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26 The Standard Model

Suggested reading

There are a number of textbooks with good discussions of the Standard Model, including
those of Peskin and Schroeder (1995), Weinberg (1995), Cottingham and Greenwood
(1998), Donoghue et al. (1992) and Seiden (2005). We cannot give a full bibliography
of the Standard Model here, but the reader may want to examine some original papers,
including the discovery of non-Abelian gauge theory by Yang and Mills (1954); the Higgs
mechanism by Englert and Brout (1964), Guralnik ez al. (1964) and Higgs (1964); Salam
and Ward (1964), Weinberg (1967) and Glashow et al. (1970) on weak interaction theory;
’t Hooft (1971), Gross and Wilczek (1973) and Politzer (1973) on asymptotic freedom of
the strong interactions. For discussion of the various phases found in gauge theories, see
’t Hooft (1980) and Fradkin and Shenker (1979).

Exercises
T

(1) The Georgi—Glashow model Consider a gauge theory based on SU(2), with the Higgs
field q_5 in the adjoint representation. Assuming that ¢ attains an expectation value,
determine the gauge boson masses. Identify the photon and the W+ bosons. Is there a
candidate for the Z boson?

(2) Consider the Standard Model with two generations. Show that there is no CP violation
and that the CKM matrices can be described in terms of a single angle, known as the
Cabibbo angle.
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Phenomenology of the Standard Model

With the discovery of the Higgs boson in 2012, the Standard Model may well be complete.
More precisely, it may be that we know all nature’s degrees of freedom up to energy scales
of order one TeV and fully understand their interactions (there might be other degrees
of freedom with couplings to quarks, leptons and gauge bosons which are significantly
suppressed). The predictions of the Standard Model have been subjected to experimental
tests in a broad range of processes. In experiments involving leptons alone, or hadrons
at high-momentum transfers, detailed and precise predictions are possible. In processes
involving hadrons at low momentum, it is often possible to make progress using symmetry
arguments. In still other cases one can at least formulate a qualitative picture. In recent
years, developments in lattice gauge theory have yielded reliable and precise predictions
for at least some features of the large-distance behavior of hadrons. Since 2012 the Higgs
boson itself has begun to provide a testing ground for many elements of the Standard
Model. There exist excellent texts and reviews treating all these topics. Here we will give
only a brief survey, attempting to introduce ideas and techniques which are important in
understanding what may lie beyond the Standard Model.

3.1 The weak interactions
. ]

We are now in a position to describe weak interactions within the Standard Model.
Summarizing our results for the /' and Z masses, we have at tree level

v V2GEsin? 6y z V2Gr sin? 6y cos2 By,

3.1)

where 6y, is given by Eq. (2.84) and « is the fine-structure constant. Note in particular that,
in the leading approximation,

My _ o
—= = C0S8” Oy. 32
In these expressions the Fermi constant is related to the # mass and the gauge coupling,
through
Gy = \/Ei; Gr = 1.166 x 1075 GeV 2. (3.3)
8M

27
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28 Phenomenology of the Standard Model

The Weinberg angle 0, is given by
sin? 6y = 0.23120(15). (3.4)
The measured values of the # and Z masses are
My = 80.425(38) GeV, Mz =91.1876(21) GeV. 3.5)

One can see that the experimental quantities satisfy the theoretical relations to good
accuracy. They are all in agreement at the one part in 10°—10° level when radiative
corrections are included.

The effective Lagrangian for the quarks and leptons obtained by integrating out the W
and Z particles is

8G
Ly+Lz= TZF[(J’I‘)Z + () + (S = sin by Juem) ] (3.6)

The first two terms correspond to the exchange of the charged W fields. The last term
represents the effect of Z boson exchange. This structure has been tested extensively.

The most precise tests of the weak interaction theory involve the Z bosons. Experiments
at the LEP accelerator at CERN and the SLD accelerator at SLAC produced millions
of Z bosons. These large samples permitted high-precision studies of the line shape and
of the branching ratios to various final states. Care is needed in calculating the radiative
corrections; it is important to make consistent definitions of the various quantities. Detailed
comparisons of theory and experiment can be found on the website of the Particle Data
Group (http://pdg.Ibl.gov). As inputs, one generally takes the value of Gg measured in
decays, the measured mass of the Z and the fine structure constant. Outputs include the
Z boson total width:

experiment, 'z = 2.4952 £ 0.0023; theory, 'z = 2.4955 &£ 0.0009. 3.7)

The decay width of the Z to hadrons and leptons is also in close agreement (see Fig. 3.1).
The W mass can also be computed with the above inputs and has been measured quite
precisely, particularly at the Tevatron and LEP2 (below we quote first the LEP result and
then the Tevatron result):

experiment, My = 80.376 £ 0.033, 80.387 £ 0.016 £ 0.0023;

(3.8)
theory, My = 80.363 % 0.06.
The W width, similarly, is:
experiment, I'yy = 2.196 £ 0.083, 2.046 £ 0.0049;
3.9

theory 'y = 2.090 & 0.001.
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29 3.2 Discovery of the Higgs
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(@R OPAL results for the Z line shape. The solid line corresponds to the theory; the dots give the data.

e ZO

Fig.3.2 The Higgs can be produced in e+~ annihilation, in association with a Z° particle.

3.2 Discovery of the Higgs

The simplest possible realization of the Higgs mechanism within the Standard Model
is through a single Higgs doublet. In 2012 the two large detectors at the Large Hadron
Collider, ATLAS and CMS, reported the discovery of a scalar particle behaving like the
Higgs field of this minimal model. The mass of this particle is 125.6 £ 0.4 GeV. As we
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30 Phenomenology of the Standard Model

will explain in a bit more detail shortly, as of this writing both the production cross section
and the decays of the Higgs are in rough agreement (10%—20% for several channels)
with Standard Model predictions. The precision of these measurements and the quality of
Standard Model tests will improve over the next few years. Any model for physics beyond
the Standard Model must reproduce these features. It is likely (as we will discuss in the
next chapter) that there is a range of energies where the Standard Model is completely
described by the Lagrangian of the previous chapter.

3.2.1 Testing the Standard Model with the Higgs

The discovery of the Higgs boson, exciting in itself, brought together many aspects of
the Standard Model. The Higgs was discovered in high-energy proton—proton collisions,
and understanding the signal requires the full machinery of perturbative QCD (which
we will review shortly) including parton distribution functions and higher-order radiative
corrections. Higgs production arises through processes including gluon fusion (Fig. 3.3),
the collision of a gluon from each of the two protons to produce a virtual top quark pair,
which then couples to the Higgs, as well as a smaller contribution from quark collisions.
There is an equally rich story with the decay channels. Large numbers of Higgs particles
are produced at the LHC. The Higgs decays predominantly to bb pairs, however, and it
is difficult to isolate these decays from the many other sources of such pairs in proton
collisions. The original discovery was made in the two-photon channel, whose branching
ratio is far smaller but where it is easier (but still challenging) to separate the signal from
the background. Indeed, a simple-minded estimate suggests the branching ratio should be
of an order given by

FH—>vyy) | (i) MY 1074, (3.10)
['(H — bb) an/ mim?

Comparisons of theory and experiment in the two-photon channel are indicated in Figs.
3.4 and 3.5. Other channels in which comparisons can be made, as of the time of writing,

4

In hadron colliders Higgs particles can be produced by several mechanisms. The diagram above illustrates
production by gluons.
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are the ZZ channel (with four observed leptons from the Z decays) and the W channel.
Comparisons, again, with Standard Model expectations appear in Fig. 3.6.

Future runs of the LHC, with higher energies and higher luminosities, will increase the
precision of these studies, in many cases at the 5% — 10% level. An electron—positron linear
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For comparison, ATLAS and CMS measurements of Higgs, in several channels. Used by permission of the Particle
Data Group.

collider, or other contemplated high-energy lepton machines, could improve the precision
to the few percent level.

In any case, at present it appears that the Standard Model may be complete; any degrees
of freedom in nature beyond those of the theory may well be significantly heavier than
the Higgs. This clearly has implications for the possible physics we might hope to see
beyond the Standard Model. We will discuss this further when we consider supersymmetric
models, which predict multiple Higgs doublets.

3.3 The quark and lepton mass matrices
|

Before considering the small neutrino masses, we note that the lepton—Yukawa couplings
can simply be taken as diagonal: there is no mixing. Their extraction from the experimental
data is reasonably straightforward. The lepton masses are

me = 0511 MeV, m, =113 MeV, m; =1.777 GeV. (3.11)

The quark masses and mixings pose more severe challenges. First, there is the question
of mixing. We have seen that we can take the Yukawa coupling y, for the u quarks to
be diagonal, but we cannot simultaneously diagonalize the couplings y, for the d quarks.
As a result, when the Higgs field acquires an expectation value v, the u quark masses are
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33 3.3 The quark and lepton mass matrices

given by
(Yu)

These are automatically diagonal. But the d quark masses are described by a 3 x 3 mass
matrix,

v. (3.12)

mag = 2, (3.13)

V2
We can diagonalize this matrix by separate unitary transformations of the d and d fields.
Because the d quarks are singlets of SU(2), the transformation of the d field leaves the
kinetic terms and gauge interactions for these quarks unchanged. But the transformation
for the d quarks does not commute with SU(2), so the couplings of the gauge bosons to
these quarks are more complicated. The unitary transformation between the mass or flavor

eigenstates and the weak interaction eigenstates is known as the CKM matrix. Denoting
the mass eigenstates as i/, d', etc., the transformation has the form

d Vid  Vus Vb
Sl= Va Voo Vo |[s] (3.14)
4 Via Vis Vi b

There are various ways of parameterizing the CKM matrix. One standard form, which
makes its unitarity manifest, is given as follows:

1213 $12€13 sz
V= —si2c23 —ciaso3s13€®  ciocs — siaemssize®  sies |- (3.15)
512823 — €12€23513€0  —ci2s03 — s1pc23513€° eazcrs

The matrix V is real unless § is non-zero. Thus § provides a measure of CP violation.
Experimentally, all the off-diagonal matrix elements are small and in fact are hierarchi-
cally so. Wolfenstein developed a convenient parameterization:

1—A2/2 by AN (p — in)
V= —A 1—22/2 A2 +00H. (3.16)
AN —p—in) —AN? 1

The Babar and Belle experiments improved significantly our knowledge of these quantities,
and in particular of the CP-violating parameter. They demonstrated that, indeed, 7 is nearly
unitary, which constrains possible new physics. The magnitudes of the matrix elements of
V are as follows:

0.97427 £0.0014 022536 £ 0.00061 0.003 55 % 0.000 15
V= 022522£0.00061 0.97343+0.00015 0.0414£00012 |. (3.17)
0.008 861000033 0.0405T000010  0.999 14 £ 0.0005

The Wolfenstein parameters are
0.023
A =0.225374+0.00061, 4= 0.814:10245
p=0.117+£0.021, 7 =0.353£0.013. (3.18)
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34 Phenomenology of the Standard Model

(Here we are following the conventions of the Particle Data Group; p = p(1 — 12/2).)
Note, in particular, that the CP-violating parameter 7 is not small (corresponding to § of
order one).

From unitarity follow a number of relations among the elements of the matrix. For
example,

VadViy + VeaVi + ViV = 0. (3.19)

From V,y =~ Ve =~ Vi =~ 1, this becomes a relation between three complex numbers
which says that they form a triangle the unitarity triangle. Determining from experiment
that these quantities do indeed form a triangle is an important test of this model for the
quark masses.

We should also discuss the values of the quark masses themselves. This is somewhat
subtle, since we do not observe free quarks; the masses are Lagrangian parameters, related
to experimental quantities in a way which depends on a scheme (i.e. a definition) and an
energy scale, much as one must specify the scheme and energy scale of the gauge coupling
in QCD. For the lighter quarks (u, d and s) these masses can be obtained, at present, only
from lattice QCD. As we will discuss further in Section 3.8 on lattice gauge theory, this
is a subtle and complex process. However, over the past decade, reliable computations
have become possible, with errors at the level of 10% or smaller. With a scale of order
2 GeV, in the MS scheme the Particle Data Group, combining results from different lattice
collaborations, quotes the following quark masses:

my, = 2.15(15) MeV, mg =4.7(20) MeV, ms; =93.5(2.5) MeV,

3.20
me ~ 1.15-1.35GeV, mp ~4.1-4.4GeV, m;~ 1743 £5 GeV. (3:20)

Overall, the picture of the quark and lepton masses is quite puzzling. They vary over
nearly five orders of magnitude. Correspondingly, the dimensionless Yukawa couplings
have widely disparate values. At the same time the mixing among the quarks is small and
hierarchical. Understanding these features might well be a clue to what lies beyond the
Standard Model.

We will discuss the question of neutrino masses in Chapter 4, when we discuss the
Standard Model as an effective field theory, and in particular the non-renormalizable
operators which might arise from integrating out the Beyond the Standard Model physics.
We will see that the pattern of neutrino masses does not resemble that of the quarks and
charged leptons; they appear anarchical, rather than hierarchical.

3.4 The strong interactions
|

The strong interactions, as their name implies, are characterized by strong coupling. As a
result, perturbative methods are not suitable for most questions. In comparing theory and
experiment it is necessary to focus on a few phenomena which are accessible to theoretical
analysis. By itself this is not particularly disturbing. A parallel with the quantum mechanics
of electrons interacting with nuclei is perhaps helpful. We can understand simple atoms
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35 3.4 The strong interactions

in detail; atoms with very large Z can be treated by Hartree-Fock or other methods.
Atoms with intermediate Z, however, can be dealt with only by, at best, detailed numerical
analysis accompanied by educated guesswork. Molecules are even more problematic,
not to mention solids. But we are able to make detailed tests of the theory (and its
extension in quantum electrodynamics) from the simpler systems, and develop a qualitative
understanding of the more complicated systems. In many cases we can do a quantitative
analysis of small fluctuations about the ground states of the complicated system.

In the theory of strong interactions, as we will see, many problems are hopelessly
complicated. Low-lying spectra are hard to deal with; detailed exclusive cross sections
in high-energy scattering are essentially impossible. There are many questions we can
answer, though. Rates for inclusive questions at very high energy and momentum transfer
can be calculated with high precision. Qualitative features of the low-lying spectra of
hadron systems and their interactions at low energies can be understood in a qualitative
(and sometimes quantitative) fashion by symmetry arguments. Such systems include those
in which heavy quarks are bound to light quarks. Recently, progress in lattice gauge theory
has made it possible to perform calculations which previously seemed impossible, for
features of spectra and even for interaction rates that are important for understanding weak
interactions.

3.41 Asymptotic freedom

The coupling of a gauge theory (and more generally of a field theory) is a function of
energy or length scale. If a typical momentum transfer in a process is ¢, and if M denotes
the cutoff scale, then

8 2 8 2 2
% = ZL +b01n q—2 (3.21)
g @) gW M
Here
11 2 o 1 g
bo=5Ca~ 5c,-n}” - gcing). (3.22)

In this expression n]((-i ) is the number of left-handed fermions in the ith representation,

while ng) is the number of scalars; Cx is the quadratic Casimir operator of the adjoint
representation and ¢; is the quadratic Casimir operator of the ith representation. Thus

fﬂcdf‘bcd — CA(Sab, Tr(TaTb) — CiSab. (323)

These formulas are valid if the masses of the fermions and scalars are negligible at scale
¢*. For example, in QCD, at scales of order the Z boson mass, the masses of all but the top
quark can be neglected. All the quarks are in the fundamental representation, and there are
no scalars. So by = 22/3. As a result, g> gets smaller as ¢> gets larger and, conversely,
g% gets larger as ¢° gets smaller. Since momentum transfer is inversely proportional to a
typical distance scale, one can say that the strong force gets weaker at short distances, and
stronger at large distances. We will calculate by in Section 3.5.
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36 Phenomenology of the Standard Model

This is quite striking. In the case of QCD it means that hadrons, when probed at very
large momentum transfer, behave as collections of free quarks and gluons. Perturbation
theory can be used to make precise predictions. However, viewed at large distances hadrons
are strongly interacting entities. Perturbation theory is not a useful tool, and other methods
must be employed. The most striking phenomena in this regime are confinement — the fact
that one cannot observe free quarks — and, closely related, the existence of a mass gap.
Neither of these phenomena can be observed in perturbation theory.

3.5 The renormalization group
|

In thinking about physics beyond the Standard Model, by definition we are considering
phenomena involving degrees of freedom to which we have, as yet, no direct experimental
access. The question of degrees of freedom which are as yet unknown is the heart of
the problem of renormalization. In the early days of quantum field theory it was often
argued that one should be able to take a formal limit of infinite cutoff, A — oco. Ken
Wilson promulgated a more reasonable view: real quantum field theories describe physics
below some characteristic scale A. In a condensed matter system this might be the scale
of the underlying lattice, below which the system may often be described by a continuum
quantum field theory. In the Standard Model, a natural scale is the scale of the W and Z
bosons. Below this scale the system can be described by a renormalizable field theory,
QED plus QCD, along with certain non-renormalizable interactions — the four-fermion
couplings of the weak interactions. In defining this theory, one can take the cutoff to be,
say, My, or aMyy for some a < 1. Depending on the choice of a, the values of the couplings
will vary. The parameters of the low-energy effective Lagrangian must depend on a in such
a way that physical quantities are independent of this choice. The process of determining
the values of couplings in an effective theory which reproduce the effects of some more
microscopic theory is often referred to as matching.

Knowing how physical couplings depend on the cutoff, one can determine how
physical quantities behave in the long-wavelength, infrared, regime by simple dimensional
analysis. Quantities associated with operators of dimension less than four will grow in
the infrared. They are said to be relevant. Those with dimension four will vary as powers
of logarithms; they are said to be marginal. Quantities with dimension greater than four,
those conventionally referred to as non-renormalizable operators, will become less and less
important as the energy is lowered. They are said to be irrelevant. In strongly interacting
theories, the dimensions of operators can be significantly different than those expected
from naive classical considerations. The classification of operators as relevant, marginal,
or irrelevant applies to their quantum behavior.

At sufficiently low energies we can ignore the irrelevant, non-renormalizable, couplings.
Alternatively, by choosing the matching scale M to be low enough, only the marginal and
relevant couplings will be important. In a theory with only dimensionless couplings, the
variation of the coupling with ¢° is closely related to its variation with the cutoff, M.
Physical quantities are independent of the cutoff, so any explicit dependence on the cutoff
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37 3.5 The renormalization group

must be compensated by the dependence of the couplings on M. On dimensional grounds
M? must appear with ¢%, so a knowledge of the dependence of couplings on M permits a
derivation of their dependence on ¢>. More precisely, in studying, say, a cross section, any
explicit dependence on the cutoff must be compensated by a dependence of the coupling
on the cutoff. Calling the cross section or other physical quantity o, we can express this
dependence as a differential equation, the renormalization group equation:

0 0
M— — =0. 3.24
( 8@ ag) o (3.24)
Here the beta function (or S-function) is given by
a
=M—g. 3.25
B(&) = Mg (3.29)

We can evaluate the beta function from our explicit expression, Eq. (3.21), for g

g

B(g) = —bo 1628 (3.26)

We will compute bg in the next section. This equation has corrections in each order of
perturbation theory and non-perturbative corrections as well.

So far we have expressed the coupling in terms of a cutoff and a physical scale.
In old-fashioned language, the coupling gZ(M) is the “bare” coupling. We can define a
“renormalized coupling” g%(11) at a scale u?:

2 2

T e (327)
g (u?)  g- (M) M

In practice it is necessary to give a more precise definition. We will discuss this when
we compute the beta function in the next section. Because of this need to give a
precise definition of the renormalized coupling, care is required in comparing theory and
experiment. As we will review shortly, there is a variety of definitions in common use and
it is important to be consistent.

Quantities like Green’s functions are not physical, and obey an inhomogeneous equation.
One can obtain this equation in a variety of ways. For simplicity, consider first a Green’s
function with » scalar fields, such as

G(xt,. s xn) = (P (x1) - - - @ (xn)). (3.28)

This Green’s function is related to the renormalized Green’s function as follows. If the
theory is defined at a scale u, the effective Lagrangian takes the form

Ly=Z"40@BupH + - (3.29)

Here the factor Z~! arises from integrating out the physics above the scale . It will
typically include ultraviolet-divergent loop effects. Rescaling ¢ in such a way that the
kinetic term is canonical, ¢ = Al 2¢r, we have that

G(x1,y. . xn) = Z(W)"?Ge(x1, . . . Xp). (3.30)
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38 Phenomenology of the Standard Model

The left-hand side is independent of i, so we can write an equation for Gy,

a d
u—+p@—+ny )G =0, (3.31)
ou g
where y, known as the anomalous dimension, is given by
L2 In Z (3.32)
=-u—1InZ .
=2

If these are several different fields, e.g. gauge fields, fermions and scalars, this equation is

readily generalized. There is an anomalous dimension for each field, and the ny term is

replaced by the appropriate number of fields of each type and their anomalous dimensions.
The effective action obeys a similar equation. Starting with

Tty s Xn) = Z(0) "2T(x1, - X0, (3.33)

we have

d 0
p—+ B — —ny | =0, (3.34)
o ag
These equations are readily solved. We could write down the solution immediately, but
an analogy with the motion of a fluid is helpful. A typical equation, for example, for the
density of a component of a fluid (e.g. the density of bacteria in the fluid) would take the
form

I:i + v(x)i — p(x)i| D(t,x) =0, (3.35)
at ax

where D(¢,x) is the density as a function of position and time and v(x) is the velocity of
the fluid at x; p represents a source term (e.g. the growth due to the presence of yeast or a
variable temperature). To solve this equation one first solves for the motion of an element
of fluid initially at x, i.e. one solves:

dit)_c(t;x) =v(x(;x)), x(0;x)=x. (3.36)

In terms of x we can immediately write down a solution for D:
t
DUJ)=DMKU@NH{/nﬁp@WJD}
0

(3.37)

= Do(x(t;x)) exp [ﬁx dx/@}.

o vX)

Here Dy is the initial density. One can check this solution by plugging it into Eq. (3.35)
directly, but each piece has a clear physical interpretation. For example, if there were no
source (p = 0), the solution would become Dy (x(¢; x)). With no velocity, the source would
lead to just the expected growth in the density.

Let us apply this to Green’s functions. Consider, for example, a two-point function,
G(p) = p~2ih(p*/u?). In our fluid dynamics analogy the coupling g is the analog of the
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39 3.6 Calculating the beta function

velocity; the log of the scale, = In(p/u), plays the role of the time. The equation for g is

then
2 )i 2y(g) |h(®H) =0 3.38
[at—mgag— y(g] =0, (3.38)
Define g(u) as the solution of
d
Ma—é(u) = p(®. (3.39)
uw

At lowest order, this is solved by Eq. (3.27). Then

- ! /V(é(t’,g))]
hip,g)=h 2| di'—=—==|. 3.40
o = hamrenp 2 [ ar HECES (3.40)
One can write the solution in the form
. g /
G(p,2) = - G(@(t:2)) exp [2/ dg/y(g/)]. (3.41)
p g BEg")

3.6 Calculating the beta function

In the previous section we presented the one-loop result for the beta function and used
it in various applications. In this section we actually compute this result. There are a
number of ways to determine the variation of the gauge coupling with energy scale. One
way is to calculate the potential for a very heavy quark—antiquark pair as a function of
their separation R (we use the term quark here loosely for a field in the N-dimensional, or
Sfundamental, representation of SU(N)). The potential is a renormalization-group-invariant
quantity. At lowest order it is given by

£Cr

VR) = =

(3.42)

where

N—1
Cr= Y TT% (3.43)
a=1

here Cr refers to the fundamental representation and 7 refers to the adjoint representation.
The potential is a physical quantity; as a result it is renormalization-group invariant. In
perturbation theory it has corrections behaving as g () In(RA). This follows simply from
dimensional analysis. So, if we choose R = 1+ ~! then the logarithmic terms disappear and
we have

le
V(R) = —gz(R)FF[l + 0@ ®)]. (3.44)

In an asymptotically free theory such as QCD, where the coupling gets smaller with
distance, Eq. (3.41) becomes more and more reliable as R gets smaller. This result has
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40 Phenomenology of the Standard Model

physical applications. In the case of a bound state of a top quark and antiquark, one might
hope that this would be a reasonable approximation and would describe the binding of the
system. Taking ax(R) ~ 0.1, for example, would give a typical radius of order (17 GeV) ™!,
a length scale where one might expect perturbation theory to be reliable (and for which
ag(R) ~ 0.1). By analogy with the hydrogen atom, one would expect the binding energy
to be of order 2 GeV. In practice, however, this is not directly relevant, since the width of
the top quark is of the same order: the top quark decays before it has time to form a bound
state. Still, it should be possible to see evidence for such QCD effects in the production of
ft pairs near the threshold in e*e™ annihilation.

A second approach is to study Green’s functions in momentum space. The calculation
is straightforward, if slightly more tedious than the analogous calculation in a U(1) gauge
theory (QED). The main complication is the three-gauge-boson vertex, which has many
terms (at one loop, one can use symmetries to simplify greatly the algebra). It is necessary
to have a suitable regulator for the integrals. By far the most efficient is the dimensional
regularization technique of "t Hooft and Veltman. Here one initially allows the space—time
dimensionality d to be arbitrary and takes d — 4 — €. For convenience, we include the two
most frequently needed integration formulas below; their derivation can be found in many

textbooks.
d% 7 PTm—d/2) 50,
/ @iy -t T G4
dk 7T (—=d)2=1) 5 an oan
f 2+ M I'(n) o ' G40

Ultraviolet divergences, such as would occur for n = 2 in the first integral, give rise to
poles in the limit € — 0. If we were simply to cut off the integral at k> = A2, we would
find

d*k 1 1 A

~ In = 3.47
QO R+ M2 162 M (3:47)

In dimensional regularization this behaves as follows:

d*k 1 1 (e)w 1

Qo) B+ M2~ 1672 \2) 7 8aZe

5 (3.48)

So € should be thought of as In A2. The computation of the Yang—Mills beta function
by studying momentum-space Feynman diagrams can be found in many textbooks and is
outlined in the exercises at the end of the chapter.

Here we follow a different approach, known as the background field method. This
technique is closely tied to the path integral, which will play an important role in this
book. It is also closely tied to the Wilsonian view of renormalization. We break up a field
A into a long-wavelength part A and a shorter-wavelength, fluctuating, quantum part a:

A* = A* 4 gt (3.49)

We can think of A* as corresponding to modes of the field with momenta below the scale
q and a" as corresponding to higher momenta. We wish to compute an effective action
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4 3.6 Calculating the beta function

for A", integrating out the high-momentum modes:

/ [dA] / [da] &5 = / [dA] &Ser(AD) (3.50)

(see Appendix C for an explanation of the terminology). In calculating the effective action
we are treating A" as a fixed, classical, background. In this approach one can work entirely
in Euclidean space, which greatly simplifies the calculation.

Our first task is to write down ¢S4 For this purpose, it is convenient to suppose that
A satisfies its equation of motion. (Otherwise, it is necessary to introduce a source for a.)
A convenient choice of gauge is known as the background field gauge,

D" =0, (3.51)

where D,, is the covariant derivative defined with respect to the background field .A. At one
loop we only need to work out the action to second order in the fluctuating fields a*, vy, ¢.
Consider, first, the fermion action. To quadratic order we can set a* = 0 in the Dirac
Lagrangian. The same holds for scalars. So from the fermions and scalars we obtain

det()p)"det(D?)"¢/2. (3.52)

The fermion functional determinant can be greatly simplified; it is convenient, for this
computation, to work with four-component Dirac fermions. Then

det()p) = det(}p)'/?
= det <D2 + %DuDv[y", V”])
= det(D* + F* T). (3.53)

Here FV is the field strength associated with A (we have used the connection between
the field strength and the commutator of covariant derivatives, Eq. (2.14)) and 7, is the
generator of Lorentz transformations in the fermion representation.

What is interesting is that we can write the gauge boson determinant, in the background
field gauge, in a similar fashion.! With a little algebra, the gauge part of the action can be
shown to be

1 2 ’ be b
Loauge = —@(Tr}'ljv —2g%aD*a" * — 24 [ FP ). (3.54)
Here we have used the 4j; notation in order to be completely explicit about the gauge
indices. Recalling the form of the Lorentz generators for the vector representation,

(T*)ap = i(8585 — 82.84), (3.55)

we see that this object has the same formal structure as the fermion action,
r _ 1 a DZaclw o) 1b po - pyac | ¢ 3.56
gauge = _E a, (=D")*“gh” + E]:pgj (tg) a, . (3.56)
! The details of these computations are outlined in the exercises. Here we are following closely the presentation

in the text by Peskin and Schroeder (1995).
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iy} Phenomenology of the Standard Model

Finally, the Faddeev—Popov Lagrangian is just
= = (D*)1cb. (3.57)

Since the ghost fields are Lorentz scalars, this Lagrangian has the same form as the others.
We need, then, to evaluate a product of determinants of the form

det [—D2 +2 (2f§(,jp") ] (3.58)

with ¢ and J the generators appropriate to the representation.
The term in parentheses can be written as

Arj=—32+ A0 £ A® L AT (3.59)
with
AW =0 A%t + A%t“D")
A@ = A Al (3.60)
AD _ 2 (%]::Ujpa) b

The action we are seeking is the log of the determinant. We are interested in this action
expanded to second order in A and second order in 9%:

Indet(A,,;) = Indet(—3%) + tr[(—82)1 (AN + A@ + AT

(( ) TAD (=%~ 1A <”)} (3.61)

where 1/(—d?) is the propagator for a scalar field. So this has the structure of a set of
one-loop diagrams in a scalar field theory. Since we are working to quadratic order, we
can take the A field to carry momentum k. The term involving two factors A(D is in some
ways the most complicated to evaluate. Note that the trace is a trace in coordinate space
and over the gauge and Lorentz indices. In momentum space the space—time trace is just
an integral over momenta. We take all the momenta to be Euclidean. So the result is given,
in momentum space, by

1 [ d%
(2 )d /1«

A% (k)AL (—k) / Tr L% Qp + b*t° SQ2p+ k)”tb] . (3.62)

Q2n)? (p+h

This has precisely the structure of one of the vacuum polarization diagrams of scalar elec-
trodynamics (see Fig. 3.7). The other contribution arises from the factor A®). Combining
the two contributions, and performing the integral by dimensional regularization gives

1 d% b ) o [ CHA()) _d 2-d)2
Gy A A, (k) (K g" kﬂk)[—3(4n)zr<2 2)<k2) }

(3.63)

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

43 3.7 The strong interactions and dimensional transmutation

7 ~N
/ \
[ |
~—~ \ /
s \ NP
f\f\{ ‘,f\f\ f\f\f\f\f\
\ /
N g

The background-field calculation has the structure of scalar electrodynamics.

where C(r) is a Casimir operator, encountered previously. The quantities C(j) are similar
quantities for the Lorentz group: C(j) = 0 for scalars, 1 for Dirac spinors and 2 for four-
vectors. To quadratic order in the external fields, the transverse terms above give (F*¥)2.

The contribution involving A7) in Eq. (3.61) is even simpler to evaluate, since the
needed factors of momentum (which are derivatives) are already included in F. The rest is
bookkeeping; the required action has the form

171 1 ny
Lor=—7 [? +5 (CG —C.— E'C,,/.)}Fiv (3.64)
where
1 2 20 1
Ci:CiW <E—ln kz), CG:—?, Cc:3, Cnf:—g. (365)

This gives precisely Eq. (3.21).

3.7 The strong interactions and dimensional transmutation
|

In QCD the only parameters at the classical level with the dimensions of mass are the quark
masses. In a world with just two light quarks, « and d, we would not expect the properties
of hadrons to be very different from the observed properties of the non-strange hadrons.
However, the masses of the up and down quarks are quite small; in fact, as we will see, too
small to account for the masses of the non-strange hadrons such as the proton and neutron.
In other words, in the limit of zero quark mass these hadrons would not become massless.
How can a mass arise in a theory with no classical mass parameters?

While classically QCD is scale invariant, this is not true quantum mechanically. We have
seen that we must specify the value of the gauge coupling at a particular energy scale; in
the language we have used up to now, the theory is specified by giving the Lagrangian
associated with a particular cutoff scale. If we change this scale, we have to change the
values of the parameters, and physical quantities such as the proton mass m,, = u, should
be unaffected. Using our experience with the renormalization group we can write down a
differential equation which expresses how such a mass depends on g and u, so that the
mass is independent of which scale we choose to define our theory:

9 d
[u@ + ﬁ(g)g] my = 0. (3.66)
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44 Phenomenology of the Standard Model

We know the solution of this equation:

dg’
m, = Cuexp [— :| (3.67)
8 (g’
To lowest order in the coupling,
e L ] (3.68)
my, = Cuexp | — . .
! 2w

This phenomenon, that a physical mass scale can appear as a result of the need to
introduce a cutoff in the quantum theory, is called dimensional transmutation. In the next
section we will discuss this phenomenon as it occurs in lattice gauge theory. Later we
will describe a two-dimensional model with which we can do a simple computation that
exhibits the dynamical appearance of a mass scale.

3.8 Confinement and lattice gauge theory
|

The fact that QCD becomes weakly coupled at high momentum transfers has allowed
rigorous comparison with experiment. Despite the fact that the variation of the coupling
is only logarithmic, experiments are sufficiently sensitive, and have covered a sufficiently
broad range of ¢?, that such comparisons are possible. Still, many of the most interesting
questions of hadronic physics — and some of the most interesting challenges of quantum
field theory — are problems of low momentum transfer. Here one encounters the flip side
of asymptotic freedom: at large distances, the theory is necessarily strongly coupled and
perturbative methods are not useful. It is, perhaps, frustrating that we cannot compute the
masses of the low-lying hadrons in a fashion analogous to the calculation of the properties
of simple atoms. Perhaps even more disturbing is that we cannot give a simple argument
that quarks are confined or that QCD exhibits a mass gap. To deal with these questions,
we will first ask a somewhat naive question: what can we say about the path integral, or
for that matter the Hamiltonian, in the limit in which the coupling constant becomes very
large? This question is naive in that the coupling constant is not really a parameter of this
theory. It is a function of the scale, and the important scale for binding hadrons is that
where the coupling becomes of order one. Let us consider the problem anyway. We will
start with a pure gauge theory, i.e. a theory without fermions or scalars. Consider, first,
the path integral. To extract the spectrum, it should be adequate to consider the Euclidean
version:

Z= f [dA,,) exp (—éFiu) (3.69)

Let us contrast the weak- and strong-coupling limits of this expression. At weak coupling
1/g? is large, so fluctuations are highly damped; we might expect the action to be controlled
by the stationary points. The simplest such stationary point occurs where F,, = 0, and
this is the basis of perturbation theory. Later we will see that there are other interesting
stationary points — classical solutions of the Euclidean equations.
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45 3.8 Confinement and lattice gauge theory

Now consider strong coupling. As g — oo the action vanishes — there is no damping of
the quantum fluctuations. It is not obvious how one can develop any sort of approximation
scheme. We can consider this problem, alternatively, from a Hamiltonian point of view.
A convenient gauge for this purpose is the gauge 49 = 0. In this gauge Gauss’s law
is a constraint that must be imposed on states. As we will discuss shortly, Gauss’s law is
(almost) equivalent to the condition that the quantum states must be invariant under time-
independent gauge transformations. In the 4° = 0 gauge, the canonical momenta are very
simple:
= % = —izE". (3.70)

04’ g

i

So, the Hamiltonian is

L, 1=
H:‘g—2n2+— 2,

> : (3.71)

In the limit g2 — oo, the magnetic terms are unimportant and the IT?> terms dominate. So
we should somehow work, in lowest order, with states which are eigenstates of E. In any
approach which respects even rotational covariance, it is unclear how to proceed.

The solution to both dilemmas is to replace the space—time continuum with a discrete
lattice of points. In the Lagrangian approach one introduces a space—time lattice. In the
Hamiltonian approach one keeps the time continuous but makes space discrete. Clearly
there is a large price for such a move: one gives up Lorentz invariance, even rotational
invariance. At best, Lorentz invariance is something which one can hope to recover in
the limit where the lattice spacing is small compared with the relevant physical distances.
There are several rewards, however.

1. One has a complete definition of the theory which does not rely on perturbation theory.

2. The lattice, at strong coupling, gives a simple model of confinement.

3. One obtains a precise procedure in which to calculate the properties of hadrons. With
large enough computing power one can in principle calculate the properties of low-lying
hadrons with arbitrary precision.

There are other difficulties which must be overcome. Not only is rotational symmetry
lost, but other approximate symmetries — particularly chiral symmetries — are complicated.
But, over time, combining ingenuity and growing computer power there has been
enormous progress in numerical lattice computations. Lattice gauge theory has developed
into a highly specialized field of its own, and we will not do justice to it here. However,
given the importance of field theories — often strongly coupled field theories — not only
for our understanding of QCD but for any understanding of physics beyond the Standard
Model, it is worthwhile to briefly introduce the subject here.

3.8.1 Wilson's formulation of lattice gauge theory

In introducing a lattice the hope is that, as one allows the lattice spacing a to become
small, one will recover Lorentz invariance. A little thought is required to understand what
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46 Phenomenology of the Standard Model

is meant by small. The only scale in the problem is the lattice spacing. But there is another
important parameter: the gauge coupling. The value of this coupling, we might expect,
should be thought of as the QCD coupling at scale a. So, taking small lattice spacing
means physically taking the gauge coupling to be weak. At small lattice spacing, the short-
distance Green’s functions will be well approximated by their perturbative expansions. On
the other hand, the smaller the lattice, the more numerical power required to compute the
physically interesting, long-distance, quantities.

There is one symmetry which one might hope to preserve as one introduces a space—
time lattice: gauge invariance. Without it, there are many sorts of operators which could
appear in the continuum limit and recovering the theory of interest would be likely to
be very complicated. Wilson pointed out that there is a natural set of variables to work
with; there are known as Wilson lines. Consider, first, a U(1) gauge theory. Under a gauge
transformation A4, (x) — A, + ig(x) 8MgT (x), where g(x) = €2 the object

x
U(x1,x3) = exp <l/ dxﬂA"),
x|

Ulx1,x2) — g(x)UR1,x2)g" (x2). (3.72)

transforms as follows:

So, for example, for a charged fermion field v (x) transforming as ¥ (x) — gx)¥(x), a
gauge-invariant operator is

() Ulrr, x2) ¥ (x2). (3.73)

From gauge fields alone one can construct an even simpler gauge-invariant object, a Wilson
line beginning and ending at some point x:

U(x,x) = exp (1% dx“AM>, (3.74)
C

where U is called a Wilson loop.

These objects have a simple generalization in non-Abelian gauge theories. Using the
matrix form for 4, the main issue is one of ordering. The required ordering prescription is
a path ordering, P:

X2

U(x1,x3) = P exp (z/ dx“Au>. (3.75)
x1

It is not hard to show that the transformation law for the Abelian case generalizes to the
non-Abelian case:

Ulx1,x2) — g(x)UGx1,x2)g”  (x2). (3.76)

To see this, note first that path ordering is like time ordering so, if s is the parameter of the
path, U satisfies

g — (ie™" 4 U 3.77
= (x1(s),x2) = (lgg u(x1(s))> (x1(s),x2) (3.77)
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47 3.8 Confinement and lattice gauge theory

or, more elegantly,

d 1
—;1 D, UGx1,x2) = 0. (3.78)
A)

Now suppose that U(xy,xp) satisfies the transformation law (Eq. (3.72)). Then it is
straightforward to check, from Eq. (3.77), that U(x] +dx1, x») satisfies the correct equation.
Since U satisfies a first-order differential equation, this is enough.

Again, the integral around a closed loop, C, is gauge invariant, provided that now one
takes the trace:

U(x1,x1) = Tr exp <l% dx"AM). (3.79)
C

Wilson used these objects to construct a discretized version of the usual path integral.
Take the lattice to be a simple hypercube, with points x* = an", where n* is a vector
of integers and a is called the lattice spacing. At any point x one can construct a simple
Wilson line U(x) ., known as a plaquette. This is just the product of Wilson lines around
a unit square. Letting n;, denote a unit vector in the u direction, we denote the Wilson line
U(x,x + an*) by U(x) .. These are the basic variables; as they are associated with the lines
linking two lattice points they are called /ink variables. Then the Wilson loops about each
plaquette are denoted as follows:

UX)py = Ux) , Ulx + an®), U(x + an* + an”)_, U(x + an”) _,. (3.80)

In the non-Abelian case, a trace is understood to be taken. For small a, in the Abelian case
it is easy to expand Uy, in powers of a and to show that

UX) v ~ exp [ia?F i, (v)]. (3.81)

So, we can write down an action which in the limit of small lattice spacing goes over to the
Yang—Mills action:

Switson = é 3 Ut (3.82)
X, [,V
In the non-Abelian case this same expression holds, except with the factor 4 replaced by 2
and a trace over the U matrices.

How might we investigate the question of confinement with this action? Here, Wilson
also made a proposal. Consider the amplitude for a process in which a very heavy (infinitely
heavy) quark—antiquark pair, separated by a distance R, was produced in the far past and
allowed to propagate for a long time T after which the pair annihilates. In Minkowski space
the amplitude for this would be given by

(fle~ ™13, (3.83)

where H is the Hamiltonian for the process. If we transform to Euclidean space and insert
a complete set of states, for each state we have a factor exp(—E,T). As T — oo this
becomes e~£07, where Ey is the ground state of the system with two infinitely massive
quarks separated by a distance R, and is what we would naturally identify with the potential
of the quark—antiquark system.
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48 Phenomenology of the Standard Model

In the path integral this expectation value is precisely the Wilson loop Up, where P is
the path from the point of production to the point of annihilation and back. If the quarks
only experience a Coulomb force, one expects the Wilson loop to behave as

(Up) ox e @T/R (3.84)

for a constant . In other words, the exponential behaves as the perimeter of the loop. If
the quarks are confined, with a linear confining force, the exponential behaves as e~?7%,
i.e. as the area of the loop. So Wilson proposed to measure the expectation value of the
Wilson loop and determine whether it obeyed a perimeter or area law.

In strong coupling it is a simple matter to do the computation in the lattice gauge theory.
We are interested in

/ [ [dU@). exp (—Slamce +i] ] U). (3.85)
P

We can evaluate this by expanding the exponent in powers of 1/g>. Because
/ du, U, =0, / dU, U, U}, = const (3.86)

(you can check this easily in the Abelian case), in order to obtain a non-vanishing result we
need to tile the path with plaquettes, as indicated in Fig. 3.8. So the result is exponential in

the area,
const \*
wp) = () . (3.87)
&
and the force law is
3 g
V(R) = const X =R. (3.88)
a

This is not a proof of confinement in QCD. First note that this result holds in the strong
coupling limit of either an Abelian or a non-Abelian gauge theory. This is possible because

QIO B|0[O|0|0B |00
QIO G|O[OO|GB |00
QOG0 |0[O|0|0|0B|0[0
QOG0 |0[O|0|0|0B|0[0
QIO G|O[OO|G[0 |00
QIO [B|G|O|0[CG|G|0
QIO IGO0 |O|0[CG|G|O
QIO [B|O|O|0[CG|G|O
Q0000000000
QIO IGO0 |O|0|CG|0|O
QIO IGO0 |O|0[CG|C|O
QIO O[O O |O|0[O|G|G|0
QIO I0 0 |0[Q|O|00 |00

Leading non-vanishing contribution to the Wilson loop in strong coupling lattice gauge theory.
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49 3.8 Confinement and lattice gauge theory

even the pure gauge Abelian lattice theory is an interacting theory. From this we learn
that the strong coupling behavior of a lattice theory can be very different than the weak
coupling behavior. For QCD we would like to choose the lattice spacing to correspond to
a small physical scale, say ¢ = (4 GeV)~!, where the gauge coupling is small, and then
study the behavior of the correlation functions, Wilson loops and other quantities on much
larger scales. At present this requires numerical techniques.

3.8.2 Hamiltonian lattice gauge theory

Before discussing Hamiltonian lattice gauge theories, it is interesting to see how the strong-
coupling result arises from a Hamiltonian viewpoint. To simplify the computation we
consider a U(1) gauge theory. In the Hamiltonian approach the basic dynamical variables
are the matrices U; associated with the spatial directions. There is also the gauge field Ay.
As in continuum field theory, we can choose 49 = 0. In this gauge, in the continuum the
dynamical variables are 4; and their conjugate momenta are E;; on the lattice, the momenta
conjugate to the U; are the ;. The Hamiltonian has the form

2?1 1
H= ZT + @ZUij(x);. (3.89)

The U;s are compact variables, so the IT(x)s at each point are like angular momenta. At
strong coupling this is a system of decoupled rotors. The ground state of the system has a
vanishing value of these angular momenta.

Now introduce a heavy quark—antiquark pair to the system, separated by a distance R
in the z direction. In the 49 = 0 gauge, states must be gauge invariant (we will discuss
this further when we consider instantons, in the next chapter). So, a candidate state has the
form

W) = ¢"(0)U.(0, R)g" (R)|0). (3.90)
Here
U,(0,R) =U,(0,1)U;(1,2)--- U,(N — 1,N), (3.91)

where R = Na. Now we can evaluate the expectation value of the Hamiltonian in this state.
At strong coupling we can ignore the magnetic terms. The effect of the U, operators is to
raise the “angular momentum” associated with each link by one unit (in the U(1) case,
U.(n,n+ 1) = €+1). So the energy of the state is just

a 'g?N, (3.92)

and the potential grows linearly with separation.

3.8.3 Numerical methods in lattice gauge theory; introduction of fermions

We have seen that the strong coupling analysis, while providing a model for confinement,
is hardly satisfactory. It predicts confinement in lattice QED as well as QCD. It turns out
that in QED there is a phase transition (a discontinuous change of behavior) between the
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50 Phenomenology of the Standard Model

strong- and weak-coupling phases. To be sure that the same does not occur in QCD, we
need to evaluate the Wilson line on a very fine lattice, at large separation. This means we
need to work with an action having a small coupling. To put it another way, to reliably
describe, say, a proton we need to use a lattice on which the spacing a is much smaller than
the QCD scale. At present such studies can only be undertaken by evaluating the lattice
path integral numerically. In principle, since the lattice theory reduces space—time to a
finite number of points, the required path integral is just an ordinary integral, albeit with a
huge number of dimensions. For example, if we have a 10 x 10 x 10 x 10 lattice, with of
order 10* links (each a 3 x 3 matrix), and quarks at each site, it is clear that a straightforward
numerical evaluation involves an exponentially large number of operations. In practice it
is necessary to use Monte Carlo (statistical sampling) methods to evaluate the integrals.
These techniques are now sufficiently powerful to demonstrate convincingly an area law
at weak coupling. The constant in the area law, the coefficient of the linear term in the
quark—antiquark potential, is a dimensionful parameter. It must be renormalization-group
invariant. As a result, it must take the form

!/

T=ca2exp [— di]. (3.93)
B

At weak coupling we know the form of the beta function, so we know how 7 should behave

as we vary the lattice spacing and coupling. The results of numerical studies are in good

agreement with these expressions.

However, we would like to study real QCD, with fermions. Fermions introduce addi-
tional challenges. These are of two types. First, one needs a strategy to deal with Grassman
integrations in the functional integral. The usual strategy is to hold the bosonic variables
fixed while first performing the integral over the fermions. This yields a determinant
(in general multiplied by some Green’s functions), which must be evaluated for every
value of the bosonic integrand. These are determinants of enormous matrices and must
themselves be evaluated by statistical techniques. In the early years of lattice gauge theory,
such computations were out of reach and so numerical work generally simply dropped the
determinant (such calculations were said to be quenched). But, by the early years of the new
millennium, both algorithms for these computations and computer power had developed to
the point that such computations were feasible.

As we will see further in Chapter 5, it is crucial to our understanding of the strong
interactions that the u, d and s quarks are light compared with the characteristic scales of
the strong interactions and in particular compared with quantities such as the pion decay
constant and the p meson mass. However, massless or light fermions, on the lattice, are
problematic. The difficulties are associated with the fact that their kinetic terms are first
order in derivatives. Writing the derivative as a naive difference leads to the problem of
fermion “doubling”.

To see the difficultly, consider first the kinetic terms for a free boson. Label the lattice
points (in a Euclidean lattice) by four vectors 7,,a, where a is the lattice spacing, i.e. x, =
nya. Then

Opup(x) = [p(x +nua) — d(x —nya)]/2a). (3.94)
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51 3.9 Strong interaction processes at high momentum transfer

Now we write a Fourier expansion in terms of
Pt (3.95)

where —7/a < k* < m/a. This is the analog of the familiar problem of a particle in a box
of size L with periodic boundary conditions. There k¥ = 2w n/L. Now the roles of x and &
are reversed: x = na, so k lies in an interval of size 27 /a, as above. Then, for scalars, the
second derivative term, defined as above, is proportional to

fil*(1 = cos kya) (3.96)

which is consistent with the size of the & interval.
However, for fermions, a term such as 9, y,, is proportional to

Jeyusin kya (3.97)

which has zeros (corresponding to poles in the propagator) not only at k, = 0 but also
at points where the components &k, = m/a. The appearance of these extra light degrees
of freedom is called the fermion doubling problem. General theorems show that it is
unavoidable. In practice this problem is dealt with in either of two ways. One can attempt
to treat the extra fermions as additional light flavors, or one can add a term to the action
which gives mass to the extra fermions, typically a term proportional to a parameter and
1 — cos ka, known as the Wilson term. The price of the first method is that one must
extract results for the actual number of flavors (three) from a theory with more flavors.
This has been the approach of the MILC collaboration, one of the large lattice simulation
efforts. In the second method one has the difficulty that the parameters must be tuned, as
one approaches the continuum limit, in such a way that one obtains the expected symmetry
structure of actual QCD. This method has been used by the BMW collaboration and others.
Considerable success has been achieved with both, and there is remarkable agreement.
A third method is known as the domain wall fermion method. Here one introduces a
fifth dimension, with fields of opposite chirality living on two walls. This method shows
promise but imposes additional computational challenges and to date has been numerically
less extensively studied.

3.9 Strong interaction processes at high momentum transfer
|

Quantum chromodynamics has been tested with high precision in a variety of processes at
high momentum transfer (short distances). It is by now an important tool in probing for new
physics in particle colliders. Indeed, our understanding of perturbative QCD was crucial
to the discovery of the Higgs boson. It is these processes to which one can apply ordinary
perturbation theory. If Q? is the typical momentum transfer of a process, cross sections
are given by a power series in a;(Q?). The application of perturbation theory, however,
is subtle. In accelerators we observe hadrons; using perturbation theory we compute the
production rate for quarks and gluons. We will briefly survey some applications in this
section. The simplest process to analyze is ete™ annihilation, and we discuss it first.
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52 Phenomenology of the Standard Model

Then we turn to processes involving the deep inelastic scattering of leptons by hadrons
and follow this by considering by processes involving hadrons only. Finally, we describe
recent progress in QCD computations for processes involving complicated final states
(many gluons) and/or higher orders in perturbation theory.

3.9.1 ete annihilation

At the level of quarks and gluons, the first few diagrams contributing to the production
cross section are exhibited in Fig. 3.9. There is, in perturbation theory, a variety of final
states, ¢q, 992, 9922, 9qqq and so on. We do not understand, in any detail, how these quarks
and gluons materialize as the observed hadrons. But we might imagine that this occurs as in
Fig. 3.10. The initial quarks radiate gluons which can in turn radiate quark—antiquark pairs.
As the cascade develops, quarks and antiquarks can pair to form mesons, ggg combinations
can form baryons and so on. In these complex processes (called hadronization) we can
construct many relativistic invariants and many of these will be small, so that perturbation
theory cannot be trusted. In a sense this is good; otherwise, we would be able to show that
free quarks and gluons were produced in the final states. But if we only ask about the fotal
cross section, each term in the series is a function only of the center of mass energy s. As

q q 2
4 g
+ g +
- q
2
g
+ +

Low-order contributions to et e annihilation.

Emission of gluons and quarks leads to the formation of hadrons.
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53 3.9 Strong interaction processes at high momentum transfer

a result, if we simply choose s for the renormalization scale, the cross section is given by
a power series in «(s). One way to see this is to note that the cross section is proportional
to the imaginary part of the photon vacuum polarization tensor, o (s) o Im I1. One can
calculate IT in Euclidean space and then analytically continue. In the Euclidean calculation
there are no infrared divergences, so the only scales are s and the cutoff (or renormalization
scale). It is convenient to consider the ratio

o(eTe™ — hadrons)

+,- —
R(e"e” — hadrons) = P (3.98)
The lowest-order («”) contribution can be written down without any work:
R(e*e” — hadrons) =3 07, (3.99)

where we have explicitly pulled out a factor 3 for color and the sum is over those quark
flavors light enough to be produced at energy +/s. So, for example, above the charm quark
threshold and below the bottom quark threshold this would give

10
R(eTe™ — hadrons) = 3 (3.100)

Before comparing with the data we should consider corrections. The cross section has
been calculated through order oc?, where oy = g% /(4m); g, the strong coupling constant
was introduced in Eq. (2.64). Here we quote just the first two orders:

R(e*e™ — hadrons) =3 0} (1 + a—) (3.101)
T

This may be compared with the data in Fig. 3.11.

This calculation has other applications. Among these are applications to the widths of the
Z and of the 7 lepton. The decays of Z; to hadrons involve essentially the same Feynman
diagrams as before (Fig. 3.12), except for the different Z couplings to the quarks. This may
be compared with experiment using Table 3.1.

3.9.2 JetsineT e~ annihilation

Much more is measured in eTe™ annihilation than the total cross section, and clearly we
would like to extract further predictions from QCD. If we are to use perturbation theory
then it is important that we limit our questions to processes for which all momentum
transfers are large. It is also important that perturbation theory should fail for some
questions. After all, we know that the final states observed in accelerators contain hadrons,
not quarks and gluons. If perturbation theory were good for sufficiently precise descriptions
of the final state, the theory would simply be wrong.

To understand the issues, let us briefly recall some features of QED for a process like
ete™ — uTu~. At lowest order one just has the production of a ut ™ pair. At order
a, however, one has final states with an additional photon and loop corrections to the
muon lines (also to the electron or positron lines), as indicated in Fig. 3.13. Both the loop
corrections and the total cross section for final states with a photon are infrared divergent. In
QED the answer to this problem is resolution. In an experiment one cannot detect a photon
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Experimental data for the ratio R in e™ e~ annihilation, together with the theoretical prediction from Eq. (3.101).
Reproduced from H. Burkhardt and B. Pietrzyk, Phys. Lett. B 513, 46 (2001). Copyright 2001, with permission
from Elsevier.

of arbitrarily low energy. So, in comparing the theory with the observed cross section for
wT ™ (with no photon), one must allow for the possibility that a very-low-momentum
photon is emitted and not detected. By including some energy resolution AE the cross
sections for each possible final state are made finite. If the energy is very large one also
has to keep in mind that experimental detectors cannot resolve photons that are nearly
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55 3.9 Strong interaction processes at high momentum transfer

Table 3.1 Experimental and theoretical values of properties of the Z boson.
Note the close agreement at the one part in 10 —10° level. Reprinted from

Electroweak Model and Constraints on New Physics, Particle Data Group (2005),
and S. Eidelman et al., Phys. Lett. B, 592, 1(2004) (used with permission of the|
Particle Data Group and Elsevier)

Quantity Value Standard Model Pull
mz (GeV) 176.1 £ 7.4 176.96 £ 4.0 —0.1
180.1 +5.4 0.6
My (GeV) 80.454 &+ 0.059 80.390 +0.018 1.1
80.412 £ 0.042 0.5
Mz (GeV) 91.1876 + 0.0021 91.1874 & 0.0021 0.1
I'z (GeV) 2.4952 £0.0023  2.4972 £0.0012 —0.9
I'(had) (GeV) 1.7444 £ 0.0020  1.7435 £ 0.0011 —
I' (inv) (MeV) 499.0 £ 1.5 501.81 +£0.13 —
rete ) (MeV)  83.984 4 0.086 84.024 £+ 0.025 —
Ohad (nb) 41.341 £ 0.037 41.472 £ 0.000 1.9
2
1 g
Zy Zy
+ g +
7
4
2
q
+ +
q
4

@ B Theinfrared problem.
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56 Phenomenology of the Standard Model

parallel to one or other of the outgoing muons. The cross section, again, for each type of
final state has large logarithms, In(E/m,). These are often called collinear singularities or
mass singularities. So one must allow for the finite angular resolution of real experiments.
Roughly speaking, then, the radiative corrections for these processes involve

o E
80 x — In —1n A6. (3.102)
47 AE

As one makes the energy resolution, or the angular resolution smaller, perturbation
theory becomes poorer. In QED it is possible to sum these large double-logarithmic terms.

In QCD these same issues arise. Partial cross sections are infrared divergent. One obtains
finite results if one includes an energy and angular resolution. But now the coupling is not
as small as in QED, and it grows with energy. In other words, if one takes an energy
resolution much smaller than the typical energy in the process, or an angular resolution
which is very small, the logarithms which appear in the perturbation expansion signal that
the expansion parameter is not a(s) but something more like a;(AE) or ag(Afs). So
perturbation theory eventually breaks down.

However, if one does not make AE or A6 too small then perturbation theory should be
valid. Consider, again, e*e™ annihilation to hadrons. One might imagine that on the one
hand the processes which lead to the observed final states would involve the emission of
many gluon and quark—antiquark pairs from the initial outgoing ¢g pair, as in Fig. 3.10.
The final emissions will involve energies and momentum transfers of order the masses
of pions and other light hadrons, and perturbation theory will not be useful. On the other
hand, we can restrict our attention to the kinematic regime where the gluon is emitted at a
large angle relative to the quark and has a substantial energy. There are no large logarithms
in this computation, nor in the computation of the gqg final state. We can give a similar
definition for the ggg final state. From an experimental point of view, this means that we
expect to see jets of particles (or of energy—momentum) that are reasonably collimated, and
that we should be able to calculate the cross sections for the emission of such jets. These
calculations are similar to those of QED. Such jets are observed in e™e™ annihilation, and
their angular distribution agrees well with theoretical prediction. When first observed, these
three-jet events were described, appropriately, as the discovery of the gluon.

3.9.3 Deepinelastic scattering

Deep inelastic scattering was one of the first processes to be studied theoretically in QCD.
These are experiments in which a lepton is scattered at high momentum transfer from a
nucleus. The lepton can be an electron, a muon or a neutrino; the exchanged particle can
beay, W* or Z (Fig. 3.14). One does not ask about the details of the final hadronic state but
simply how many leptons are scattered at a given angle. Conceptually, these experiments
are like Rutherford’s experiment which discovered the atomic nucleus. In much the same
way, they showed that nucleons contain quarks, having just the charges predicted by the
quark model.

In the early days of QCD this process was attractive to study theoretically, because one
can analyze it without worrying about issues about defining jets and the like. The inclusive
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57 3.9 Strong interaction processes at high momentum transfer

Vs ZO’ W+

The deep inelastic scattering of leptons from a nucleon.

cross section can be related, by unitarity, to a correlation function of two currents: the
electromagnetic current, in the case of the photon and the weak currents in the case of the
weak gauge bosons. The currents are space-like separated, and this separation becomes
small as the momentum transfer Q° becomes large. This analysis is described in many
textbooks. Here we will adopt a different viewpoint, which allows a description of the
process that generalizes to other processes involving hadrons at high momentum transfer.
Feynman and Bjorken suggested that we could view the incoming proton as a collection
of quarks and gluons, which they collectively referred to as partons. They argued that one
could define the probability f;(x) of finding a parton of type i carrying a fraction x of the
proton momentum (and similarly for neutrons). At high momentum transfer, they argued
that the scattering of the virtual photon (or other particle) off the nucleon would actually
involve the scattering of this object off one of the partons, the others being “spectators”
(Fig. 3.14). In other words, the cross section for deep inelastic scattering would be given by

o(e” (k) +pP) — e (k') +X)

=/dx2ﬁ(x)a(e_(k) +q(xP) — e (k') + qf(p/)). (3.103)
f

This assumption may — should — seem surprising. After all, the scattering process is
described by the rules of quantum mechanics and so there should be all sorts of complicated
interference effects. We will discuss this question below, but, for now, suffice it to say that
the above picture does become correct in QCD for large momentum transfers.

For the case of a virtual photon, the cross section for the parton process can be calculated
just as in QED:

(3.104)

do w0} @42
s = 20T (P

Here 8,1, &1 are the kinematic invariants of the elementary parton process. For example, if
we neglect the mass of the lepton and the incoming nucleon:

§=2p -k=2¢P k=c¢s. (3.105)
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58 Phenomenology of the Standard Model

If the scattered electron momentum is measured then ¢ is known and we can relate the
proton momentum fraction x for the process to measured quantities. From momentum

conservation,
CP+q* =0 (3.106)
or
7 +20P-q=0. (3.107)
Solving for ¢:
2
§=X=—2}C)]_q- (3.108)

It is convenient to introduce another kinematic variable,

2P-q 2P-q
= =2 3.109
YTy T ork (3.109)

Then Q% = ¢* = xys, and we can write down the differential cross section:

2

do  _ _ .
m(e P—e X)= ;xjf(x)Qj%

2
%[H—(l — 1. (3.110)
This and related predictions were observed to hold in the first deep inelastic scattering
experiments at SLAC, which provided the first persuasive experimental evidence for the
reality of quarks. Note, in particular, the scaling implied by these relations. For fixed y the
cross section is a function only of x.

In QCD these notions need a crucial refinement. The distribution functions are no longer
independent of Q?:

Jr @) = fr(x, 0%). (3.111)

To understand this, we return to the question: why should a probabilistic model of partons
work at all in these very quantum processes? Consider, for example, the Feynman diagrams
of Fig. 3.15. Clearly there are complicated interference terms when one squares the
amplitude. But it turns out that, in certain gauges, the interference diagrams are suppressed
and the cross section is just given by the squares of terms, as in Fig. 3.16. So one finds
a probabilistic description of the process, just as Feynman and Bjorken suggested, the
distribution function being the result of the sequence of interactions in the figure. These
diagrams depend on Q7. One can write integro-differential equations for these functions,
the Altarelli-Parisi equations. To explain the data, one determines these distribution
functions at one value of 9 from experiment and then evolves them to other values. By
now, the distribution functions have been studied over a broad range of 0. The structure
functions must be measured at some Q?; they can then be evolved to higher Q?. This
program has been very successful, as indicated in Fig. 3.17.
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59 3.9 Strong interaction processes at high momentum transfer

Diagrams contributing to the total rate. The diagrams on the right are complex conjugates of the corresponding
amplitudes on the left. The second term represents a complicated interference.

In suitable gauges, deep inelastic scattering is dominated by the absolute squares of amplitudes (interference is

unimportant).

3.9.4 Other high-momentum processes

These ideas have been applied to other processes. The analysis which provides a diagram-
matic understanding of deep inelastic scattering shows that the same structure functions
are relevant to other high-momentum-transfer processes, though care is required in their
definitions. Examples include lepton pair production in hadronic collisions (Fig. 3.18) and
jet production in hadron collisions, for which a comparison of theory and experiment can
be made using Fig. 3.17. But, beyond testing QCD, such processes are crucial to the search
for new physics. They have played a critical role in the discovery and study of the Higgs
boson and in the exclusion of many possible types of new physics.

3.9.5 QCD beyond the leading order

For many questions it is crucial to compute QCD corrections beyond the leading order.
This has been particularly important at the Tevatron and, more recently, the LHC. Such
computations present serious challenges, and conventional Feynman diagram analyses are
often inadequate. For example, we may be interested in initial states involving two gluons
and final states involving two, three, four or more gluons. Already in the computation of
the beta function, as discussed in Section 3.5, the three-gluon vertex adds significantly to
the algebraic tedium (we avoided some of this by using the background field method).
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The proton structure function £, as a function of @2 at fixed , as determined by several experiments (reproduced
by permission of the Particle Data Group).

For cross sections, however, the increase in labor is dramatic, particularly if we follow
the standard method of squaring the amplitude and doing polarization and color sums
(perhaps with projections). The labor grows essentially exponentially as we add more
gluons.Without some cleverness, one quickly exhausts the capabilities of even powerful
computers. With the Tevatron, and especially the LHC, programs, the need for such
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Diagram showing PP annihilation with z¢-pair production (the Drell-Yan process).

computations, in order to understand the background to possible non-Standard-Model
physics has grown dramatically.

Fortunately, there has been significant progress in this arena. A critical aspect of the
simplification has been a focus on amplitudes, i.c. obtaining the full scattering amplitude
before squaring. A simplification of this sort is suggested by string theory, where, as we
will see, one computes the scattering amplitude directly and, for example for closed string
theories, there is just one diagram at each order. Initially investigators extracted QCD
amplitudes from the low-energy limits of such processes, but it soon became clear how to
obtain such simplifications directly in field theory. Elements contributing to this progress
include the spinor helicity formalism. Here one trades four-vectors for products of spinors.
For massless particles these spinors are themselves massless; working with them leads
to vast simplifications. Progress in radiative corrections has relied heavily on unitarity,
allowing one to compute higher-order diagrams by combining lower-order diagrams. Other
important elements include trace-based color descriptions (much as we will see for large N
in Chapter 5) and the use of on-shell recursion relations.

Processes involving the collisions of two particles that produce n particles have
been calculated at leading order (LO) Amplitudes including one-loop corrections (next
to leading order, or NLO) are known for ete™ — seven jets, pp — W + fivejets,
pp — fivejets, W+ H, H+ H and yy. These computations are now automated and
public codes are available, such as GoSam, OpenLoops, Black Hat, Recola and Rocket.
Amplitudes including two-loop corrections (NNLO) are known for three-jets production
in ete™ annihilation and, in pp and pp collisions, for the production of Higgs bosons H,
W + H, H 4 H and photon pairs.

Suggested reading

There are a number of excellent texts on the Standard Model. An Introduction to Quantum
Field Theory by Peskin and Schroeder (1995) provides a good introduction both to weak
interactions and also to strong interactions, including deep inelastic scattering, parton
distributions and the like. Other excellent texts include the books by Cheng and Li (1984),
Donoghue et al. (1992), Pokorski (2000), Weinberg (1995), Bailin and Love (1993) and
Cottingham and Greenwood (1998). More recently Srednicki (2007) and Schwartz (2013)
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62 Phenomenology of the Standard Model

introduced many of the more modern techniques for calculating QCD amplitudes, and the
latter provides a more up-to-date survey of Standard Model computations generally. More
detail about QCD amplitudes is presented in the lectures by Dixon (2013), who provides
many additional references. An elegant calculation of the beta function in QCD, which
uses the Wilson loop to determine the potential perturbatively, appears in the lectures
of Susskind (1977). These lectures, as well as Wilson’s original paper (1974) and the
text of Creutz (1983), provide a good introduction to lattice gauge theory. An important
subject which we have not discussed in this chapter is that of heavy-quark physics. This is
experimentally important and theoretically accessible. A good introduction is provided in
the book by Manohar and Wise (2000). The Particle Data Group website provides excellent
reviews about a range of Standard Model (as well as Beyond the Standard Model) topics.

Exercises
|

(1) Add to the Lagrangian of Eq. (2.41) a term
SL=€eTrM (3.112)

for small €. Show that, in the presence of €, the expectation values of the 7 fields
are fixed and have a simple physical explanation. Compute the masses of the 7 fields
directly from the Lagrangian.

(2) Verify Egs. (3.48)—(3.56).

(3) Compute the mass of the Higgs field as a function of x and A (see Egs. (2.70), (2.71)).
Discuss the production of Higgs particles (you do not need to do detailed calculations,
but should indicate the relevant Feynman graphs and make crude estimates at least of
the cross sections) in ete™, u* ™ and PP annihilation. Keep in mind that, because
some of the Yukawa couplings are extremely small, there may be processes generated
by loop effects that are bigger than processes that arise at tree level.

(4) Using the formula for the eTe™ cross section, determine the branching ratio for decay
of the Z into hadrons:

I'(Z — hadrons)

B(Z — hadrons) = W (3113)
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The Standard Model as an effective field theory

The Standard Model has some remarkable properties. Among these, the renormalizable
terms respect a variety of symmetries, all of which are observed to hold to a high degree in
nature:

e baryon number symmetry;
0 — ei"/SQ, u— e By d— e, 4.1)
e three separate lepton number symmetries,
Ly— e ™L;, & — Y. (4.2)

It is not necessary to impose these symmetries. They are simply consequences of gauge
invariance and the fact that there are only so many renormalizable terms that one can write
down. These symmetries are said to be “accidental”, since they do not seem to result from
any deep underlying principle.

This is already a triumph. As we will see when we consider possible extensions of the
Standard Model, this did not have to be the case. But this success raises the question: why
should we impose the requirement of renormalizability?

4.1 Integrating out massive fields
e —

In the early days of quantum field theory, renormalizability was sometimes presented as a
sacred principle. There was a view that field theories were fundamental and should make
sense in and of themselves. Much effort was devoted to understanding whether the theories
still existed in the limit where the cutoff was taken to infinity.

But there was an alternative paradigm for understanding field theories, provided by
Fermi’s original theory of weak interactions. In this theory, weak interactions are described
by a Lagrangian of the form

_ Y

Lyeak = ﬁJ Ju- 4.3)
Here the currents J* are bilinear in the fermions; they include terms like Qo T?Q*.
This theory, like the Standard Model, was very successful. It took some time to actually
determine the form of the currents but, for more than 40 years, all experiments in weak
interactions could be summarized in a Lagrangian of this form. Only as the energies of
bosons in eTe~ experiments approached the Z boson mass were deviations observed.

63
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64 The Standard Model as an effective field theory

The four-fermion theory is non-renormalizable. Taken seriously as a fundamental theory,
it predicts violations of unitarity at TeV energy scales. But, from the beginning, the theory
was viewed as an effective field theory, valid only at low energies. When Fermi first
proposed the theory he assumed that the weak forces were caused by the exchange of
particles — what we now know as the ¥ and Z bosons.

4.1.1 Integrating out the W and Zbosons

Within the Standard Model we can derive the Fermi theory and also understand the
deviations. A traditional approach is to examine the Feynman diagram of Fig. 4.1. This
can be understood as a contribution to a scattering amplitude, but it is best understood
here as a contribution to the effective action of the quarks and leptons. The currents of the
Fermi theory are just the gauge currents which describe the coupling at each vertex. The
propagator, in the limit of very small momentum transfer, is just a constant. In coordinate
space this corresponds to a space—time §-function; the interaction is local. The effect is
just to give the four-fermion Lagrangian. One can consider the effects of small finite
momentum by expanding the propagator in powers of ¢*. This will give four-fermion
operators with derivatives. These are suppressed by powers of My and their effects are
very tiny at low energies. Still, in principle, they are there and in fact the measurement of
such terms at energies that are a significant fraction of Mz provided the first hints of the
existence of the Z boson.

This effective action can also be derived in the path integral approach. Here we literally
integrate out the heavy fields, the W and Z. In other words, for fixed values of the light
fields, which we denote by ¢, we perform a path integral over W and Z, expressing the
result as an effective action for the ¢ fields (see Appendix C):

f [dpe’Ser = f [dg] f [dW, [dW},] App
X exp [i / d*x(W (8 + M) WH + J* Wi, + T WM)} . (4.4)

Here, for simplicity, we have omitted the Z particle. We have chosen the Feynman—t Hooft
gauge. The currents J* and J*T are the usual weak currents. They are constructed out of

v d

Exchange of the massive I/ boson gives rise to the four-fermion interaction.
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65 4.1 Integrating out massive fields

the various light fields, the quarks and leptons, which we have grouped, generically, into
the set of fields ¢. Written in this way, this is the most basic field theory path integral, and
we are familiar with the result:

&St — exp [ / d*xd*y J* (x) A(x, y)JM(y)]. (4.5)

Here A(x,y) denotes the propagator for a scalar of mass M. In the limit M — oo this
is just a é-function (one can compute this or see it directly from the path integral; if we
neglect the derivative terms in the action, the propagator is just a constant in momentum

space):
i
Alx,y) = —=6(x — ). 4.6
() M2 (x—=» (4.6)
So
Seff = M_I%V ‘]M' (47)

The lesson is that, up to the late 1970s, one could view QED + QCD + the Fermi theory
as a perfectly acceptable theory of particle interactions. The theory had to be understood,
however, as an effective theory, valid only up to an energy scale of order 100 GeV or
so. Sufficiently precise experiments would require the inclusion of operators of dimension
higher than four. The natural scale for these operators would be the weak scale. The Fermi
theory is ultraviolet divergent. These divergences would be cut off at scales of order the W
boson mass.

4.1.2 The simplest Higgs boson, obtained from integrating out other physics at
higher energies

It is possible that the Higgs boson is precisely the doublet of the minimal Standard Model,
and that upcoming experiments will simply verify that its couplings to quarks, leptons,
gauge bosons and itself are exactly those expected. But they might show deviations and,
in any case, at least at the LHC these measurements will probably be good only to the
5%—10% level, leaving some room for possible deviations.

If there is new physics at scales of order a few TeV or less, these might affect the
properties of the Higgs. One simple possibility is that there is a second Higgs doublet.
In other words, there might be two Higgs doublets, ¢ and ¢;, with a potential V(¢1, ¢2)
and Yukawa couplings to the quarks and leptons. There are strong restrictions on these
couplings from low-energy physics (and especially from phenomena like K—K mixing).
These are satisfied, for example, if one Higgs doublet couples only to up quarks and the
other only to down quarks. We will see, for example, in Chapter 11 that in supersymmetric
theories these conditions are automatically satisfied, at least at tree level. But there are now
further restrictions from the success of the Standard Model in accounting for the properties
of the observed Higgs.

To see how these constraints might be satisfied and to see the connection with notions
from effective field theory we will focus on the mass matrix for the Higgs fields. Take the

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

66 The Standard Model as an effective field theory

quadratic terms to have the form

Vi = 131o11? + 13102 1* + m 1 2. (4.8)

Suppose that the mass-squared matrix has one positive and one negative eigenvalue. Take
¢ to correspond to the negative eigenvalue and H to correspond to the positive eigenvalue:

V=—u?¢> + m*|H|* + quartic. (4.9)

If m*> > pu? then we can integrate out H to obtain a potential for ¢. This limit is referred
to as the decoupling limit of the two-Higgs-doublet model; if there is a second Higgs
doublet, either this, or so-called “alignment”, must hold for consistency with the present
experimental constraints.

At tree level the potential for |¢|> includes a negative quadratic term and a positive
quartic. There are also sixth- and higher-order terms, suppressed by powers of m?. Loop
corrections involving the heavy field provide further modifications. The Yukawa couplings
are also of Standard Model type. Again, at tree level, if

¢1 = cosa¢p — sing poH, ¢y = sina¢ + cosaH (4.10)
then ¢; and ¢, have the Yukawa couplings
Ly = y1¢10i + y220d, (4.11)

where y; and ), are matrices in the space of generations. It follows that the Yukawa
couplings to the up quarks are y, cos « and those to the down quarks are y; sin .

4.1.3 What might the Standard Model come from?

As successful as the Standard Model is, and despite the fact that it is renormalizable, it
is likely that, like the four-fermion theory, it is the low-energy limit of some underlying,
more fundamental, theory. In the second half of this book our model for this theory will be
string theory. Consistent theories of strings, for reasons which are somewhat mysterious,
are theories which describe general relativity and gauge interactions. Unlike field theory,
string theory is finite. It does not require a cutoff for its definition. In principle, all physical
questions have well-defined answers within the theory. If this is the correct picture for the
origin of the laws of nature at extremely short distances, then the Standard Model is just its
low-energy limit. When we study string theory we will understand in some detail how such
a structure can emerge. For now, the main lesson we should take concerns the requirement
of renormalizability: the Standard Model should be viewed as an effective theory, valid up
to some energy scale A. Renormalizability is not a constraint we impose upon the theory;
rather, we should include operators of dimension five or higher, with coefficients scaled
by inverse powers of A. The value of A is an experimental question. From the success of
the Standard Model, as we will see, we know that the cutoff is large. From string theory
we might imagine that A ~ M, = 1.2 x 10'® GeV. But, as we will now describe, we
have experimental evidence that there is new physics which we must include at scales well
below M,,. We will also see that there are theoretical reasons to believe that there should
be new physics at TeV energy scales.
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67 4.2 Lepton and baryon number violation; neutrino mass

4.2 Lepton and baryon number violation; neutrino mass
|

We have remarked that, at the level of renormalizable operators, baryon number and lepton
number are conserved in the Standard Model. Viewed as an effective theory, however,
we should include higher-dimension operators with dimensionful couplings. We would
expect such operators to arise, as in the case of the four-fermion theory, as a result of new
phenomena and interactions at very high energy scales. The coefficients of these operators
would be determined by this dynamics.

There would seem, at first, to be a vast array of possibilities for operators which might
be included in the Standard Model Lagrangian. But we can organize the possible terms in
two ways. First, if Mygpy, is the scale of some new physics, operators of progressively higher
dimension will be suppressed by progressively larger powers of Mygy,. Second, the most
interesting and readily detectable operators are those which violate the symmetries of the
renormalizable Lagrangian. This is already familiar in the weak interaction theory. In the
Standard Model the symmetries are precisely baryon number and lepton number.

The existence of the neutrino mass is now well established, and several parameters
governing these masses are known. As we will see, if the only degrees of freedom
involved are the three known two-component neutrinos, the structure of the leading lepton-
number-violating operators is known. Several combinations of parameters are determined
by the current data, and measuring the remaining ones is a central component of the
international (and especially the US) high-energy physics program for the next few
decades. Determining whether there are additional degrees of freedom is another major
component.

4.2.1 Dimension five: lepton number violation and neutrino mass

To proceed systematically, we should write down operators of dimension five, six and so
on. At the level of dimension five, we can write several terms which violate lepton number:

1
L=——yrpdpdLd, + c.c. 4.12
Mo VA1 POLrLy “.12)

Here ¢ again denotes the Higgs doublet and the indices are contracted suitably. With non-
zero ¢ these terms give rise to neutrino masses. This type of mass term is usually called a
Majorana mass. In nature these masses are quite small. For example, if Mpsm = 10'® GeV,
which we will see is a plausible scale, then the neutrino masses would be of order 1073 eV.
In typical astrophysical and experimental situations, neutrinos are produced with energies
of order MeV or larger, so it is difficult to measure these masses by studying the energy—
momentum dispersion relation (very sensitive measurements of the end-point spectra beta
decay are sensitive to electronvolt-scale neutrino masses). More promising are oscillation
experiments, in which these operators give rise to transitions between one type of neutrino
and another, which are similar to the phenomenon of K meson oscillations. Roughly
speaking, in the B-decay of a d quark, say, one produces the neutrino partner of the
electron. However, the mass (energy) eigenstate is a linear combination of the three types of
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68 The Standard Model as an effective field theory

neutrino (as we will see, typically it is principally a combination of two). So, experiments
or observations downstream from the production point will measure processes in which
neutrinos produce muons or taus. The oscillation periods are of order £/Am?. For MeV
neutrinos and Am ~ 1073 eV, this corresponds to distances of order kilometers, which
is of interest for neutrinos in the atmosphere or those observed near nuclear reactors; for
lighter neutrinos, effects at solar system scales become of interest.

Evidence that neutrinos do have non-zero masses and mixings comes from the study
of neutrinos coming from the Sun (the solar neutrinos) and neutrinos produced in the
upper atmosphere by cosmic rays (which produce pions that subsequently decay to muons
and v, s, whose decays in turn produce electrons, v,s, and v.s). Accelerator and reactor
experiments have provided dramatic and beautiful evidence in support of this picture. It
developed as a result of heroic experimental and theoretical work over more than four
decades. The pioneering experiments were those of Ray Davis who, along with John
Bahcall, conceived of neutrinos as a tool for the study of the interior of the Sun. His
observation of neutrinos at rates lower than those expected in the standard solar model
prompted the study of the mixing hypothesis and a range of other experiments. Later,
studies of neutrinos from cosmic rays failed to yield the predicted fractions of v, s and
ves. Dedicated studies of neutrinos from nuclear reactors and accelerators have provided
further support for the mixing hypothesis and precise measurements of several parameters.

The masses and mixings of the neutrinos can be characterized by a unitary matrix,
similar to the CKM matrix for the quarks, known as the Pontecorvo—-Maki—Nakagawa—
Sakata (PMNS) matrix. It can be parameterized as follows:

i6

C12€13 S12€13 s13e
s s
V=1 —si2c23 —c12523513€¢"°  c1223 — 512023513€" $23C13
is is
512823 — c12¢23513€° —C12823 — S12023513€° €23C13
xdiag(1,@?1/2, g@31/2), (4.13)

From the range of experiments described above, we know that
(m*)a1 = 7.547028 % 1075 eV,

(4.14)
Sm* = (Am?)31 — Am}y =243 £0.06 x 1073 eV?,

where the second line holds if m; < my. With the same hierarchy, i.e. ordering of the
masses, one has:

sin® 012 = 0.308 £ 0.017, sin® 63 = 0.437033,,  sin® 613 = 0.0234700%9,

é — 1.39+0.38. (415)
= —0.27
More detail can be found in the references cited at the end of this chapter.

It is conceivable that these masses are not described by the Lagrangian of Eq. (4.12).
Instead, the masses might be Dirac, by which one means that there might be additional
degrees of freedom; by analogy to the e fields we could label these by v, and they would
have very tiny Yukawa couplings to the normal neutrinos. This would truly represent
a breakdown of the Standard Model: even at low energies, we would be missing basic
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69 4.2 Lepton and baryon number violation; neutrino mass

degrees of freedom. But this does not seem likely. If there are singlet neutrinos N, nothing
would prevent them from gaining a Majorana mass my;, so that

LMaj = myNN. (4.16)

As for the leptons and quarks, there would also be a coupling of v to the field N. There
would now be a mass matrix for the neutrinos, involving both N and v. For simplicity,
consider the case of just one generation. Then this matrix would have the form

my v
= . 4.1
my ( w0 ) 4.17)

Such a matrix has one large eigenvalue, of order m,,, and one small eigen value, of order
y*v? /My. This provides a natural way to understand the smallness of the neutrino mass; it
is referred to as the seesaw mechanism. Alternatively, we could consider of integrating out
the right-handed neutrino and generating the operator of Eq. (4.12).

It seems more plausible that the observed neutrino mass is Majorana than Dirac, but this
is a question that hopefully will be settled in time by experiments searching for neutrino-
less double beta decay,n+n — p+p+ e~ + e . If it is Majorana, this suggests that there
is another scale in physics that is well below the Planck scale. For, even if the new Yukawa
couplings are of order one, the neutrino mass is of order

my, = 107> eV(M,/A), (4.18)

where A is another scale that is well below the Planck scale and Mp is the Planck mass. If
the Yukawas are small, as are many of the quark Yukawa couplings, the scale can be much
smaller.

4.2.2 Other symmetry-breaking dimension-five operators

There is another class of symmetry-violating dimension-five operators which can appear
in the effective Lagrangian. These are electric and magnetic dipole moment operators. For
example, the operator

e
B Mpsm
(we are using a four-component notation) would lead to the decay of the muon to an
electron and a photon. Here My, denotes the scale relating to Beyond the standard model
physics. There are stringent experimental limits on such muon-number-violating processes,
for example:

Le Fuypo™’e (4.19)

branching ratio(u — ey) < 1.2 x 10!, (4.20)

Other operators of this type include those which would generate lepton-number-violating
7 decays, on which the limits are far less stringent.

In the Standard Model, CP is an approximate symmetry. We have explained that three
generations of quarks are required to violate CP within the Standard Model. So, amplitudes
which violate CP must involve all three generations and are typically highly suppressed.
From an effective-Lagrangian viewpoint, if we integrate out the # and Z bosons then the

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

70 The Standard Model as an effective field theory

operators which violate CP are of dimension six and typically have coefficients suppressed
by quark masses and mixing angles, as well as loop factors. As a result, new physics
at relatively modest scales has the potential for dramatic effects. Electric dipole moment
operators for quarks or leptons would arise from operators of the form

emy -
Li=—LFugo""q+ cc., 4.21)
Mbsm
where
~ 1
Fuy = EfuvaFm- (4.22)
Here €,,0 is the completely antisymmetric tensor with four indices; €g123 = 1. The

presence of the € symbol is the signal of CP violation, as the reader can check. In the
non-relativistic limit, this is & - E. These would lead, for example, to a neutron electric
dipole moment of order

e

B Mpsm .

dn (4.23)

Searches for such dipole moments set a limits d, < 1072°e cm. So, unless there is some
source of suppression, Myg, in CP-violating processes is larger than about 10% TeV.

4.2.3 Irrelevant operators and high-precision experiments

There are a number of dimension-five operators on which it is possible to set somewhat
less stringent limits, and in one case there is a possible discrepancy. Corrections to the
muon magnetic moment could arise from
e
Mysm

where F,, is the electromagnetic field (in terms of the fundamental SU(2) and U(1)
fields, one can write similar gauge-invariant combinations which reduce to this at low
energies). The muon magnetic moment has been measured to extremely high precision,
and its Standard Model contribution is calculated with comparable precision; as of the
time of writing there is a 2.60 discrepancy between the two. Whether this reflects new
physics is uncertain. We will encounter one candidate for this physics when we discuss
supersymmetry.

There are other operators on which we can set TeV-scale limits. The success of QCD in
describing jet physics allows one to constrain four-quark operators which would give rise
to a hard component in the scattering amplitude. Such operators might arise, for example, if
quarks were composite. Constraints on flavor-changing processes provide tight constraints
on a variety of operators. Operators such as

Lg 2= Fuiio™ u+cec., (4.24)

Lfc =

5—so d*so,d” (4.25)

bsm
(where we have switched to a two-component notation) would contribute to KK mixing
and other processes. This would constrain Mgy, to be larger than 100 TeV or so. Any new
physics at the TeV scale must explain why such an operator is so severely suppressed.
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7 4.3 C(hallenges for the Standard Model

4.2.4 Dimension-six operators: proton decay

Proceeding to dimension six we can write down numerous terms which violate baryon
number, as well as additional lepton-number-violating interactions:

1

2
bsm

This can lead to processes such as p — me. Experiments deep underground set limits
of order 10°3 years on this process. Correspondingly, the scale Mpsm must be larger than
10" GeV.

So, viewing the Standard Model as an effective-field theory, we see that there are many
possible non-renormalizable operators which might appear but most have scales which are
tightly constrained by experiment. One might hope — or despair — that the Standard Model
will provide a complete description of nature up to scales many orders of magnitude larger
than we can hope to probe in experiment.

However, there are a number of reasons to think that the Standard Model is incomplete,
and at least one which suggests that it will be significantly modified at scales not far above
the weak scale.

Ly = Qo " Lo, d* + - . (4.26)

4.3 Challenges for the Standard Model

On the one hand, the Standard Model is tremendously successful. With the discovery of the
Higgs particle, it can be said to describe the physics of strong, weak and electromagnetic
interactions with great precision to energies of order 100 GeV or distances as small as
10~!7 ¢m. It explains why baryon number and the separate lepton numbers are conserved,
with only one assumption: there is no interesting new physics up to some high-energy
scale. As of the end of the 8 TeV run at the LHC, there are almost no discrepancies between
theory and experiment.

On the other hand, the Standard Model cannot be a complete theory. The existence of
neutrino mass requires at least additional states (if these masses are Dirac), and more likely
some new physics at a high-energy scale which accounts for the Majorana neutrino masses.
This scale is probably not larger than 10'¢ GeV, well below the Planck scale. The existence
of gravity means that there is certainly something missing from the theory. The plethora of
parameters — there are 19, counting those of the minimal Higgs sector and the 6 parameter
(see the next subsection) — suggests that there is a deeper structure. More directly, features
of the big bang cosmology which are now well established cannot be accommodated within
the Standard Model.

43.1 The strong CP problem

In the Standard Model there is a puzzle even at the level of dimension-four operators.
Consider

Ly = OFF, (4.27)
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72 The Standard Model as an effective field theory

where 0 is a dimensionless parameter and

~ 1
Fu= zelprFpa. (4.28)

We usually ignore such operators because classically they are inconsequential; they are
total derivatives and do not modify the equations of motion. In a U(1) theory, for example,

FF =2e""73,4,0,45 = 28,(€""*’ 4,0,4,). (4.29)

In the next chapter we will see that this has a non-Abelian generalization, but that, despite
constituting a total divergence, these terms have real effects at the quantum level. In QCD
they turn out to be highly constrained. From the limits on the neutron electric dipole
moment, we will show in Chapter 5 that & < 1077, This is the first real puzzle we
have encountered. Why is it such a small dimensionless number? Answering this question,
as we will see in Chapter 5, may point to new physics, likely at some very high energy
scale.

4.3.2 The hierarchy problem and the question of naturalness

The second very puzzling feature in the Standard Model is the Higgs field. The fact that
the model seems to be described by a single Higgs scalar is itself puzzling. We could have
included several doublets or perhaps tried to explain the breaking of the gauge symmetry
through some more complicated dynamics, as we will discuss in Chapter 8. But there is a
more serious question associated with fundamental scalar fields, raised long ago by Ken
Wilson. This problem is often referred to as the hierarchy problem or the naturalness
problem.

Consider, first, the one-loop corrections to the electron mass in QED. These are
logarithmically divergent. In other words,

dm = amoi In A. (4.30)
4

We can understand this result in simple terms. In the limit mg — O the theory has an
additional symmetry, a chiral symmetry, under which e and e transform by independent
phases. This symmetry forbids a mass term, so the result must be linear in the (bare) mass.
So, on dimensional grounds, any divergence is at most logarithmic. This actually resolves a
puzzle of classical electrodynamics. Lorentz modeled the electron as a uniformly charged
sphere of radius a. As a — 0 the electrostatic energy diverges. In modern terms, we would
say that we know a is smaller than 10~!7 c¢m, corresponding to a self-energy far larger than
the electron mass itself. But we see that in the quantum theory the cutoff occurs at a scale
of order the electron mass, and there is no large self-energy correction.

For scalars, however, there is no such symmetry and corrections to masses are
quadratically divergent. One can see this easily for the Higgs self-coupling, which gives
rise to a mass correction of the form

d*k
2 _
sm? = k/ ST (4.31)
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73 4.3 C(hallenges for the Standard Model

with similar corrections from the top quark loop correction, gauge loops, and others. If we
view the Standard Model as an effective-field theory, these integrals should be cut off at a
scale where new physics enters. We have argued that this might occur at, say, 104 GeV.
But in this case the correction to the Higgs mass would be gigantic compared with the
Higgs mass itself. Given that y[2 > A, we would expect even larger effects from top quark
loops.

It is hard to see how this puzzle can be resolved without introducing new physics at a
scale not much larger than 1 TeV. Exploring candidates for this new physics will be one of
the major subjects of this book. After discussing another fine tuning problem in our current
understanding of the laws of nature, we will elevate these concerns to a principle that we
might wish to impose on our theories: the principle of naturalness.

43.3 The universe: the baryon density, dark matter and dark energy

As we will discuss in Chapter 18, we have good evidence that the energy density of the
universe occurs largely in unfamiliar forms: about 27% in non-baryonic pressureless matter
(dark matter) and about 68% in some form having with negative pressure (dark energy),
with only the remaining 5% comprising ordinary baryons. The dark energy is likely to be
a cosmological constant (of which more later).

As we will discuss, particularly in Chapter 19, we might hope to understand the
dark matter in terms of some type(s) of new particle. A particle with mass of order
1 TeV (give or take factors of 10) and roughly weak-interaction cross sections would
be produced in suitable quantities in the early universe. Beyond the hierarchy problem,
this might be another pointer to new physics in the TeV energy range. Alternatively
the axion, a much lighter and more weakly interacting particle proposed to solve the
strong CP problem, might play this role and would lead to different types of experimental
signals.

The baryon density, as we will also see, cannot arise from the Standard Model itself.
We will consider a number of possible new physics mechanisms by which it might arise.
Without strong assumptions about the history of the universe, it is difficult to pin down the
relevant energy scale.

The dark energy raises puzzles which do not point in any obvious way to a particular
energy scale. If the dark energy is a cosmological constant then this represents, from the
perspective of our effective Lagrangian, a term of dimension zero, whose coefficient has
dimensions of (mass)*. Dimensional analysis would suggest that it should be of order
the largest possible scale to the fourth power. If this is the Planck scale then dimensional
analysis fails by 120 orders of magnitude. In a sense our analysis of the effective action
seems back to front. We began with a discussion of dimension-five and dimension-six
operators, operators which are irrelevant, and then turned our attention to the Higgs mass,
a dimension-two, relevant, operator. We still have not considered the most relevant operator
of all, the unit operator.

In quantum field theory, consistently with dimensional analysis, this energy is quar-
tically divergent; it is the first divergence one encounters in any quantum field theory
textbook. At one loop it is given by an expression of the form
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74 The Standard Model as an effective field theory

Pk 1
_ 1V I & ) 2
A= §i :( 1 /(27‘[)32 /2 +m?, (4.32)

where the sum is over all particle species (including spins). This is just the sum of the
zero-point energies of the oscillators of each momentum. If one cuts this off, again at
10" GeV, one gets a result of order

A = 10°>* GeV*™. (4.33)
The measured value of the dark-energy density is by contrast,
A =10"% Gev*. (4.34)

This wide discrepancy is probably one of the most troubling problems facing fundamental
physics today.

4.4 The naturalness principle
|

Both the Higgs mass and the cosmological constant appear to be finely tuned; they are
much smaller than the values we would have guessed from dimensional analysis, and
we have seen that quantum corrections are likely to be much larger than the observed
parameters themselves. In contrast, we have noted that the electron mass (and the masses
of the leptons and quarks more generally), while surprisingly small, does not receive large
quantum corrections.

While many physicists were uncomfortable with these tunings, it was ’t Hooft who
framed this question in terms of a principle, which he dubbed the naturalness condition. He
argued that a parameter in nature should be small only if the underlying theory becomes
more symmetric as the parameter tends to zero. The electron mass in QED provides an
illustration of this principle: as it tends to zero, the theory, as we have described, develops
a new symmetry, a U(1) chiral symmetry. All the small Yukawa couplings of the Standard
Model are similarly natural. We will see that the small masses (relative to the Planck scale)
of the hadrons are also compatible with the principle.

Our two puzzling quantities do not satisfy this criterion. The Standard Model does not
become more symmetric if one sets the Higgs mass to zero. Similarly, general relativity (as
we will see) does not become more symmetric as the cosmological constant tends to zero.
The small value of the § parameter, which violates CP conservation in strong interactions,
also poses puzzles. Because the Standard Model violates CP even in the absence of 6, this
would seem another violation of naturalness.

These issues each suggest that there should be some new degrees of freedom, or
symmetries, or both, beyond those of the Standard Model. This has motivated a broad
range of proposals for new physics. These will be the subject of much of this book. But, in
recent years, at least one alternative picture for how the parameters of the Standard Model
might arise has gained traction. We will consider this idea, known as the /andscape, in
Chapter 30.

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

75 Suggested reading

4.5 Summary: successes and limitations of the Standard Model
e

Overall, we face a tension between the striking successes of the Standard Model and its
limitations. On the one hand, the model successfully accounts for almost all the phenomena
observed in accelerators. On the other hand, it fails to account for some of the most basic
phenomena of the universe: dark matter, dark energy and the existence of gravity itself. As
a theoretical structure, it also explains successfully what might be viewed as mysterious
conservation laws: baryon number and lepton number. But it has 17 parameters — 16 of
which are pure numbers, with values which range “all over the map”. The rest of this book
explores possible solutions of these puzzles, and their implications for particle physics,
astrophysics and cosmology.

Suggested reading
. __________________________________________________________________________________|

The texts by by Peskin and Schroeder (1995) and Schwartz (2014) provide a good
introduction both to weak interactions and also to the strong interactions; it includes
deep inelastic scattering, parton distributions and the like. Other excellent texts include
the books by Cheng and Li (1984), Donoghue et al. (1992), Pokorski (2000) and Bailin
and Love (1993) among many others. For summaries of data on neutrino oscillations, the
Particle Data Group website provides up-to-date reviews; the text by Barger et al. (2012)
provides a first-rate pedagogical introduction.
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Anomalies, instantons and the strong CP problem

While perturbation theory is a powerful and useful tool in understanding field theories,
for our exploration of physics beyond the Standard Model an understanding of non-
perturbative physics will be crucial. There are many reasons for this.

1. One of the great mysteries of the Standard Model is non-perturbative in nature: the
smallness of the 6 parameter.

2. Strongly interacting field theories will figure in many proposals to understand other
mysteries of the Standard Model.

3. The interesting dynamical properties of supersymmetric theories, both those directly
related to possible models of nature and those which provide insights into broad physics
issues, are non-perturbative in nature.

4. If string theory describes nature, non-perturbative effects are necessarily of critical
importance.

We have introduced lattice gauge theory, which is perhaps our only tool for doing
systematic calculations in strongly coupled theories. But, as a tool, its value is quite limited.
Only a small number of calculations are tractable in practice, and the difficult numerical
challenges sometimes obscure the underlying physics. Fortunately, there is a surprising
amount that one can learn from symmetry considerations, from semiclassical arguments
and from our experimental knowledge of one strongly coupled theory, QCD. In each of
these, an important role is played by the phenomena known as anomalies and, related to
these, a set of semiclassical field configurations known as instantons.

Usually, the term “anomaly” is used to refer to the quantum mechanical violation of a
symmetry which is valid classically. Instantons are finite-action solutions of the Euclidean
equations of motion, typically associated with tunneling phenomena. Anomalies are crucial
to understanding the decay of the 7° in QCD. Anomalies and instantons account for
the absence of a ninth light pseudoscalar meson in the hadron spectrum. Within the
weak-interaction theory, anomalies and instantons lead to violations of baryon and lepton
number; these effects are unimaginably tiny at the current time but were important in the
early universe. The absence of anomalies in gauge currents is important to the consistency
of theoretical structures, including both field theories and string theories. The cancelation
of anomalies within the Standard Model itself is quite non-trivial. Similar constraints on
possible extensions of the Standard Model will be very important. The 6 parameter of
QCD was mentioned in the previous chapter. The 8 term seems innocuous, but, owing to
anomalies and instantons, its potential effects are real. Because the 6 term violates CP,
they are also dramatic. The problem of the smallness of the 6 parameter — the strong CP
problem — forcibly suggests new phenomena beyond the Standard Model, and this will be

76
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71 5.1 The chiral anomaly

a recurring theme in this book. In the present chapter we explain how anomalies arise and
some of the roles which they play. The discussion is meant to provide the reader with a
good working knowledge of these subjects, but it is not encyclopedic. A guide to texts and
reviews on the subject appears at the end of the chapter.

5.1 The chiral anomaly
|

Before discussing real QCD, let us consider a non-Abelian gauge theory theory, with only
a single flavor of quark. Before making any field redefinitions, the Lagrangian takes the
form:

1 _ v, . _
L= —@Fiu +igD" 0,q" +igD" 0" +maq + m*g*q". (5.1
The Lagrangian is written here in terms of two-component fermions (see Appendix A).
The fermion mass need not be real:

m = |m|e”. (5.2)

In this chapter it will sometimes be convenient to work with four-component fermions, and
it is valuable to make contact with this language in any case. In terms of these, the mass
contribution is

Lo = (Rem) Gq + (Imm) Gysq. (5.3)

In order to bring this mass contribution to the conventional form, with no yss, one could
try to redefine the fermions; switching back to the two-component notation we have

—i0/2 —i0/2g, (5.4)

q—e q, q—e

However, in field theory transformations of this kind are potentially fraught with difficulties
because of the infinite number of degrees of freedom.

A simple calculation uncovers one of the simplest manifestations of an anomaly.
Suppose, first, that m is very large, m — M. In that case we need to integrate out the
quarks and obtain a low-energy effective theory. To do this, we study the path integral (see
Appendix C)

2= [1a4,1 [agnae®. (5.5)

Suppose that M = €| M|. In order to make M real, we can again make the transformations
g — qe %2 g — Ge /% (in four-component language, this is ¢ — e~ /23¢)). The
result of integrating out the quark, i.e. of performing the path integral over ¢ and g, can be

written in the form
7= / [dA,] / iSet (5.6)

Here Sefr is the effective action which describes the interactions of gluons at scales well
below M.

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

78 Anomalies, instantons and the strong CP problem

\VAVA

J» imOqysq

AN

The triangle diagram associated with the four-dimensional anomaly. At the right-hand vertex, one has insertions
of the axial current and the chiral density.

Because the field redefinition which eliminates 6 amounts to just a change of variables
in the path integral, one might expect that there can be no 6#-dependence in the effective
action. But this is not the case. To see this, suppose that 6 is small and, instead of redefining
the field treat the 6 term as a small perturbation by expanding the exponential. Now
consider a term in the effective action with two external gauge bosons. This is obtained
from the Feynman diagram in Fig. 5.1. The corresponding term in the action is given by
(see Eq. (2.17))

d*p T 1
et <y5¢+ - M

0 h 1 1
8 Lo = —iz MTH(T"T )/ v _M>. (5.7)

Here, the ;s are the momenta of the two gluons, while the €s are their polarizations and a
and b are their color indices. Introducing Feynman parameters and shifting the p integral
gives

4
SLotr = — 0 MTH(TT?) / doty dats / %Tr(ysw—al e fot J M)

y -kt +M ér(f— ) +lo— i +M)>
[p? — M2+ 0(2)]’

(5.8)

For small k; we can neglect the k-dependence of the denominator. The trace in the
numerator is easy to evaluate, since we can drop terms linear in p. This gives, after
performing the integrals over the as,

1
(pz _ M2)3'

d4
8 Lot = E2M2O Te(TT?) €0po kiK€l €S f 5 f . (5.9)
i
This corresponds to a term in the effective action, which, after performing the integral over
p and including a combinatoric factor two from the different ways to contract the gauge
bosons, is given by

1 3
BLow = 370 Tr(FF). (5.10)
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79 5.1 The chiral anomaly

Now why does this happen? On the one hand, at the level of the path integral the
transformation would seem to amount to a simple change of variables, and it is hard to
see why this should have any effect. On the other hand, if one examines the diagram
of Fig. 5.1 then one sees that it contains terms which are linearly divergent and thus it
should be regulated. A simple way to regulate this diagram is to introduce a Pauli—Villars
regulator, which means that one subtracts off a corresponding amplitude with some very
large mass A. However, our expression above is independent of A. So the 6-dependence
from the regulator fields cancels that of Eq. (5.10). This sort of behavior is characteristic
of an anomaly.

Consider now the case where m < Aqcp. In this case we should not integrate out the
quarks, but we still need to take into account the regulator diagrams. So, if we redefine
the fields so, that the quark mass is real (ys-free, in the four-component description), the
low-energy theory contains light quarks and the 6 term of Eq. (5.10).

We can describe this in a fashion which indicates why this is referred to as an anomaly.
For small m the classical theory has an approximate symmetry under which

g — &%, §— %G (5.11)
(in four-component language, ¢ — €/*3g). In particular we can define a current
= drsvug (5.12)
and, classically,
dujs = mqysq. (5.13)
Under a transformation by an infinitesimal angle o one would expect that
8L = otBMj’SL = maqysq. (5.14)

But the divergence of the current contains another, m-independent, term:

1 -
dufs = mg ——FF. 5.15
w's =mqysq + =5 (5.15)
The first term follows from the equations of motion. To see why the second term is present,
we will study a three-point function involving the current and two gauge bosons 4,, and
will ignore the quark mass:

T4 = T(9,/°" 4 A5). (5.16)

This is essentially the calculation we encountered above. Again the diagram is linearly
divergent and requires regularization. Let us first consider the graph without the regulator
mass. The graph of Fig. 5.1 actually implies two graphs, because we must include the
interchange of the two external gluons. The combination is easily seen to vanish, by the
sorts of manipulations one usually uses to prove Ward identities:

g

@m)*

. 1 1 1
/d pTr(gfysp+ Gy B+ ez>). (5.17)
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80 Anomalies, instantons and the strong CP problem

Writing
dvs = —vs(hi+ p) — (F— i)ys (5.18)
and using the cyclic property of the trace, one can cancel a propagator in each term. This
leaves
[arm(-rhsptrntoapraen). 69
VA P+

Now making the shift p — p + k» in the first term and p — p + k1 in the second, one finds
a pairwise cancelation.

These manipulations, however, are not reliable. In particular, in a highly divergent
expression the shifts do not necessarily leave the result unchanged. With a Pauli—Villars
regulator the integrals are convergent and the shifts are reliable, but the regulator diagram
is non-vanishing and gives the anomaly equation above. One can see this by a direct
computation or relate it to our previous calculation, including the masses for the quark
and noting that ¢ys, in the diagrams with massive quarks, can be replaced by Mys.

This anomaly can be derived in a number of other ways. One can define, for example,
the current by point splitting, i.e. separating the two fields in the current by an amount €
and inserting a Wilson line to ensure gauge invariance.

x+e€
jg‘ =g(x + €) exp (l/ dx“AM) q(x). (5.20)

Because the operators in quantum field theory are singular at short distances, the Wilson
line makes a finite contribution. Expanding the exponential carefully, one recovers the
same expression for the current. We will do this shortly in two dimensions, leaving the four-
dimensional case for the end-of-chapter exercises. A beautiful derivation, closely related to
that performed above, is due to Fujikawa. Here one considers the anomaly as arising from
a lack of invariance of the path integral measure. One carefully evaluates the Jacobian
associated with the change of variables ¢ — ¢(1 + iysa) and shows that it yields the
same result. We will do a calculation along these lines in a two-dimensional model shortly,
leaving the four-dimensional case for the exercises.

5.1.1 Applications of the anomaly in four dimensions

The anomaly has a number of important consequences for real physics.

e 70 decay The divergence of the axial isospin current
(R)" = aysy*a — dysyd (5.21)

has an anomaly due to electromagnetism. This gives rise to a coupling of the 7° to two
photons, and the correct prediction of the lifetime was one of the early triumphs of the
color theory of quarks. The computation of the 7 decay rate appears in the exercises.

e Anomalies in gauge currents signal an inconsistency in a theory They mean that
gauge invariance, which is crucial to the whole structure of gauge theories (e.g. to the
fact that they are simultaneously unitary and Lorentz invariant) is lost. The absence of
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81 5.2 Atwo-dimensional detour

gauge anomalies is one of the striking ingredients of the Standard Model, and it is also
crucial in extensions such as string theory.

e The anomaly considered here, as we have indicated above, accounts for the absence of
a ninth axial Goldstone boson in the QCD spectrum.

5.1.2 ReturntoQCD

What we have just learned is that if in our simple model above we require that the quark
masses are real then we must allow for the possible appearance, in the Lagrangian of
the Standard Model, of the 6 term in Eq. (5.10). In weak interactions this term does not
have physical consequences. At the level of the renormalizable terms, we have seen that
the theory respects separate B and L symmetries; B, for example, is anomalous. So, if
we simply redefine the quark fields by a B transformation, we can remove 6 from the
Lagrangian.

For the 6 angles of QCD and QED we have no such symmetry. In the case of QED we
do not really have a non-perturbative definition of the theory, and the effects of 6 are hard
to assess, but one might expect that, when embedded in any consistent structure (such as a
grand unified theory (GUT) or string theory) they will be very small, possibly zero. As we
saw, FF gives a total divergence. The right-hand side of Eq. (4.24) is not gauge invariant,
however, so one might imagine that it could be important. But, as long as A4 falls off at
least as fast as 1/7 (i.e. F falls off faster than 1/72), the surface term behaves as 1/74 and
so vanishes.

In the case of non-Abelian gauge theories, the situation is more subtle. It is again true
that FF can be written as a total divergence:

7 ara 2 bc 4a 4b 4c
FF=08"K,, Ku=€umpo (AUFPO -3 AvApA0>. (5.22)
However, the statement that F falls off faster than 1/7% does not permit an equally strong
statement about 4. We will see shortly that there are finite-action classical solutions for
which F ~ 1/r* but 4 — 1/r, so that the surface term cannot be neglected. These solutions
are instantons. This is the reason that 6 can have real physical effects.

5.2 Atwo-dimensional detour
1 —

There are many questions in four dimensions which we cannot answer except by using
numerical lattice calculation. These include the problem of dimensional transmutation and
the effects of the anomaly on the hadron spectrum. There is a class of models in two
dimensions which are asymptotically free and in which one can study these questions in
a controlled approximation. Two dimensions often form a poor analog for four but, for
some of the issues we are facing here, the parallels are extremely close. In these two-
dimensional examples the physics is more manageable, but still rich. In four dimensions,
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82 Anomalies, instantons and the strong CP problem

the calculations are qualitatively similar; they are only more difficult because the Dirac
algebra and the various integrals are more involved.

5.2.1 The anomaly in two dimensions

First we investigate the anomaly in the quantum electrodynamics of a massless fermion in
two dimensions; this will be an important ingredient in the full analysis. The point-splitting
method is particularly convenient here. Just as in four dimensions, we write

x+€
J&=v+eexp (’/ Apdxp)y“yswm. (5.23)

Naively, one can set € = 0 and then the divergence vanishes by the equations of motion.
In quantum field theory, however, products of operators become singular as the operators
come close together. For very small € we can pick up the leading singularity in the product
of ¥ (x + €)1y (x) by using the operator product expansion (OPE). The OPE states that the
product of two operators at short distances can be written as a series of local operators of
progressively higher dimension, with coefficients that are less and less singular. For our
case this means that

Pe Oy Y@ =Y 50,0, (5.24)

where O, is an operator of dimension n. The leading term comes from the unit operator.
To evaluate its coefficient we can take the vacuum expectation value of both sides of this
equation. On the left-hand side, this is just the propagator.

It is not hard to work out the fermion propagator in coordinate space in two dimensions.
For simplicity we work with space-like separations, so that we can Wick-rotate to
Euclidean space. Start with the scalar propagator

(0 (0)) f oy k2 TP
1
=5 In(lxlp). (5.25)
v

where u is an infrared cutoff. (When we come to string theory this propagator, with its
infrared sensitivity, will play a crucial role.) Correspondingly, the fermion propagator is

- 1 ¢
(W + v () =gle®eO) = —=. (5.26)
Expanding the factor in the exponential to order € gives
* = classical ! A Tr (Lynys 2
0,j5 = classical term + Eaﬂep T 6—2)/ y> . (5.27)

Evaluating the trace gives €,,€”; averaging € over angles ({€,€,) = %nwez) yields

1
s = 5—eu P (5.28)

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

83 5.2 Atwo-dimensional detour

This is parallel to the situation in four dimensions. The divergence of the current is itself
a total derivative:

. 1
dujs = Ee,wau“. (5.29)
So, it is possible to define a new current which is conserved:

JH=jE — %e,’fA". (5.30)
However, just as in the four-dimensional case, this current is not gauge invariant. There
is a familiar field configuration for which 4 does not fall off at infinity: the field of a
point charge. If one has charges £6 at infinity, they give rise to a constant electric field,
Foi = £ef. So 6 has a very simple interpretation in this theory.
It is easy to see that the physics is periodic in 6. For 8 > g it is energetically favorable
to produce a pair of charges from the vacuum which shield the charge at co.

5.2.2 Path integral computation of the anomaly

One can also do this calculation using the path integral, following Fujikawa. The
redefinition of the fields which eliminates the phase in the fermion mass matrix is, from
this point of view, just a change of variables. The question is: what is the Jacobian? The
Euclidean path integral is defined by expanding the fields:

V@) =Y an(x), (5.31)
where
Dy (x) = AP (x) (5.32)
and the measure is
/l’[da,,da;’;. (5.33)
Here, for normalized functions v,
an = / x Y)Y (). (5.34)
So, under an infinitesimal ys transformation, we have
3y =i0ysy, (5.35)
Sa, = i6 / x Y (X) Y5 Y (X) . (5.36)

The required Jacobian is then

det <5 + i / dx &n/yswn) (5.37)
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84 Anomalies, instantons and the strong CP problem

Trlog M

To evaluate this determinant we write det(M) = e . To linear order in 6, we need to

evaluate
Tr (i0ys). (5.38)
This trace must be regularized. A simple procedure is to replace the determinant by
Tr (ieyg,e—*%/Mz) . (5.39)
At the end of the calculation we take M — oo. We can replace A% by
pPPp=D"+ %a,wF’”. (5.40)

Expanding in powers of F*", it is only necessary to work to first order (in the analogous
calculation in four dimensions, it is necessary to work to second order). In other words,
we expand the exponent to first order in F*V and make the replacement D> — p?. The
required trace is given by

d2 Fhv
i / p—fTr(yso,w) 7e—f’z/Mz. (5.41)

The trace in this expression now just refers to a trace over the Dirac indices. The
momentum integral is elementary, and we obtain

0
/ Ml dayda), — /Hdandaz exp <1E / dzxelelw), (5.42)

Interpreting the divergence of the current as the variation of the effective Lagrangian, we
see that we have recovered the anomaly equation (5.15). The anomaly in four and other
dimensions can also be calculated in this way. The exercises at the end of the chapter
provide more details of these computations.

5.2.3 The CPY model: an asymptotically free theory

The model we have considered so far is not quite like QCD in at least two ways. First, there
are no instantons; second, the coupling e is dimensionful. We can obtain a theory closer to
QCD by considering a class of theories with dimensionless couplings, the non-linear sigma
models. These are models whose fields are the coordinates of some smooth manifold. They
can be, for example, the coordinates of an n-dimensional sphere. An interesting case is the
CPY model; here the CP stands for “complex projective” space. This space is described
by a set of coordinates z;, i = 1,...,N + 1, where z; is identified with «z; and « is any
complex constant. Alternatively, we can define the space through the constraint

D=1, (5.43)

where the point z; is equivalent to ¢/z;. In the field theory, the z;s become two-dimensional
fields z;(x). To implement the first constraint, we can add to the action a Lagrange multiplier
field A(x). For the second, we observe that the identification of points in the “target space”
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85 5.2 Atwo-dimensional detour

CP" must hold at every point in ordinary space—time, so this is a U(1) gauge symmetry.
Introducing a gauge field 4,, and the corresponding covariant derivative, we want to study
the Lagrangian
1 2 2
L= 5 1Dz = 2 (=i = D] (5.44)

Note that there is no kinetic term for 4, so we can simply eliminate it from the action
using its equations of motion. This yields

I
L=1 (|a,Lz,-|2 n |z;faﬂz_,-|2) . (5.45)

It is easier, however, to proceed keeping 4, in the action. In this case the action is quadratic
in z, and we can integrate out the z fields:

Z= / [dA][d][dz}] exp(—S) = / [dA][dA] exp (— / dPx reff[A,)\]>

= / [dA1[dA] exp <—NTrlog(—D2 -2 — giz / d%m). (5.46)

5.2.4 The large-N limit

By itself, the result in Eq. (5.46) is still rather complicated. The fields 4,, and A have non-
linear and non-local interactions. Things become much simpler if one takes the large-N
limit, N — oo with g?N fixed. In this case the interactions of A and A « are suppressed
by powers of N. For large N the path integral is dominated by a single field configuration,
which solves

or
et ), (5.47)
SA
or, setting the gauge field to zero,
d’k 1 1
= —. (5.48)

Qr)k+r g

The integral on the left-hand side is ultraviolet divergent. We will simply cut it off at scale
M. This gives

P = _2r
A =m" = Mexp 5 |- (5.49)
g-N

Here, a theory which is classically scale invariant exhibits a mass gap. This is the
phenomenon of dimensional transmutation. These masses are related in a renormalization-
group-invariant fashion to the cutoff. So the theory is quite analogous to QCD. We can
read off the leading term in the beta function from the familiar formula

m = Mexp <—/ ﬂd—(‘;> (5.50)
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86 Anomalies, instantons and the strong CP problem

So, with

1
B(g) = —2—g3bo, (5.51)
T

we have by = 1.
Most important for our purposes is the question of #-dependence. Just as in (1 + 1)-
dimensional electrodynamics we can introduce a 6 term,

6
So =5 / dx e F . (5.52)

Here F;,,, can be expressed in terms of the fundamental fields z;. As usual, this is the integral

of a total divergence. But, precisely as in the case of (1 4 1)-dimensional electrodynamics

discussed above, this term is physically important. In a perturbation theory approach to the

model, this is not entirely obvious; however, using our reorganization of the theory at large

N, it is. The lowest-order action for 4, is trivial, but at one loop (order 1/N) a kinetic term

for A4 is generated through the vacuum polarization loop:
N

Lyin = ——F

5 Fje (5.53)

At this order, then, the effective theory consists of the gauge field with coupling ¢* =
27 m? /N and some coupling to a set of charged massive fields z. As we have already argued,
0 corresponds to a non-zero background electric field due to charges at infinity, and the
theory clearly has a non-trivial 8-dependence.

To this model one can add massless fermions. In this case one has an anomalous U(1)
symmetry, as in QCD. There is then no 6-dependence; by redefining the fermions according
to ¥ — €%y one can eliminate 6. In this model the absence of a #-dependence can be
understood more physically: 6 represents a charge at 0o, and it is possible to shield any such
charge with massless fermions. But there is a non-trivial breaking of the U(1) symmetry.
At low energies, one has now a theory with a fermion coupled to a dynamical U(1) gauge
field. The breaking of the associated U(1) symmetry in such a theory is a well-studied
phenomenon, which we will not pursue here.

5.2.5 Therole of instantons

There is another way to think about the breaking of the U(l) symmetry and the
0-dependence in this theory. If one considers the Euclidean functional integral, it is natural
to look for stationary points of the integration, i.e. for classical solutions of the Euclidean
equations of motion. Since they are potentially important it is necessary that these solutions
have a finite action, which means that they must be localized in Euclidean space and time.
For this reason, such solutions were dubbed “instantons” by ’t Hooft. Instantons are not
difficult to find in the CPY model; we will describe them below. These solutions carry
non-zero values of the topological charge,

1
o / A ey Fruy = n, (5.54)
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87 5.2 Atwo-dimensional detour

and have an action 2wn. If we write z; = z;¢] + §z; then the functional integral, in the
presence of a 6 term, has the form

i 828
Zinst = € & em(') /[dézj] exp <—52,'—82j + .- ) (5.55)

8Zi52j
It is easy to construct the instanton solution in the case of CP!. Rather than write the
theory in terms of a gauge field, as we have done above, it is convenient to parameterize
it in terms of a single complex field Z. One can, for example, define Z as z1/z; and let Z
denote its complex conjugate. Then, with a bit of algebra, one can show that the action for
Z which follows from Eq. (5.45) takes the following form (it is easiest to work backwards,

starting with the equation below and deriving Eq. (5.45)):

0,720,7
= HTRT (5.56)
(1+22)2
The function
1
S — 5.57
877 1+ 22 (5.57)

has an interesting significance. There is a well-known mapping of the unit sphere x% +x§ +
x% = 1 onto the complex plane:

z = )M (5.58)
1—x3
The inverse is
Z+z z—% 212 — 1
_ il L AL — 5.59
NTETRER PTiA R P T 539
The line element on the sphere is mapped in a non-trivial way onto the plane:
2 2 2 3 !
ds® = dxi + dx5 + dx3 = gpzdzdz = ————dzdz. (5.60)

(1 + zz)?
So, the model describes a field that is constrained to move on a sphere; g is the metric of
the sphere. In general, such a model is called a non-linear sigma model. This is an example
of a Kahler geometry, a type of geometry which will figure significantly in our discussion
of string compactification.
It is straightforward to write down the equations of motion:

- 0g g
2Za,5+ 3,780, Z-2 + 9,6—=) =0 5.61
877+ Ou <;L BZ+ u¢8z) , (5.61)
or
20.70:Z
0.0:7 - —— = (5.62)
1+ 77

Now using space—time coordinates z = x| + ix2, z = x| — ixp, we see that if Z is anti-
analytic then the equations of motion are satisfied! So a simple solution, which, as you can
check, has finite action, is

Z() = pz. (5.63)
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88 Anomalies, instantons and the strong CP problem

In addition to evaluating the action you can evaluate the topological charge,

1
o d*xe PP =1, (5.64)

for this solution. More generally, the topological charge measures the number of times that
Z maps the complex plane into the complex plane; Z = z" has charge n.

We can generalize these solutions. The solution of Eq. (5.63) breaks several symmetries
of the action: translation invariance, two-dimensional rotational invariance and the scale
invariance of the classical equations. So we should be able to generate new solutions by
translating, rotating and dilating the solution. You can check that

az+b
Z(z) = 5.65
@ =" (5.65)
is a solution with action 2. The parameters a, . . . , d are called collective coordinates. They

correspond to the symmetries of translations, dilations and rotations and special conformal
transformations (forming the group SL(2,C)). In other words, any given finite-action
solution breaks the symmetries. In the path integral the symmetry of Green’s functions
is recovered when one integrates over the collective coordinates. For translations this is
particularly simple. Integrating over xo, the instanton position,

(Z)Z() ~ / 020 i — x0)bar (v — x0)e™%. (5.66)

(The precise measure is obtained by the Faddeev—Popov method.) Similarly, integration
over the parameter p yields a factor

27
dpp~! (- ) 5.67
/ o P exp Z0) (5.67)

Here the first factor follows on dimensional grounds. The second follows from
renormalization-group considerations. It can be found by explicit evaluation of the
functional determinant. Note that, because of asymptotic freedom, this means that typical
Green’s functions will be divergent in the infrared.

There are many other features of this instanton that one can consider. For example, one
can add massless fermions to the model; the resulting theory has a chiral U(1) symmetry,
which is anomalous. The instanton gives rise to non-zero Green’s functions, which violate
the U(1) symmetry. We will leave investigation of fermions in this model to the exercises
and turn to the theory of interest, which exhibits phenomena parallel to this simple theory.

5.3 Real QCD

The model of the previous section mimics many features of real QCD. Indeed, we will see
that much of our discussion can be carried over, almost word for word, to the observed
strong interactions. This analogy is helpful, given that in QCD we have no approximation
which gives us control over the theory comparable with that which we found in the large-N
limit of the CPY model. As in that theory, we have the following.
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89 53 Real QCD

e There is a 6 parameter, which appears as an integral over the divergence of a non-gauge
invariant current.

e There are instantons, which indicate that physical quantities should be 6-dependent.
However, instanton effects cannot be considered in a controlled approximation, and there
is no clear sense in which #-dependence can be understood as arising from instantons.

e In QCD there is also a large-/N expansion but, while it produces significant simplification,
one cannot solve the theory even in the leading large-N approximation. Instead, an
understanding of the underlying symmetries, and experimental information about chiral
symmetry breaking, provides critical information about the behavior of the strongly
coupled theory and allows computations of the physical effects of 6.

5.3.1 The theory and its symmetries

In order to understand the effects of 6 it is sufficient to focus on the light quark sector of
QCD. For simplicity in writing down some of the formulas, we will consider a simplified
theory with two light quarks; it is not difficult to generalize the resulting analysis to the
case of three. It is believed that the masses of the u and d quarks are of order 5 MeV
and 10 MeV, respectively, much smaller than the scale of QCD. So we first consider an
idealization of the theory in which these masses are set to zero. In this limit, the theory has
a symmetry SU(2)r, x SU(2)r. Calling

q= (Z) q= <Z,> (5.68)

the two SU(2) symmetries act separately on g and g (thought of as left-handed fermions),
q" = q"U, g— Urg. (5.69)

This symmetry is spontaneously broken. The order parameter for the symmetry breaking
is believed to be an expectation value for the quark bilinear product:

M =gq. (5.70)
Under the original symmetry,
M — URMUL. (5.71)

The expectation value (condensate) of M is

1
(M) =cAgCD< 0 (1’ ) (5.72)

This breaks some of the original symmetry but preserves the symmetry Uy, = Ug. This
symmetry is just the SU(2) isospin symmetry. The Goldstone bosons associated with the
three broken symmetry generators must transform in a representation of the unbroken
symmetry: these are the pions, which an form isospin vector. One can think of the
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90 Anomalies, instantons and the strong CP problem

Goldstone bosons as being associated with a slow variation of the expectation value in
space, so we can introduce

M = Gg = Moexp [i—”“;x)t“} ( (1) (1) ) (5.73)

The quark mass term in the Lagrangian is then (for simplicity taking m, = mg = my)
mgM. (5.74)

Replacing M by the expression (5.73) gives a potential for the pion fields. Expanding M
in powers of 7 /f;, the minimum of the potential occurs for 7, = 0. Expanding to second
order, one has

mif = myMp. (5.75)

We have been a bit cavalier about the symmetries. The theory also has two U(1)
symmetries:

g — &%, §— €93, (5.76)
qg— %, §— e g (5.77)

The first of these is baryon number symmetry and it is not chiral (and is not broken by the
condensate). The second is the axial U(1)5 symmetry; it is broken by the condensate. So,
in addition to the pions there should be another approximate Goldstone boson. But there is
no good candidate among the known hadrons. The 7 has the right quantum numbers but, as
we will see below, it is too heavy to be interpreted in this way. The absence of this fourth
(or, in the case of three light quarks, ninth) Goldstone boson is called the U(1) problem.

The U(1)s symmetry suffers from an anomaly, however, and we might hope that this
has something to do with the absence of a corresponding Goldstone boson. The anomaly
is given by

1 .

)t = e FE. (5.78)

Again, we can write the right-hand side as a total divergence

FF = 3,K", (5.79)
where
_ ara _% bc qa 4b 4C
K, = €uup0 Aqua 3{}“1 AvApAU . (5.80)

This accounts for the fact that in perturbation theory the axial U(1) symmetry is conserved.
Non-perturbatively, as we will now show, there are important configurations in the
functional integral for which the right-hand side does not vanish rapidly at infinity.
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91 53 Real Q(D

5.3.2 Instantonsin QCD

In the Euclidean functional integral

7= / [dANldq)ldgle™ (5.81)

it is natural to look for stationary points of the effective action, i.e. finite-action classical
solutions of the theory in imaginary time. The Yang—Mills equations are complicated non-
linear equations, but it turns out that, much as in the CPY model, the instanton solutions
can be found rather easily. The following tricks simplify the construction and turn out to
yield the general solution. First, note that the Yang—Mills action satisfies an inequality, the
Bogomol’nyi bound:

/(Fj:ﬁ)z = /(F2 + F? £ 2FF) = /(2F2 + 2FF) > 0. (5.82)

So, the action is bounded by | | FF|, the bound being saturated when
F=4+F, (5.83)

i.e. if the gauge field is (anti-)self-dual.! This equation is a first-order equation, and it is
easy to solve if one first restricts to an SU(2) subgroup of the full gauge group. One makes
the ansatz that the solution should be invariant under a combination of ordinary rotations
and global SU(2) gauge transformations. Take

X4 +iX-T
glx) = — (5.84)
and
Ay = fiH)gog". (5.85)
Then, substituting in to the Yang—Mills equations yields
—ir?
= 5.86
== NPy (5.86)

where p is an arbitrary quantity with dimensions of length. The choice of origin here is
also arbitrary; this can be remedied by simply replacing x by x — x¢ everywhere in these
expressions, where xg represents the location of the instanton.

From this solution, it is clear why [ 9,,K* does not vanish for the solution: while 4 is a
pure gauge at infinity, it falls only as 1/r. Indeed, since F = F, for this solution we have

f F? = / d*4F? = 3272, (5.87)

1 This is not an accident, nor was the analyticity condition in the CPY case. In both cases we can add fermions
so that the model becomes supersymmetric. Then one can show that if some supersymmetry generators Qg
annihilate a field configuration then the configuration is a solution. This is a first-order condition; in the Yang—
Mills case it implies self-duality and in the CPV case it requires analyticity.
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92 Anomalies, instantons and the strong CP problem

This result can also be understood topologically. Note that g defines a mapping from the
“sphere at infinity” into the gauge group. It is straightforward to show that

e
52 / d*x FF (5.88)

counts the number of times that g maps the sphere at infinity into the group (once for this
specific example; n times more generally). In the exercises and suggested reading, features
of the instanton are explored in more detail.

The expression in Eq. (5.85) is, by its nature, gauge-dependent and other presentations
of the solution are sometimes convenient. For example, if one formally transforms by g~ !,
one obtains a solution which falls more rapidly to zero but which is singular at the origin.

The instanton was presented by 't Hooft in a fashion which is often more useful for

actual computations. Defining the symbol 5 as follows,

Naij = €aijs Nadi = —Naid = —8ais Napv = (_l)aaM—HSW Nauv, (5.89)

the instanton takes the simple form

277a,uvxv
4y = 2402 (5.90)
while the field strength is given by
4nav 0
= -
That this configuration solves the equations of motion follows from
1
Napwv = 5 €pvaplacp- (5.92)

2
The alert reader will note that the  symbols are connected to the embedding of SU(2) of
the gauge group into an SU(2) subgroup of O(4) = SU(2) x SU(2). This can be understood
by noting that

1 _ _
Napy = 5 Tr(aao'uu), n= Tr(o'aauv)~ (5.93)

In this form it is easy to check that F = F, so the equations are satisfied. Note the 1/r
falloff of 4", as opposed to the 1//* falloff of Fyyy.

So, we have exhibited potentially important contributions to the path integral which
violate the U(1) symmetry. How does this symmetry violation show up? Let us consider
the path integral more carefully. Having found a classical solution, we want to integrate
over small fluctuations over it. Including the 8 term these have the form

2
(iudd) = e=877/€ i / [d8 AN[dql[dg] exp <—§7§8A2 - Sq,-,> fiudd. (5.94)
Now S contains an explicit factor 1/g>. As a result the fluctuations are formally suppressed
by g? relative to the leading contribution. The one-loop functional integral yields a product
of determinants for the fermions and a product of inverse square root determinants for the
bosons.
Consider the integral over the fermions. It is straightforward, if challenging, to evaluate
the determinants. However, if the quark masses are zero then the fermion functional
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93 53 Real QCD

integrals are also zero, because there is a zero mode for each of the fermions, i.e. for
both ¢ and g there is a normalizable solution of the equations

DPu=0, Di=0 (5.95)

and similarly for d and d. It is straightforward to construct the solutions

P ¢
P2+ o —x0)2 P2

where ¢ is a constant spinor, and similarly for u, etc.

Let’s understand this a bit more precisely. Euclidean path integrals are conceptually
simple. Consider some classical solution, ®j(x) (here ® denotes collectively the various
bosonic fields; we will treat, for now, the fermions as vanishing in the classical solutions).
In the path integral, at small coupling we are interested in small fluctuations about the
classical solution,

(5.96)

O = Oy + 5D. (5.97)

Because the action is stationary at the classical solution,

4 . 0L
S:Scl—i-/d x(SdDW(SCD—i----. (5.98)
The second derivative here is a shorthand for a second-order differential operator, which we
will simply denote by S” and refer to as the quadratic fluctuation operator. We can expand
3® in (normalizable) eigenfunctions of this operator ®, with eigenvalues A, ® = ¢, D,.
The result of the functional integral is then [] A, 2 This is the leading correction to
the classical limit. Higher-order corrections are suppressed by powers of g2. This is most
easily seen by working in the scaling where the action has a factor 1/g%. Then one can
derive the perturbation theory from the path integral in the usual way; the main difference
from the usual treatment with zero background fields is that the propagators are more
complicated. The propagators for various fields in the instanton background are in fact
known in closed form.

The form of the differential operator is familiar from our calculation of the beta function
in the background field method (using the background field gauge). For the gauge bosons,
in a suitable (background field) gauge it is

S" =D+ T F*. (5.99)

Here D is just the covariant derivative, the vector potential corresponds to the classical
solution (an instanton) and similarly for the field strength; 7, is the generator of Lorentz
transformations in the vector representation. The eigenvalue problem was completely
solved by ’t Hooft.

Both the bosonic and fermionic quadratic fluctuation operators have zero eigenvalues.
For the bosons, these potentially give infinite contributions to the functional integral and
they must be treated separately. The difficulty is that among the variations of the fields
are symmetry transformations, which comprise changes in the location of the instanton
(translations), rotations of the instanton and scale transformations. Consider translations.
For every solution there corresponds an infinite set of other solutions obtained by shifting

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

94 Anomalies, instantons and the strong CP problem

the origin (varying xp). Thus, instead of integrating over a coefficient c¢p, we integrate
over the collective coordinate xy (one must also include a suitable Jacobian factor). The
effect of this is to restore translational invariance in the Green’s functions. We will see
this explicitly shortly. Similarly, the instanton breaks the rotational invariance of the
theory; correspondingly, we can find a three-parameter set of solutions and zero modes.
Integrating over these rotational collective coordinates restores rotational invariance. (The
instanton also breaks a global gauge symmetry, but a combination of rotations and gauge
transformations is preserved.)

Finally, the classical theory is scale invariant; this is the origin of the parameter p in the
solution. Again, one must treat p as a collective coordinate and integrate over p. There is
a power of p arising from the Jacobian, which can be determined on dimensional grounds.
For the Green’s function Eq. (5.90), for example, which has dimension six, we have (if all
the fields are evaluated at the same point),

/dp o . (5.100)

However, there is additional p-dependence because the quantum theory violates scale
symmetry. This can be understood by replacing g by g?(p) in the functional integral and
using

e 8L (0~ (p Mo (5.101)

for small p. For three-flavor QCD, for example, by = 9 and the p integral diverges for
large p. This relation simply states that the integral is dominated by the infrared, where the
QCD coupling becomes strong.

Fermion functional integrals introduce a new feature. In four-component language, it
is necessary to treat ¢ and ¢ as independent fields. This rule gives the functional integral
as a determinant rather than as, say, the square root of a determinant. (In two-component
language, this corresponds to treating ¢ and ¢* as independent fields.) So, at the one-loop
order, we need to study

Dan = MGn,  Pqn = uqn. (5.102)

For non-zero A, there is a pairing of solutions with opposite eigenvalues of ys. In four-
component notation one can see this from

Dan = Angn — DPVsqn = —Au¥5qn. (5.103)

Zero eigenvalues, however, are special. There is no corresponding pairing. This has
implications for the fermion functional integral. Writing

qe) = angn(x), (5.104)
S=Y " tndan (5.105)
we have
o
/ [dq)ldgle™® = [ | dandaexp [ = " rudfan |- (5.106)
n=0 n#0
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95 53 Real QCD

Because the zero modes do not contribute to the action, many Green’s functions vanish.
For example, (1) = 0. In order to obtain a non-vanishing result, we need enough insertions
of g to “soak up” all the zero modes.

We have seen that, in the instanton background, there are normalizable fermion zero
modes, one for each left-handed field. This means that, in order for the path integral to be
non-vanishing, we need to include insertions of enough ¢s and gs to soak up all the zero
modes. In other words, in two-flavor QCD, non-vanishing Green’s functions have the form

(tudd) (5.107)

and violate the symmetry. Note that the symmetry violation is just as predicted from the
anomaly equation,

162712 /d“xFF: 4. (5.108)
This is a particular example of an important mathematical theorem known as the Atiyah—
Singer index theorem.

We can put all this together to evaluate a Green’s function which violates the classical
U(1) symmetry of the massless theory, () u(x)d(x)d(x)). Taking the gauge group to be
SU(2) there is one zero mode for each of u, &, d and d. The fields in this expectation value
can soak up all these zero modes. The effect of the integration over xy is to give a result that
is independent of x, since the zero modes are functions only of x — xg. The integration over
the rotational zero modes gives a non-zero result only if the Lorentz indices are contracted
in a rotationally invariant manner (the same applies to the gauge indices). The integration
over the instanton scale size — the conformal collective coordinate — is more problematic,
exhibiting precisely the infrared divergence of Eq. (5.100).

So, we have provided some evidence that the U(1) problem is solved in QCD, but no
reliable calculation. What about the 6-dependence? Let us ask first about the 6-dependence
of the vacuum energy. In order to get a non-zero result, we need to allow that the quarks

AQs =

are massive. Treating the mass as a perturbation, we obtain a result of the form
E(0) = CAQcpmumacos 0 / dp p~3p°. (5.109)

So, as in the CPY model, we have evidence for 0-dependence but cannot do a reliable
calculation. That we cannot do a calculation should not be a surprise. There is no small
parameter in QCD to use as an expansion parameter. Fortunately, we can use other facts
which we know about the strong interactions to get a better handle on both the U(1)
problem and the 6-dependence question.

Before continuing, however, let us consider the weak interactions. Here there is a small
parameter and there are no infrared difficulties, so we might expect instanton effects to be
small. The analog of the U(1)s symmetry in this case is baryon number. Baryon number
has an anomaly in the standard model, since all the quark doublets have the same sign of
the baryon number. 't Hooft showed that one could actually use instantons, in this case, to
compute the violation of baryon number. Technically, there are no finite-action Euclidean
solutions in this theory; this follows, as we will see in a moment, from a simple scaling
argument. However, ’t Hooft realized that one can construct important configurations
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9 Anomalies, instantons and the strong CP problem

having non-zero topological charge by starting with the instantons of the pure gauge theory
and perturbing them. For the Higgs boson, one solves the equation

D*¢ = V' (). (5.110)
For a light boson, one can neglect the right-hand side. Then this equation is solved by
1 172
=ichx | —— . 5.111
=i (1) s

Note that at large x, this has the form g(x)(¢). As a result, the action of the configuration
is finite. One finds the following correction to the action:

1
88 = —vp. (5.112)
g
Including this in the exponential damps the p integral at large p, and leads to a convergent

result.

Now including the fermions, there is a zero mode for each SU(2) doublet. So, one obtains
a non-zero expectation value for correlation functions of the form (QQQLLL), where the
color and SU(2) indices are contracted in a gauge-invariant way and the flavors for the Os
and Ls are all different. The coefficient is

Apy = Ce 27/, (5.113)

From this, one can see that baryon number violation occurs in the Standard Model but at
an incredibly small rate. One can also calculate a term in the effective action, involving
three quarks and three leptons, with a similar coefficient by studying Green’s functions in
which all the fields are widely separated. We will encounter this sort of computation later,
when we discuss instantons in supersymmetric theories.

5.3.3 Physical interpretation of the instanton solution

We have derived dramatic physical effects from the instanton solution by direct calculation,
but we have not provided a physical picture of the phenomena that the instanton describes.
Already in quantum mechanics imaginary-time solutions of the classical equations of
motion are familiar in the Wentzel-Kramers—Brillouin (WKB) analysis of tunneling, and
the Yang—Mills instanton (and the CPY instanton) also describe tunneling phenomena. In
this subsection we will confine our attention to pure gauge theories. The generalization to
theories with fermions and/or scalars is straightforward and interesting.

To understand the instanton in terms of tunneling, it is helpful to work in a non-covariant
gauge, in which there is a Hamiltonian description. The gauge 49 = 0 is particularly useful.
In this gauge the canonical coordinates are the 4;s and their conjugate momenta are the E;s
(with a minus sign). This is too many degrees of freedom if all are treated as independent.
The resolution lies in the need to enforce Gauss’s law, which is now to be viewed as an
operator constraint on states. For example, in a U(1) theory,

G®)|¥) = (V- E — p)|¥) = 0. (5.114)
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The left-hand side is almost the generator of gauge transformations. On the gauge fields,
for example,

[ / d3xa)()?)G(?c),A,-()7):|: — / Px o @®E®);, AP)il = diw@). (5.115)

In the second step we have integrated by parts and dropped a possible surface term.
This requires that @ — 0 fast enough at infinity. Such gauge transformations are called
“small”. We have learned that, in the 49 = 0 gauge, states must be invariant under time-
independent, small, gauge transformations.

In electrodynamics this is not particularly interesting. But the same manipulations hold
in non-Abelian theories, and in this case there are interesting large gauge transformations.
An example is

- X0

g(x) =exp (in q—) (5.116)
VX2 +a?

We can also consider powers g”" of g. We can think of g as mapping three-dimensional

space into the group SU(2). The number of times that the mapping wraps around the gauge

group is known as the winding number, and it can be written as

n / dx € Tr(3;29;g0kQ).- (5.117)

2472
However, g, is not unique; we can multiply by any small gauge transformation without
changing n. The zero-energy states consist of 4; = ig~"9;g" averaged over the small gauge
transformations in such a way as to make them invariant.

With just a little algebra one can show that n = [ d*xKy, where K* is the topological
current encountered in Eq. (5.80). So an instanton, in 49 = 0 gauge, corresponds to a
tunneling between states of different n. More precisely, there is a non-zero matrix element
of the Hamiltonian between states of different »,

(nHIn £ 1) =e. (5.118)

This is analogous to the situation in crystals, and the energy eigenstates are similar to Bloch
waves,

10) =Y &™), (5.119)

with energy € cos 6. This 6 is precisely the quantity which entered as a parameter in the
Lagrangian.

5.3.4 QCD and the U(1) problem

In real QCD we have seen that, on the one hand, instanton configurations violate the
axial U(1) symmetry. In general, there is no small parameter which governs the size
of this breaking, so there is no reason to expect a light (pseudo)Goldstone. Consistent
with this, explicit calculations are infrared divergent. Again, this is not a surprise; there
is no small parameter which would justify the use of a semiclassical approximation, but
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98 Anomalies, instantons and the strong CP problem

the instanton analysis we have described makes clear that there is no reason to expect
that there is a light Goldstone boson. Actually, while there is no obvious reason why
perturbative and semiclassical (instanton) techniques should give reliable results, there are
two approximation method techniques available. The first is for large N, where one now
allows the N of SU(N) to be large, with gzN fixed. In contrast with the case of CPV, this
does not give enough simplification to permit explicit computations, but it does allow one
to make qualitative statements about the theory. Witten has pointed out a way in which one
can relate the mass of the n (or n’ if one is thinking in terms of SU(3) x SU(3) current
algebra) to quantities in a theory without quarks. The anomaly is then an effect suppressed
by a power of N, in the large-N limit, because the loop diagram contains a factor g2 but not
a factor V. So, for large N it can be treated as a perturbation and the 7 is almost massless.
The quantity 8ng acts as a creation operator for n (just as a,J; 3 is a creation operator for
the 7 meson), so one can compute the mass if one knows the correlation function at zero
momentum,

1 ~ -
(005 35 ) ¢ 175 (F@F@FGF(). (5.120)

To leading order in the 1/N expansion, the FF correlation function can be computed
in the theory without quarks. Witten argued that, while it vanishes order by order in
perturbation theory, there is no reason that this correlation function need vanish in the
full theory. Attempts have been made to compute this quantity both in lattice gauge theory
and using the anti-de Sitter—conformal-theory (AdS—CFT) correspondence discovered in
string theory and discussed later in this text. Both methods give promising results.

So, the U(1) problem should be viewed as solved, in the sense that in the absence of any
argument to the contrary, there is no reason to think that there should be an extra Goldstone
boson in QCD.

The second approximation scheme which gives some control of QCD is known as chiral
perturbation theory. The masses of the u, d and s quarks are small compared with the QCD
scale, and the mass terms for these quarks in the Lagrangian can be treated as perturbations.
This will figure in our discussion in the next section.

5.4 The strong CP problem

5.4.1 The O-dependence of the vacuum energy

The assumption that the anomaly resolves the U(1) problem in QCD raises another issue.
Given that | d*x FF has physical effects, a  term in the action has physical effects as well.
Since this term is CP odd, this means that there is the potential for strong CP-violating
effects. These effects should vanish in the limit of zero quark mass since, in this case, by a
field redefinition we can remove 6 from the Lagrangian. In the presence of quark masses,
the 8-dependence of many quantities can be computed. Consider, for example, the vacuum
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99 5.4 The strong CP problem

energy. In QCD, the quark mass term in the Lagrangian has the form
Lo = myiiu 4+ mgdd + h.c. (5.121)

Were it not for the anomaly we could, by redefining the quark fields, take m,, and m, to be
real. Instead, we can define these fields in such a way that there is no  FF term in the action
but a phase in m, and m,. Clearly, we have some freedom in making this choice. In the
case where m,, and my are equal, it is natural to choose these phases to be the same. We will
explain shortly how one proceeds when the masses are different (as they are in nature). So

Lo = (myiiu + mgdd )™ + h.c. (5.122)

Now we want to treat this term as a perturbation. At first order, it makes a contribution
to the ground-state energy proportional to its expectation value. We have already argued
that the quark bilinear forms have non-zero vacuum expectation values, so

E@®) = (my, + mg)cos{qq). (5.123)

While without a difficult non-perturbative calculation we cannot calculate the separate
quantities on the right-hand side of this expression, we can, using current algebra, relate
them to measured quantities. It is shown in Appendix B that

Mmoafyr = Tr (Mg(M)) = (my + ma)(qq). (5.124)

Replacing the quark mass terms in the Lagrangian by their expectation values, we can
immediately read off the energy of the vacuum as a function of 6:

E(0) = m>f2 cos . (5.125)

This expression can readily be generalized to the case of three light quarks, by similar
methods. So, we see that there is real physics in 6 even if we do not understand how to do
an instanton calculation. In the next section we will calculate a more interesting quantity:
the neutron electric dipole moment as a function of 6.

5.4.2 The neutron electric dipole moment

The most interesting physical quantities to study in connection with CP violation are
electric dipole moments, particularly that of the neutron, d,,. If CP were badly violated
in strong interactions, one might expect d, ~ efm ~ 10~!'% cm (here e is the electron
charge). But the experimental limit on the dipole moment is striking,

d, <1075 ecm. (5.126)

Using current algebra the leading contribution to the neutron electric dipole moment due
to 6 can be calculated, and one obtains a limit & < 10~°. Here we outline the main steps in
the calculation; I urge you to work out the details following the reference in the suggested
reading. We will simplify the analysis by working in an exact SU(2)-symmetric limit, i.e.
by taking m, = my; = m. We again treat the Lagrangian of Eq. (5.122) as a perturbation.
We can understand how this term depends on the 7 fields by making an axial SU(2)
transformation on the quark fields. In other words, a background 7 field can be thought
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100 Anomalies, instantons and the strong CP problem

Diagram in which CP-violating coupling of the pion contributes a newtron electric dipole moment d.

of as a small chiral transformation on the vacuum. Then, for example, for the 73 direction,
q — (1 + im313)q (the 7 field parameterizes the transformation), so the action becomes

=73 Gysq + 039). (5.127)

Jr
The second term gives rise to a CP-violating coupling, g yym*Nt%N, of the pions and
nucleons N. This is related to the matrix elements of gt?g between nucleons. These, in
turn, can be estimated by noting that at zero moment they are the matrix elements of an
isospin charge operator between nucleons. The latter matrix elements can be estimated
using the Gell-Mann and Ne’eman SU(3) symmetry (a similar operator with coefficient m;
is responsible for the splitting between the members of the baryon octet). One obtains, in
this way,

(mg = mymuma. 3¢ (5.128)
2 (my, + mg)my

This coupling is difficult to measure directly, but it gives rise, in a calculable fashion, to
a neutron electric dipole moment. Consider the graph of Fig. 5.2. This graph generates a
neutron electric dipole moment, if we take one coupling to be the standard pion—nucleon
coupling and the other the coupling we have computed above. The resulting Feynman
graph is infrared divergent; we cut this off at m, while cutting off the integral in the
ultraviolet at the QCD scale. The low-energy calculation is reliable in the limit that m,
is small, so that In(my / Aqcp) is large compared to unity. The result is
My
In —.
4nlmy My

grNN ~ —0

dy = ZnNNEx NN

(5.129)
The matrix element can be estimated using the SU(3) symmetry of Gell-Mann and
Ne’eman, as mentioned above, yielding d, = 5.2 x 107199 ¢cm. The experimental bound
gives @ < 107°—10710. Understanding why CP violation is so small in strong interactions
is known as the strong CP problem.

5.5 Possible solutions of the strong CP problem
|

What should our attitude towards this problem be? We might argue that, on the one hand,
some Yukawa couplings are as small as 107>, so why is 107 so bad? On the other
hand, we suspect that the smallness of the Yukawa couplings is related to approximate
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101 5.5 Possible solutions of the strong CP problem

symmetries, and that these Yukawa couplings are telling us something. Perhaps there is
some explanation of the smallness of 0, and perhaps this is a clue to new physics. In
this section we review some of the solutions which have been proposed to understand the
smallness of 6.

5.5.1 Zero u quark mass

Suppose that the mass of the u quark were zero. In this case, by a field redefinition of the u
quark

u— ey, (5.130)

one could make the 6 term vanish as a consequence of the anomaly. This would be a simple
enough explanation, but there are two issues. First, why should we make this redefinition?
We might imagine that it is the result of a symmetry, but this symmetry cannot be a real
symmetry of the underlying theory since it is violated by QCD (through the anomaly). We
will see later in this book that discrete symmetries, with anomalies of the kind required
to understand a vanishing u quark mass, do in fact frequently arise in string theory. So,
perhaps this sort of explanation is plausible. We would not, then, expect that the u quark
mass should be exactly zero but, instead, examining our formula for the neutron electric
dipole moment, we would require that the ratio m, /m, should be less than about 10~10,

As we described in Chapter 3, however, lattice gauge theory computations establish a
non-zero value of the u quark mass with large statistical significance. It is worth noting
why researchers in the past contemplated this possibility. Examining the mass spectrum of
the pseudoscalar mesons, using the methods of current algebra or chiral Lagrangians (we
will discuss these further in Chapter 8), one obtains m,/mg &~ 0.5. The question, however,
is which mass values should actually appear in this formula? In particular, in a theory in
which m,, = 0 at some high scale, instantons will generate a non-zero mass for m,, at lower
scales. The resulting expression is infrared divergent, but we take as the main lesson that
it is proportional to mym,. Because m; is not so different from the characteristic scales of
QCD, one might imagine that an effective mass of the needed size could be found. It is this
possibility which has been excluded by modern lattice computations.

5.5.2 Spontaneous CP violation

Suppose that the underlying theory respects CP and that the observed CP violation is
spontaneous. Because 6 is CP odd, the underlying theory has 6 = 0. One might hope that
this feature would be preserved when the symmetry is spontaneously broken. Satisfying
this condition and simultaneously generating an order-one CP-violating angle in the CKM
matrix is a model-building challenge which we will not review here. Suffice it to say that
this can be achieved at tree level. However, existing realizations rely on model-building
cleverness and do not have a clear conceptual basis. So, one must ask how plausible is this
possibility, and does it survive quantum corrections.

There are a number of ways in which 6 might be generated in the low-energy theory.
First, suppose that CP is broken by the expectation value of a complex field ®. There might
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102 Anomalies, instantons and the strong CP problem

well be direct couplings such as

1
1672
Note that ® might also couple to fermions, giving them a large mass through its expectation
value. When these fermions are integrated out this would also generate an effective 6.
This is likely, simply because of the anomalous field redefinitions which may be required
to make the masses of these fields real. There do exist, however, models which, while
complicated, meet the requirements of small 6.

(Im ®) FF. (5.131)

5.5.3 The axion

Perhaps the most compelling explanation of the smallness of 6 involves a hypothetical
particle called the axion. We present here a slightly updated version of the original idea of
Peccei and Quinn.

Consider the vacuum energy as a function of 8 (Eq. (5.123)). This energy has a minimum
at & = 0, i.e. at the CP-conserving point. As Weinberg noted long ago, this is almost
automatic: points of higher symmetry are necessarily stationary points. As it stands this
observation is not particularly useful, since 6 is a parameter, not a dynamical variable. But,
suppose that one has a field a with coupling to QCD:

alfa+0
3272

where f; is known as the axion decay constant. Suppose, in addition, that the rest of the
theory possesses a symmetry, called the Peccei—Quinn symmetry,

Laxion = (Bpa)* + FF, (5.132)

a—a+tao (5.133)

for constant . Then, by a shift in @ one can eliminate . What we have previously called
the vacuum energy as a function of 6, E(0), is now V(a/f;), the potential energy of the
axion. It has a minimum at & = 0. The strong CP problem is solved.

One can estimate the axion mass by simply examining E(9), (Eq. 5.125):

e A mzzrfrr2
“ R
If f; ~ TeV, this yields a mass of order keV. If £, ~ 10'6 GeV, this gives a mass of order

1070 eV.
There are several questions one can raise about this proposal.

(5.134)

e Should the axion already have been observed? The couplings of the axion to matter
can be worked out in a given model in a straightforward way, using the methods of
current algebra (in particular non-linear Lagrangians). All the couplings of the axion
are suppressed by powers of f;. This is characteristic of a Goldstone boson. At zero
momentum a change in the field is like a symmetry transformation so, before including
the QCD effects which explicitly break the symmetry, axion couplings are suppressed
by powers of momentum over f;; QCD effects are suppressed by Aqcp/fa. Thus if £, is
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103 5.5 Possible solutions of the strong CP problem

large enough then the axion is difficult to see. The strongest limit turns out to come from
red giant stars. The production of axions is “semiweak”, i.e. it is suppressed only by one
power of f, rather than two powers of myy; as a result, axion emission is competitive
with neutrino emission until £, > 10'° GeV or so.

e As we will describe in more detail in Chapter 18, the axion could have been copiously
produced in the early universe. As a result there is an upper bound on the axion decay
constant, of about 10!! GeV. If this bound is saturated, the axion constitutes the dark
matter. We will discuss this bound in detail in Chapter 19.

e Can one search for the axion experimentally? Typically, the axion couples not only
to the FF of QCD but also to the same object in QED. This means that in a strong
magnetic field an axion can convert to a photon. Precisely this effect is being searched
for by the ADMX experiment at the University of Washington. The basic idea is to
suppose that the dark matter in the halo of our galaxy consists principally of axions.
Using a (superconducting) resonant cavity with a high Q value in a large magnetic field,
one searches for the conversion of these axions into excitations of the cavity due to
the coupling of the axion to the electromagnetic field, FF = E - B. The experiments
have already reached a level where they set interesting limits; the next generation of
experiments will cut a significant swath in the presently allowed parameter space.

e The coupling of the axion to FF violates the shift symmetry; this is why the axion can
develop a potential. But this seems rather paradoxical: one is postulating a symmetry,
preserved to some high degree of approximation but which is not a symmetry: it is at
the least broken by tiny QCD effects. Is this reasonable? To understand the nature of the
problem, consider one of the ways in which an axion can arise. In some approximation
we can suppose that we have a global symmetry under which a scalar field ¢ transforms
as ¢ — e/®¢. Suppose, further, that ¢ has an expectation value. This could arise due to
a potential, V(¢) = —u?|¢|> + Al¢|*. Associated with the symmetry breaking would be
a (pseudo)-Goldstone boson, a. We can parameterize ¢ as follows:

¢ = fu ", | P)] = fa (5.135)

If this field couples to fermions, they gain mass from its expectation value. At one loop,
the same diagrams as those discussed in our anomaly analysis generate a coupling aFF,
from integrating out the fermions. This calculation is identical to the corresponding
calculation for pions discussed earlier. But we usually assume that global symmetries in
nature are accidents. For example, baryon number is conserved in the Standard Model
simply because there are no gauge-invariant renormalizable operators which violate the
symmetry. We believe it is violated by higher-dimensional terms. The global symmetry
we postulate here is presumably an accident of the same sort. But for the axion, the
symmetry must be extremely good. We can introduce an axion quality Oy,

1 oV

= ——— 5.136
Qa mzfa aaa ( )

which must be less than 10~!°. Suppose, for example, one has a symmetry breaking
operator ¢"+4 /Mp. Such a term gives a linear contribution to the axion potential of

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

104 Anomalies, instantons and the strong CP problem

order f;"” /My If fa ~ 10'!, this swamps the would-be QCD contribution mj%f]z, /fa
unless n > 12!

This last objection finds an answer in string theory. In this theory there are axions
with just the right properties, i.e. there are symmetries in the theory which are exact in
perturbation theory, but which are broken by exponentially small non-perturbative effects.
The most natural value for f, would appear to be of order MguTt or M,,. Whether this can
be made compatible with cosmology, or whether one can obtain a lower scale, is an open
question to which we will return.

Suggested reading

There are a number of excellent books and reviews on anomalies, as well as good
treatments in quantum field theory textbooks. The texts of Peskin and Schroeder (1995),
Pokorski (2000) and Weinberg (1995) have excellent treatments of different aspects of
anomalies. The string textbook of Green et al. (1987) provides a good introduction to
anomalies in higher dimensions. One of the best introductions to the physics of instantons
is provided in the article of Coleman (1985). The U(1) problem in two-dimensional
electrodynamics, and its role as a model for confinement, was discussed by Casher et al.
(1974). The serious reader should study ’t Hooft’s instanton paper from 1976, in which he
both uncovers much of the physical significance of the instanton solution and also performs
a detailed evaluation of the determinant. The propagators in the instanton background are
given in Brown et al. (1978). Instantons in CPY models were studied by Affleck (1980).
The dependence of d, on 8 was calculated by Crewther et al. (1979) in a short and quite
readable paper.

Exercises
|

(1) Derive Eq. (5.15).
(2) Calculate the decay rate of the 7° to two photons. You will need the matrix
element

(7(@)]8,/5°|0) = fregte?™, (5.137)

where f; =93MeV. You will need also to compute the anomaly in the third component
of the axial isospin current.

(3) Fill in the details of the anomaly computation in two dimensions, being careful about
signs and factors of 2.

(4) Fill in the details of the Fujikawa computation of the anomaly, in the CPY model, again
being careful about factors of 2. Make sure that you understand why one is calculating
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105 Exercises

a determinant and why the factors appear in the exponential. Verify that the action of
Eq. (5.56) is equal to

L =gpp 0,0, d", (5.138)

where g is the metric of the sphere in complex coordinates, i.e. it is the line element
dx% + dx% + dx% expressed as g, ;dzdz+ g, ,+dzdz* + g, dz* dz + o+ g+ dz* dz* . A model
with an action of this form is called a non-linear sigma model; the idea is that the fields
live on some “target” space, with metric g. Verify Eqs. (5.56) and (5.59).

(5) Check that Egs. (5.85) and (5.86) solve (5.83).
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Grand unification

One of the troubling features of the Standard Model is the plethora of coupling constants;
overall there are 18, counting 0. It seems puzzling that a theory which purports to be
a fundamental theory should have so many parameters. Another is the puzzle of charge
quantization: why are the hypercharges all rational multiplets of one another (and, as a
result, the electric charges rational multiples of one another)? Finally, the gauge group
itself is rather puzzling. Why is it semi-simple rather than simple?

Georgi and Glashow put forward the grand unification proposal which answers some of
these questions. They suggested that the underlying gauge symmetry of nature is a simple
group, broken at some high-energy scale down to the gauge group of the Standard Model.
The Standard Model gauge group has rank 4 (there are four commuting generators); SU(N)
groups have rank N — 1. So the simplest group among the SU(N) groups which might
incorporate the Standard Model is SU(5). Without any fancy group theory, it is easy to see
how to embed SU(3) x SU(2) x U(1) in SU(5). Consider the gauge bosons. These are in
the adjoint representation of the group. Written as matrices, under infinitesimal space—time
independent gauge transformations we have

84, = iw'[T% A,). (6.1)

The T,s are 5 x 5 traceless Hermitian matrices; altogether, there are 24 of them. We can
then break up the gauge generators in the following way. Writing indices on 7¢ as (T" ”){ ,
the 7%s act on the fundamental five-dimensional representation (“the 5”) as

(TH]s;. (62)
So, if we think of the 5 as

q1
q2
5=1g¢3 (6.3)
L
L

then the T%s can be broken up into a set of SU(3) generators and a set of SU(2) generators:

o (22 0 i (0 0
ro (KR o (D)), ”

Here the A%s are Gell-Mann’s SU(3) matrices and the o’s are the Pauli matrices. There are
three commuting matrices among these. The remaining, diagonal, matrix can be taken to be

106
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107 Grand unification

-2 0 0 00
. 0 -2 0 00
Yy=——] 0 0 =2 0 0 (6.5)
VOOl o 0 0 3 0
0 0 0 03
Finally, there are 12 off-diagonal matrices:
(xX3); = 560 (6.6)

where a,b = 1,2,3; i,j = 1,2. These are not Hermitian; they are analogous to the raising
and lowering operators in SU(2). One can readily form Hermitian linear combinations.
The associated vector mesons must be very heavy; they mediate B-violating processes, as
in Fig. 6.1. These can lead, for example, to p — 7%™.

We want to claim that ¥ is proportional to the ordinary hypercharge and determine
the proportionality constant. To do this, we consider, not the 5 but the 5 and make the
identification

i
Il
S

(6.7)

Now, the generators of SU(5) acting on the 5 are —T%T. So we can read off immediately
that ¥ = +/60Y/3. Since the gauge groups are unified in a single group, the gauge couplings
are all the same, so we can compute the Weinberg angle. Calling g the SU(5) coupling,
g/
=7, 6.8
: (68)
where g’ is the hypercharge coupling of the Standard Model. From this, g% = (5/3)g’>.
The Weinberg angle is given by

gf =
sin29w = ) = —. (69)

g tg

L* 0

The exchange of heavy vector particles in GUTs violates Band L. It can lead to processes suchasp — 7%
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Grand unification

So we have two dramatic predictions, if we assume that the Standard Model is unified in
this way:

1. the SU(3) and SU(2) gauge couplings are equal;
2. the Weinberg angle satisfies sin® fy = 3/8.

Before assessing these predictions, let us first figure out where we would put the rest
of the quarks and leptons. In a single generation of the Standard Model, there are 15
fields. The group SU(5) has a ten-dimensional representation, the antisymmetric product
of two 5s. It can be written as an antisymmetric matrix, 10;. If 7 and j are both SU(3)
indices, we obtain a (3, 1)_4/3 of SU(3). If one is an SU(3) and one an SU(2) index, we
obtain a (3,2)1,3. If both are SU(2) indices, we obtain a (1, 1),. Here the subscripts denote
the ordinary hypercharge, related to Y as above. These are just the quantum numbers of the
quark doublet Q, of u and of e. As a matrix,

0o w -t 0 &
-0 W 0 O
o= «# -at o0 o & | (6.10)
-0 -0, 03 0 e
-01 -0 -5 —¢ 0

So, a single generation of quarks and leptons fits neatly into a 5 and 10 of SU(5).

6.1 Cancelation of anomalies
|

An anomaly in a gauge symmetry would represent a breakdown of gauge invariance.
The consistency of gauge symmetries rests, however, on gauge invariance. For example,
to demonstrate that such theories are both unitary and Lorentz invariant we have used
different gauges. The cancelation of anomalies is crucial, and the absence of anomalies in
the Standard Model is surely no accident.

It is not hard to check that in SU(5) the anomaly of the 5 cancels that of the 10. In
general, the anomalies in a gauge theory are proportional to d,p., where

{Ta, Tp} = dapcTe- (6.11)

One can organize the anticommutator above in terms of the various types of generator, for
example SU(3), SU(2), U(1), and the off-diagonal generators, which transform as (3, 2) of
SU3) x SU(2), and then check each class. We leave the details for the exercises.

6.2 Renormalization of couplings
|

If we are going to describe the Standard Model, SU(5) must break at some high-energy
scale to SU3) x SU(2) x U(1). Above this scale, the full SU(5) symmetry holds to a
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109 6.3 Breaking to SU(3) x SU(2) x U(1)

good approximation, and all couplings renormalize in the same way. Below this scale the
couplings renormalize differently. We can write down the equations for the renormalization
of the three separate couplings:

o () = oflt(Mgut) + % -2 (6.12)
! gu 4 Mgut
We can calculate the beta functions at one loop starting with the usual formula:
11 4 . 1
b() = ?CA - ECE})NE}) - gcg)Ng), (613)

where Ng) is the number of fermions in the ith representation; Ng) is the number of
scalars. For SU(N) Ca = N and, for fermions or scalars in the fundamental representation,
cr=cy =1/2.

For the SU(3) and SU(2) couplings the beta function coefficients bf) are readily
computed. For U(1), we need to remember the relative normalization computed above:

b} = 181 ol
6 15
We can run these equations backwards. The SU(2) and U(1) couplings are the best
measured, so it makes sense to start with these and run them up to the unification scale.
This determines gy and Myyt. We can then predict the value of the SU(3) coupling at,
say, Mz. One finds that the unification scale, Mgy, is about 105 GeV and that a3 is off
by about seven standard deviations. In the exercises you will have the opportunity to
perform this calculation in detail. We will see later that low-energy supersymmetry greatly
improves this.

, by=17, b} (6.14)

6.3 Breaking to SU(3) x SU(2) x U(1)

In SU(5), it is relatively easy to introduce a set of Higgs fields which break the gauge
symmetry down to SU(3) x SU(2) x U(1). Consider a Hermitian scalar field ® in the
adjoint representation. Writing @ as a matrix, we have the transformation law

3P = [T, P]. (6.15)
Suppose that the minimum of the ® potential lies at a point where
® =Y. (6.16)

Then the SU(3), SU(2) and U(1) generators all commute with (®), but those for the X
bosons do not.
Consider the most general SU(5)-invariant potential:

A by
V= —szrd>2+ZTrd>4+Z(Trd>2)2. (6.17)
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10 Grand unification

One can find the minimum of this potential by first using an SU(5) transformation to
diagonalize ®, obtaining

& = diag(ay, az, a3z, as, as). (6.18)

The potential is a function of the a;s, which one wants to minimize subject to the constraint
of vanishing trace. This can be done by using a Lagrange multiplier.

To establish that one has a local minimum of the form Eq. (6.16), one can proceed more
simply. Write the potential as a function of v:

1 ar  bN

V=—om??+ — + -2 6.19
2m v 4 1 + ) v, ( )
where @ = 7/120, b = 1/4. Then the extremum with respect to v occurs for

v 2 (6.20)

Jah + bn

To establish that this is a local minimum, we need to show that the eigenvalues of the
scalar mass-squared matrix are all positive. We can investigate this by considering small
fluctuations about the stationary point. This point preserves SU(3) x SU(2) x U(1). Writing
® = (D) + 5§D, §P can be decomposed under SU(3) x SU(2) x U(1) as follows:

& =(1,1)+ @D+ (1,3)+3,2) +(3,2). (6.21)

The point (6.20) is certainly stationary; because of the symmetry, only the (1, 1) term can
appear linearly in the potential, and it is this piece whose minimum we have just found.
To establish that the point (6.20) is in fact a local minimum, one needs to show that the
quadratic terms in the fluctuations are all positive. This is done in the exercises.

6.4 SU(2) x U(1) breaking

In addition to the adjoint, it is necessary to include a 5 representations of the Higgs H in
order to break SU(2) x U(1) down to the U(1) of electromagnetism and to give mass to
the quarks and leptons. The Higgs has the form

H,
H= <Hd>’ (6.22)

where H, is a color triplet of scalars and Hj is the ordinary Higgs doublet. For H one might
have been tempted to write a potential of the form

A
V(H) = = |HI? + 1 H*. (6.23)

However, this would lead to a number of difficulties. Perhaps the most important is
that, when included in the larger theory with the adjoint field &, this potential has too
much symmetry; there is an extra SU(5) which would lead to an assortment of unwanted
Goldstone bosons. At the same time the scale  must be of order the scale of electroweak
symmetry breaking (as long as A is not too much larger than unity). So, the Higgs triplets
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m 6.5 Charge quantization and magnetic monopoles

will have masses of order the weak scale. But if the doublet couples to quarks and leptons,
the triplet will have baryon- and lepton-number-violating couplings to the quarks and
leptons. So the triplet must be very massive.

Both problems can be solved if we couple ® to H. The allowed couplings include:

Vo = TH ®H + M H*HTr ®* + \"H* ®H. (6.24)

If we carefully adjust the constants ', A’,A” and u?, we can arrange that the doublets
are light and the triplets are heavy. For example, if we choose A = A’ = 0 and pu? =
—3(I'/+/60)v — € then the Higgs doublets have mass-squared —e in the Lagrangian, while
the triplets have mass of order Mgy¢. This tuning of parameters, which must be performed in
each order of perturbation theory, provides an explicit realization of the hierarchy problem.

Turning to the fermion masses, we are led to an interesting realization: not only does
grand unification make predictions for the gauge couplings, it can predict relations among
fermion masses as well. The gange group SU(5) permits the following couplings:

Ly = y1€5mH 107510 + 3, H¥5;107, (6.25)

Here the ys are matrices in the space of generations. When H acquires an expectation
value, it gives mass to the quarks and leptons. The first coupling gives mass to the up-type
quarks. The second coupling gives mass to both the down-type quarks and the leptons. If
we consider only the heaviest generation, we then have the tree level prediction

mp = my. (6.26)

This prediction is off by a factor 3 but, like the prediction of the coupling constant, it can
be corrected by renormalization to roughly the observed amount. For the lightest quarks
and leptons the prediction fails. However, unlike the unification of gauge couplings, such
predictions can be modified if there are additional Higgs fields in other representations. In
addition, for the lightest fermions, higher-dimensional operators, suppressed by powers of
the Planck mass, can make significant contributions to masses. In supersymmetric grand
unified theories, the ratio of the GUT scale to the Planck scale is about 10~2, whereas the
lightest quarks and leptons have masses four orders of magnitude below the weak scale. We
will postpone a numerical study of these corrections since the simplest SU(5) theory does
not correctly predict the values of the coupling constants, and will return to this subject
when we discuss supersymmetric grand unified theories, which do successfully predict the
observed values of the couplings.

6.5 Charge quantization and magnetic monopoles
I —

While we must postpone success with the calculation of the unified couplings to our
chapters on supersymmetry, we should pause and note two triumphs. First, we have
a possible explanation for one of physics’ greatest mysteries: why is electric charge
quantized? Here it is automatic; electric charge, an SU(5) generator, is quantized, just as
color and isospin are quantized.
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m Grand unification

However, Dirac long ago offered another explanation of electric charge quantization:
magnetic monopoles. He realized that the consistency of quantum mechanics demands
that if even a single monopole exists in the universe, electric charges must all be integer
multiples of a fundamental charge. So we might suspect that magnetic monopoles are
hidden somewhere in this story. Indeed they are; this are discussed in Chapter 7.

6.6 Proton decay
|

We have discussed the dimension-six operators which can arise in the Standard Model and
violate baryon number. Exchanges of the X bosons generate operators such as

2
%Qaﬂﬁ*Qa“é*. (6.27)
X

This leads to the decay p — 7% In this model, one predicts a proton lifetime of order
1078 years if Mgy ~ 103 GeV. The current limit on this decay mode is 5 x 1033 years. We
will discuss the situation for supersymmetric models later.

The realization that baryon-number violation is likely in any more fundamental theory
opens up a vista on a fundamental question about nature: why is there more matter than
antimatter in the universe? If, at some very early time, there were equal amounts of matter
and antimatter then, if baryon number is violated, one has the possibility of producing an
excess. Other conditions must be satisfied as well; we will describe this in the chapter on
cosmology.

6.7 Other groups

While SU(5) may in some respects be the simplest group for unification, once one has set
off in this direction there are many possibilities. Perhaps the next simplest is unification in
the group O(10). As O(10) has rank 5, there is one extra commuting generator; presumably
this symmetry must be broken at some scale. More interesting, though, is the fact that a
single generation fits neatly into an irreducible representation: the 16. The group O(10)
has an SU(5) subgroup, under which the 16 decomposes as a 10 + 5 + 1. The singlet
has precisely the right Standard Model quantum numbers — none — to play the role of the
right-handed neutrino in the seesaw mechanism; see below Eq. (4.17).

We will not review the group theory of O groups in detail, but we can describe some of
the important features. We will focus specifically on O(10), but much of the discussion here
is easily generalized to other groups. The generators of O(10) are 10 x 10 antisymmetric
matrices. There are 45 of these. We are particularly interested in how they transform under
the Standard Model group. The embedding of the Standard Model in SU(5), as we have
learned, is very simple, so a useful way to proceed to understand O(10) is to find its SU(5)
subgroup.
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m 6.7 Other groups

One way to think of O(10) is as the group of rotations of ten-dimensional vectors.
Call the components of such a vector x4, 4 = 1,...,10. Transformations in SU(5) are
“rotations” of complex five-dimensional vectors z'. So, we define

d=xl+i?, Z2=X+ix* =¥+ (6.28)
and so on. With this correspondence it is easy to see that there is a subgroup of O(10)
transformations that preserves the product z - z*. This is the SU(5) subgroup of O(10).

From our construction, it follows that the 10 of O(10) transforms as a 5 + 5 of SU(5).
We can determine the decomposition of the adjoint by writing

AMB — il 4T 4 41T, (6.29)

The labeling here is meant to indicate the types of complex index that the matrix 4 can
carry. The first term is just the 24-dimensional representation of SU(S), plus an additional
singlet. This singlet is associated with a U(1) subgroup of O(10), which rotates all the
objects with i-type indices by one phase and all those with 7 type indices by the opposite
phase. Note that 47 is antisymmetric in its indices; in our study of SU(5) we learned that
this is the 10 representation. We can take it to carry charge 2 under the U(1) subgroup.
Then A% corresponds to the 10 representation, with charge —2. This accounts for all 45
fields.

But where is the 16-dimensional representation? We are familiar, from our experience
with ordinary rotations in three and (Euclidean four) dimensions as well as from the
Lorentz group, with the fact that O groups may have spinor representations. To construct
these we need to introduce the equivalent of the Dirac gamma matrices I, satisfying

(r’, v’y = 28". (6.30)

It is not hard to construct explicit matrices which satisfy these anticommutation relations
but there is a simpler approach, which also makes the SU(5) embedding clear. The
anticommutation relations are similar to the relations for fermion creation and annihilation
operators. So, define

1 1
a' = E(rl +il'?), &= §(F3 + i) (6.31)
and so on, and similarly for their complex conjugates. Note that the a's form a 5 of SU(5),
with charge +1 under the U(1). These operators satisfy the algebra
(d,a)) = 8. (6.32)

These are the anticommutation relations for five pairs of fermion creation—annihilation
operators. We know how to construct the corresponding “states”, i.e. the representations of
the algebra. We define a state |0) annihilated by the a's. Then there are five states created
by the action of @’ on this state:

5., =d|0). (6.33)

The main symbol 5 indicates the SU(5) representation and the subscript indicates the U(1)
charge. We could now construct the states obtained with two creation operators, but let us

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

N4 Grand unification

construct the states built using an odd number:

10_3 = dald"|0), 1_5=d'dd3a*d®|0). (6.34)

We have indicated that the first representation transforms like a 10 of SU(5), while the
second transforms like a singlet.

The states which involve even numbers of creation operators transform like a 5, a 10, and
a singlet. Why do we distinguish these two sets? Remember, the goal of this construction
is to obtain irreducible representations of the group O(10). As in the Dirac theory, we can
construct the symmetry generators from the Dirac matrices,

sH = i[r’, . (6.35)

These, too, can be decomposed on a complex basis, like A But, as for the usual
Dirac matrices, there is another I' matrix that we can construct, which is the analog of
['S: T, This matrix anticommutes with all the I's, and so with the as. Thus the states
with even numbers of creation operators are eigenstates with eigenvalue +1 under I'!!,
while those with odd numbers are eigenstates with eigenvalue —1. Since I''! commutes
with the symmetry generators, these two representations are irreducible.

A similar construction works for other groups. When we come to discuss string theories
in ten dimensions, we will be especially interested in the representations of O(8). Here the
same construction yields two eight-dimensional representations, denoted 8 and §'.

The embedding of the states of the Standard Model in O(10) is clear, since we already
know how to embed them in a 5+ 10 of SU(5). But what of the other state in the 16? This is
a Standard Model singlet. We do not yet have a candidate in the particle data book for this.
However, there are two observations we can make. First, the symmetries of the Standard
Model do not forbid a mass for this particle. What does forbid a mass is the extra U(1). So,
if this symmetry is broken at very high energies, perhaps with the initial breaking of the
gauge symmetry, this particle can gain a large mass. We will not explore the possible Higgs
fields in O(10) but, as in SU(5), there are many possibilities and the U(1) can readily be
broken. Second, this particle has the right quantum numbers to couple to the left-handed
neutrino of the Standard Model. So this particle can naturally lead to a “seesaw” neutrino
mass. This mass might be expected to be of order some typical Yukawa coupling squared
divided by the unification scale. It is also possible that this extra U(1) is broken at some
lower scale, yielding a larger value for the neutrino mass.

Suggested reading

There is any number of good books and reviews on the subject of grand unification. The
books by Ross (1984), Mohapatra (2003) and Ramond (1999) all treat the topics introduced
in this chapter in great detail. The reader will find his or her interest in this topic increases
after studying some aspects of supersymmetry.
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115 Exercises

Exercises
. ]

(1) Verify the cancelation of anomalies between the 5 and 10 representations of SU(5).

(2) Establish the conditions for the solution of Eq. (6.16) to be a local minimum of the
potential.

(3) Perform the calculation of coupling unification in the SU(5) model. Verify Egs. (6.14)
for the SU(3), SU(2) and U(1) beta functions. Start with the measured values of the
SU2) and U(1) couplings, being careful about the differing normalizations in the
Standard Model and in SU(5). Compute the value of the unification scale (the point
where these two couplings are equal); then determine the value of w3 at M. Compare
with the value given by the Particle Data Group. You need only study the equations
to one-loop order. In practice, two-loop corrections, as well as threshold effects and
higher-order corrections to the beta function, are often included.

(4) Add to the Higgs sector of the SU(5) theory a set of scalars in the 45 representation.
Show that in this case all the quark masses are free parameters.
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Magnetic monopoles and solitons

Anyone who has inspected Maxwell’s equations even briefly has probably speculated about
the existence of magnetic monopoles. There is no experimental evidence for magnetic
monopoles, but the equations would be far more symmetric if they existed. It was Dirac
who first considered carefully the implications of monopoles, and he came to a striking
conclusion: the existence of monopoles would require that electric charge be quantized
in terms of a fundamental unit. The problem of describing a monopole lies in writing
B =V x A. We could simply give up this identification, but Dirac recognized that A is
essential in formulating quantum 1 mechamcs To resolve the problem we can follow Wu
and Yang and maintain that B =V x A but not require that the vector potential be single
valued. Suppose that we have a monopole located at the origin. In the northern hemisphere

we can take
i g 1 —cos6, (7.1)
== ¢, .
N 4r  sinf ¢
while in the southern hemisphere we take
- 1+ cosé,
As = — & — . (7.2)

4mr  sin6
By looking up the formulae for the curl operator in spherical coordinates, you can check
that, in both hemispheres,
B = 471_r2r’ (7.3)

so indeed this does describe a magnetic monopole.

Each of expressions (7.1) and (7.2) is singular along a half-line: Ay is singular along
0 = m; Ag is singular along 6 = 0. These string-like singularities are known as Dirac
strings. They are suitable vector potentials to describe long thin solenoids which start at
the origin and go to infinity along the negative or positive z axis. With discontinuous /I,
though, we need to ask whether quantum mechanics is consistent. Consider the equator
(0 = 7 /2). We have

e s g . = g

where ¢ is the azimuthal angle and x is a general function. So, the difference has the form
of'a gauge transformation. But to be a gauge transformation it must act sensibly on particles
of definite charge. In particular, it must be single valued. As such a particle circumnavigates
the sphere, its wave function acquires a phase

exp (ie / d)?-/f). (7.5)

116
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17 7.1 Solitonsin 1+ 1dimensions

Potentially, this phase is different for /IN and ffs, in which case the string would be a
detectable, real, object. But the phases are the same if

exp (ize—g f dx - %qﬁ) =1 or eg=2mn. (7.6)
7

This is known as the Dirac quantization condition. Dirac argued that, since e can be the
charge of any charged particle, if there is even one monopole somewhere in the universe,
this result shows that charge must be quantized.

In pure electrodynamics the status of magnetic monopoles is obscure; the B field is
singular and the energy is infinite. In non-Abelian gauge theories with scalar fields (Higgs
fields), however, monopoles often arise as finite-energy non-dissipative solutions of the
classical equations. Such solutions cannot arise in linear theories like electrodynamics; all
configurations in such a theory spread with time. Non-dissipative solutions can only arise
in non-linear theories, and even then, such solutions — known as solitons — can only arise
in special circumstances.

The simplest theory which exhibits monopole solutions is SU(2) (more precisely O(3))
Yang—Mills theory with a single Higgs particle in the adjoint representation. But, before
considering this case, which is somewhat complicated, it is helpful to consider solitons in
lower-dimensional situations.

7.1 Solitonsin 1 4+ 1 dimensions
1 —

Consider a quantum field theory in 1 + 1 dimensions, with

1
L= 5(8@)2 — V(o). (7.7)

Here
( ) 1 2,2 4 ( )
2 d) = ——m ¢) + —d) . 7.8

This potential, which is symmetric under ¢ — —¢, has two degenerate minima, £¢y.
Normally, we would choose as our vacuum a state localized about one or the other
minimum. These correspond to trivial solutions of the equations of motion. We can
consider a more interesting configuration, a localized finite-energy solution known as a
soliton, for which

¢(x —> Fo0) — *d¢y. (7.9)

Such a solution interpolates between the two different vacua. We can construct this solution
much as one solves analogous problems in classical mechanics, by quadrature. Finding the
solution for this particular model, known as a kink, is left for the exercises; the result is

$xink = Po tanh[(x — xo)m]. (7.10)

This solution is shown in Fig. 7.1. The kink has finite energy. As we have indicated,
there is a continuous infinity of solutions, corresponding to the fact that this kink can be
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18 Magnetic monopoles and solitons

Kink solution of the two-dimensional field theory.

located anywhere; this is a consequence of the underlying translational invariance. We can
use this to understand in what sense the kink is a particle. Consider configurations which
are not quite solutions of the equations of motion, in which x¢ is allowed to be a slowly
varying function xg () of £. We can write down the action for these configurations:

1
Skink = / dt / dx [5(8M¢kink)2 - V(¢kink)]~ (7.11)
Only the ¢ term contributes. The result is
M
Skink = f dt Efc(z). (7.12)

Here M is precisely the energy of the kink. So, the kink truly acts as a particle. The quantity
xo 1s called a collective coordinate. We will see that such collective coordinates arise for
each symmetry broken by the soliton. These are similar to the collective coordinates we
encountered in the Euclidean problem of the instanton.

7.2 Solitonsin 2 + 1 dimensions: strings or vortices
|

As we go up in dimension, the possible solitons become more interesting. Consider a U(1)
gauge theory in 2 + 1 dimensions, with a single charged scalar field ¢. This model is often
called the Abelian Higgs model. The Lagrangian is

L= Dol — V(IgD. (7.13)
We assume that the potential is such that
(@) =v. (7.14)

Now we have a possibility that we have not considered before. Working in plane polar
coordinates r, 6, if we consider only the potential then we can imagine obtaining finite-
energy configurations for which, at large 7,

¢ — &"v. (7.15)
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19 7.3 Magnetic monopoles

Because the potential tends to its minimum at infinity, such a configuration has finite
potential energy. However, the kinetic energy diverges, since d,,¢ includes (1/7)dp¢p. We
can try to cancel this with a non-vanishing gauge field. At oo, the scalar field is a gauge
transformation of the constant configuration, so to achieve finite energy we want to gauge-
transform the gauge field as well,

Ag — n; (7.16)

consequently, atoo, D¢ — 1/ 72 or a higher negative power of 7. It is not hard to construct
such solutions numerically. As for the kinks, these configurations again have collective
coordinates, corresponding to the two translational degrees of freedom and a rotational (or
charge) degree of freedom.

We can take these configurations as configurations in a (3+1)-dimensional theory, which
are constant with respect to z. Viewed in this way, these are vortices, or strings. One has
collective coordinates corresponding to transverse motions of the string, xo(z, t), yo(z, ?).
These string configurations could be quite important in cosmology. Such a broken U(1)
theory could lead to the appearance of long strings, which could carry enormous amounts
of energy. For a time, these were considered a possible origin of inhomogeneities leading
to the formation of galaxies, but the data now disfavors this possibility.

7.3 Magnetic monopoles
|

Dirac’s argument shows that, in the presence of a monopole, electric charges are all
multiples of a basic charge. This means that the U(1) symmetry is effectively compact.
So, a natural place to look for monopoles is in gauge theories where U(1) is a subgroup of
a simple group. The SU(5) grand unified theory is an example, in which electric charge is
quantized.

We start, though, with the simplest example of this sort, an SU(2) gauge theory with
Higgs fields in the adjoint representation, ¢“. Such a theory was first considered by Georgi
and Glashow as a model for weak interactions without neutral currents and is known as the
Georgi—Glashow model. An expectation value for ¢, ¢> = v or

v(i1l O
¢=§<0 _1) (7.17)

leaves an unbroken U(1). The spectrum includes massive charged gauge bosons W and a
massless gauge boson, which we will call the photon, y. By analogy to the string or vortex
solutions, we require finite energy at oo:

¢ — gv. (7.18)

In the (2 + 1)-dimensional case we could think of the gauge transformation as a mapping
from the space at infinity (topologically a circle) onto the gauge group (also a circle).
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120 Magnetic monopoles and solitons

In three dimensions we want gauge transformations which map the two-sphere S, into the
gauge group SU(2). For example, we can take

Xo!

This suggests the following ansatz (guess) for a solution:

»
9" =Fh), AL = = ). (7.20)

This solution is very symmetric: it is invariant under a combined rotation in spin and
isospin (rather similar to the sorts of symmetry of the instanton solution). Note that / and j
satisfy coupled non-linear equations, which in general must be solved numerically. We can
see from the form of the action that the mass is of order 1/g°. In the next section we show
that an analytic solution can be obtained in a particular limit.

We can write down an elegant expression for the number of times g(x) maps the sphere
into the gauge group:

1

N= o / dS" e Tr(2d;g0kg). (7.21)

In terms of the field, ¢,
1
T 8m3

Finally, we need a definition of the magnetic charge. A natural choice is
1 4N
/d3x ~(¢"Bf) = ——.

Putting these statements together, we see that this solution, the * Hooft—Polyakov
monopole, has one Dirac unit of magnetic charge.

/ dS’ €k ebey,9 4" Bgp°. (7.22)

7.4 The BPS limit

Prasad and Sommerfield wrote down an exact monopole solution in the limit /' = 0. This
limit seemed originally rather artificial, but we will see later that some supersymmetric field
theories automatically have a vanishing potential for a subset of fields. What simplifies the
analysis in this limit is that the equations for the monopole, which are ordinarily second-
order non-linear differential equations, become first-order equations. We will shortly see
how to understand this in terms of supersymmetry. First, though, we will derive this result
by looking directly at the potentials for the gauge and scalar fields. We start by deriving a
bound, the Bogomol’nyi—Prasad—Sommerfield (BPS) bound, on the mass of a static field
configuration. Again we call the gauge coupling e, to avoid confusion with the magnetic
charge g:

171 - - .
My = / d%cE |:—2B" B+ (DD)“ - (ch)“]. (7.23)
e
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2 7.4 The BPS limit

We can compare this with

1. . 2
A = /d%[—B“i(ch)“]
e

1 1 - - 1- -
- / &Px | =B? + (DO)? | + / dPx-B4(DP)*. (7.24)
2 e2 e

We can integrate the last term by parts. You can check that this works for both parts of the
covariant derivative, i.e. this term becomes:

1 3. (D . R\AHa 1 2 &4 pa

z/dx(D-B)CD —z/dad:'rrB. (7.25)
The first term vanishes by the Bianchi identity (the Yang—Mills generalization of the
equation V.B= 0). The second term is v times what we have defined to be the monopole
charge, g. So we have

As = / Px [e%z?” + (D@)“T = My + %. (7.26)
The left-hand side of this equation is clearly greater than zero, so we have shown that
My > ‘%) (1.27)
This bound, known as the Bogomol’nyi or BPS bound, is saturated when
B = ié(f)d))”. (7.28)

Note that while so far in this chapter we have worked in terms of SU(2), this result
generalizes to any gauge group with Higgs in the adjoint representation. But let us still
focus on SU(2) and try to find a solution which satisfies the Bogomol’nyi bound. As in the
case of the 't Hooft—Polyakov monopole, it is convenient to write:

~a ~J

P4 = %H(evr), A = —EZ-Z—}U — K(evr)]. (7.29)

Here we are using a dimensionless variable, u=evr, in terms of which the
Hamiltonian scales simply. We are looking for solutions for which H— 0 and K — 1
as r — 0. Otherwise, the solutions would be singular at the origin. At co, we want the
configuration to look like a gauge transformation of the vacuum solution, so we require

K— 0, H-—evr as 7 — oQ. (7.30)

We will leave the details to the exercises, but it is straightforward to show that these
equations are solved by

H) = ycothy — 1, K(y) = ——. (7.31)
sinh y
The monopole mass is
2
M, =28 = _”;, (7.32)
e e

as predicted by the BPS formula.

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

122 Magnetic monopoles and solitons

7.5 Collective coordinates for the monopole solution
I

In lower-dimensional examples we witnessed the emergence of collective coordinates,
which described the translations and other collective motions of the solitons. In the case
of the monopole we have similar collective coordinates. Again, the solutions violate
translational invariance. As a result we can generate new solutions on replacing ¥ by X —X.
Now viewing xo as a slowly varying function of ¢, we obtain as before the action of a
non-relativistic particle of mass Mp,. The particle is non-relativistic in the weak coupling
limit because its mass scales as 1/g2 and it becomes infinitely heavy as g — 0.

There is another collective coordinate of the monopole solution, which has quite remark-
able properties. In the monopole solution, charged fields are excited. So the monopole
solution is not invariant under the U(1) gauge transformations of electrodynamics. One
might think that this is not important; after all, we have stressed that gauge transformations
are not real symmetries but instead represent a redundancy of the description of a system.
But we need to be more precise. In interpreting Yang—Mills instantons, we worked in the
Ao = 0 gauge. In this gauge the important gauge transformations are time-independent
gauge transformations, and these fall into two classes: large gauge transformations and
small gauge transformations. The small gauge transformations are those which fall rapidly
to zero at infinity, and physical states must be invariant under these. For large gauge
transformations this is not the case, and they can correspond to physically distinct
configurations.

For the monopole configurations, the interesting gauge transformations are those which
tend, at infinity, to a transformation in the unbroken U(1) group. For large 7, this direction
is determined by the direction of the Higgs fields. We must be careful how we fix the gauge;
again we will work in the 49 = 0 gauge. For our collective motion, we want to study gauge
transformations in this direction which vary slowly in time. It is important, however, that
we remain in the 49 = 0 gauge, so the transformations that we will study are not quite
gauge transformations. Specifically, we consider

_ Dilx(H9]

§4; = 22 (7.33)
v

where y (7) is a general time-dependent function, but we transform A4 by

_ Do(x®)  x®
v

84y (7.34)

and, in order that the Gauss law constraint be satisfied, we require that §® = 0. The action
for x has the form:

C .
@X? (7.35)

Note that x is bounded between 0 and 27, i.e. it is an angular variable. Its conjugate
variable is like an angular momentum; calling this O we have

C . |
O=py=>k H= %eZQZ. (7.36)
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13 7.6 The Witten effect: the electric charge in the presence of 6

In the case of a BPS monopole, the constant C is e*My,/(2v?). So, each monopole has
a tower of charged excitations, with energies of order e? above the ground state. These
excitations of the monopole about the ground state are known as dyons. The mass formula
for these states has the form, in the case of a BPS monopole:
2
M=vg+ g (7.37)
g

We will understand this better when we embed this structure in a supersymmetric field
theory.

7.6 The Witten effect: the electric charge in the presence of &
I —

We have argued that in a U(1) gauge theory it is difficult to see the effects of 6. But, in the
presence of a monopole, a 6 term (see Section 5.3) has a dramatic effect, pointed out by
Witten: the monopole acquires an electric charge that is proportional to 6.

We can see this first in an heuristic way. We will work in a gauge with non-zero 4¢ and
take all fields as static. Then

E=—Vdy, B= %rg—i_% A, (7.38)
For such a configuration, the 6 term,
0e* - -
Lo = S—;E.B, (7.39)
takes the form
0elg 3 e T 0e’g 3 -
£y= -2 / dragy- T =00k / d*rdod @), (7.40)

We started with a magnetic monopole at the origin, but we now also have an electric charge
at the origin, 6e’g/(872).

One might worry that in this analysis one is dealing with a singular field configuration,
but in the non-Abelian case the configuration is non-singular. We can give a more precise
argument. Let us go back to the 49 = 0 gauge. In this gauge we can sensibly write down
the canonical Hamiltonian. In the absence of 8, the conjugate momentum to Ais E. But, in
the presence of 6, there is an additional contribution,

dd  0e -

M=--"2"4+""5 7.41
dt * 872 (7.41)

Now we will think about the invariance of states under small gauge transformations.
For 6 =0 we saw that the small gauge transformations, with gauge parameter w, are
generated by

O, = /d3x%w‘177. (7.42)
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124 Magnetic monopoles and solitons

An interesting set of large gauge transformations is those with w* = A1 ®?/v. For these,
if we integrate by parts then we obtain a term which vanishes by Gauss’s law (Gauss’s
law is enforced by the invariance under small gauge transformations), and a surface term.
This surface term gives the total U(1) charge times A. We can think of this another way.
For the low-lying excitations, multiplication by /@ corresponds to shifting the dynamical
variable x by a constant, A. In general the wave functions for x have the form €‘9X, where
q is quantized. So the states pick up a phase ¢/?*. This is just the transformation of a state
of charge ¢ under a global gauge transformation with phase A.

In the presence of 6, however, the operator which implements time-independent gauge
transformations is modified. The field E is replaced by the canonical momentum above.
Now acting on states, the extra term gives a factor g6 /(27) in the exponent. Even states
with ¢ = 0 pick up a phase, so there is an additional contribution to the charge,

7.7 Electric-magnetic duality
- ______________________________________________________________________________________|

As mentioned earlier, Maxwell’s equations suggest a possible duality between electricity
and magnetism. If there were magnetic charges, these equations would take the form

< ~ aﬁ = = g 8E -
VXEZ—E—F]m, VXBZE—l-]e (745)

These equations retain their form if we replace E by —Band B by E and also let Pe = Pm
and pyn, — —pe (and similarly for the electric and magnetic currents).

Now that we have a framework for discussing magnetic charges, it is natural to ask
whether some theories of electrodynamics really obey such a symmetry. In general,
however, this is a difficult problem. We have just learned that electric and magnetic charges,
when they both exist, obey a reciprocal relation, goc 1/e. From the point of view of
quantum field theory, this means that exchanging electric and magnetic charges also means
replacing the fundamental coupling by its inverse. In other words, if there is such a duality
symmetry, it relates a strongly coupled theory to a weakly coupled theory. We do not know
a great deal about strongly coupled gauge theories, so investigating the possibility of such
a duality is a difficult problem. That such a symmetry might exist in theories of the type we
have been discussing is not entirely crazy. For example the monopole masses behave, at
weak coupling, like 1/g2. So as the coupling becomes strong, these particles become light,
even as the charged states become heavy. They have complicated quantum numbers (some
monopole states are fermionic, for example).

Remarkably, there is a circumstance where such dualities can be studied, namely
theories with more than one supersymmetry (in four dimensions): N =4 supersymmetric
Yang—Mills theory turns out to exhibit an electric—magnetic duality. These theories will be
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125 Exercises

discussed in Chapter 15. Crucial to verifying this duality will be a deeper understanding of
the Bogomol’nyi—Prasad—Sommerfield (BPS) condition, which will allow us to establish
exact formulas for the masses of certain particles that are valid for all values of the
coupling. These formulas will exhibit precisely the expected duality between electricity
and magnetism.

Suggested reading
e ———

There are many excellent reviews and texts on monopoles. These include Coleman (1981)
and Harvey (1996), and this chapter borrows ideas from both. You can find an introduction
to the subject in Chapter 6 of Jackson’s electrodynamics text (1999).

Exercises
. ]

(1) Verify that Egs. (7.1) and (7.2) are those for infinitely long, thin, solenoids ending at
the origin.

(2) Find the kink solution of the (1 + 1)-dimensional model. Show that the collective
coordinate action is

1 .
S= [ dt EMkiIlkxO'

(3) Verify that Egs. (7.31) solve the BPS equations.
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8  Technicolor: a first attempt to explain hierarchies

In Chapter 5 we learned a great deal about quantum chromodynamics. In Section 4.5 we
argued that the hierarchy problem is one of the puzzles of the Standard Model. The grand
unified models of Chapter 6 provided a quite stark realization of the hierarchy problem. In
an SU(S) grand unified model we saw that it is necessary to adjust carefully the couplings
in the Higgs potential in order to obtain light doublet and heavy color triplet Higgs. This is
already true at tree level; loop effects will correct these relations, requiring further delicate
adjustments.

Attempts to understand the hierarchy problem in a manner consistent with ’t Hooft’s nat-
uralness principle fall into three broad categories: the dynamical breaking of electroweak
symmetry, supersymmetry (in which it is still possible that the breaking of electroweak
symmetry is dynamical), geometric approaches (large extra dimensions or warped space—
times) and supersymmetry. The present chapter gives a brief introduction to dynamical
models; Chapters 9—16 will deal with supersymmetry both as a possible new symmetry
of nature and a possible solution to the hierarchy problem. We will discuss geometric
solutions in Chapter 29 after we have learned about theories of space—time, i.e. general
relativity and string theory.

The first proposal to resolve the hierarchy problem goes by the name technicolor. The
technicolor hypothesis exploits our understanding of QCD dynamics. It elegantly explains
the breaking of the electroweak symmetry. It has more difficulty accounting for the masses
of the quarks and leptons, and simple versions seem incompatible with precision studies
of the W and Z particles and now the discovery of a Standard-Model-like Higgs boson.
In this chapter we will introduce the basic features of the technicolor hypothesis. We will
not attempt to review the many models that have been developed to try to address the
difficulties of flavor and precision electroweak experiments. It is probably safe to say that,
as of this writing, none is totally successful nor particularly plausible. But it should be
kept in mind that this may reflect the limitations of theorists; experiment may yet reveal
that nature has chosen this path. In any case, the study of these theories will deepen our
understanding of the Standard Model and of strongly coupled quantum field theories and
will open our eyes to possibilities for new physics.

We will then turn briefly to dynamical alternatives to technicolor. One of the most inter-
esting of these is the possibility that the Higgs particle is itself an approximate Goldstone
particle, the result of the breaking of some accidental global symmetry. By itself this
approach does not completely solve the hierarchy problem, but it suppresses the problem of
quadratic divergences to higher orders and one might imagine that the phenomenon might
arise in some more complete dynamical framework. It has the virtue that in it the Higgs is
to a good approximation a fundamental field, as appears to be the case experimentally.

126
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127 8.1 QCD in a world without Higgs fields

8.1 QCDin a world without Higgs fields

Consider a world with only a single generation of quarks and no Higgs fields. In such a
world the quarks would be exactly massless. The SU(2)p x SU(2)r symmetry of QCD
would be, in part, a gauge symmetry; SU(2)r, would correspond to the SU(2) symmetry of
the weak interactions. The hypercharge ¥ would include a generator of SU(2)r and baryon
number:

Y=2T3:r + B. 8.1
The quark condensate,
(arap) = Moy, (8.2)

would break some of the gauge symmetry. Electric charge, however, would be conserved,
so SU2) x U(1) — U(1).

In Appendix C it is shown that the quark condensate conserves a vector SU(2) symmetry,
ordinary isospin. This SU(2) symmetry is generated by the linear sum

Ti = TiL + Tir. (8.3)

So, the SU(2) gauge bosons transform as a triplet of the conserved isospin. This guarantees
that the successful tree level relation

My = Mzcos6 (8.4)

is satisfied. The SU(2) which accounts for this relation is called a custodial symmetry (the
Higgs potential of the Standard Model possesses, in fact, an approximate O(4) symmetry
which has a suitable SU(2) subgroup).

To understand the masses of the gauge bosons remember that, for a broken symmetry
with current j#, the coupling of the Goldstone boson to the current is

O1j* | (p)) = ifxp™. (8.5)

This means that there is a non-zero amplitude for a gauge boson to turn into a Goldstone,
and vice versa. The diagram of Fig. 8.1 is proportional to

2 l%p (8.6)

As the momentum tends to zero, this tends to a constant — the mass of the gauge boson.
For the charged gauge bosons the mass is just

mys = g f2, (8.7)

Diagrammatic representation of technicolor.
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128 Technicolor: a first attempt to explain hierarchies

while for the neutral gauge bosons we have a mass matrix

2 l
g g8
Ja2 <g / g’ 2) ’ (8.8)
giving one massless gauge boson and one with mass-squared (g2 + g’z)fg.

All this can be nicely described in terms of the non-linear sigma model used to describe
pion physics. Recall that the pions could be described in terms of a matrix field,

T = [Py, (8.9)
which transforms under SU(2)p. x SU(2)R as follows:
Y — ULSUf. (8.10)

Changes in the magnitude of the condensate are associated with excitations in QCD that
are much more massive than the pion fields (the o field of our linear sigma model of
Section 2.2). So, it is natural to treat this as a constant. The field X is then constrained to
take values on a manifold. As in our examples in two dimensions, a model based on such
a field is called a non-linear sigma model. The Lagrangian is

L=72Tr@,z 0 ). (8.11)

In the context of the physics of light pseudo-Goldstone particles, the virtue of such a model
is that it incorporates the effects of broken symmetry in a very simple way. For example,
all the results of current algebra can be derived by studying the physics of such a theory
and its associated Lagrangian.

In the case of the o-model we have an identical structure except that we have gauged
some of the symmetry, so we need to replace the derivatives by covariant derivatives:

.Aﬁaa .03
WX —> DY =0,%—i E_IZTB;.L- (8.12)
Again, we can choose a unitary gauge; we just set ¥ = 1. The Lagrangian in this gauge is
simply
A% o, 2
E:Tr( "2“2+2%BM> . (8.13)

This yields exactly the mass matrix as we wrote down before.

8.2 Fermion masses: extended technicolor
|

In technicolor models, the Higgs field is replaced by new strong interactions which break
SUR2) x U(1) atascale F; = 1 TeV. However, the Higgs field of the Standard Model gives
mass not only to the gauge bosons but to the quarks and leptons as well. In the absence of
the Higgs scalar there are chiral symmetries which prohibit masses for any of the quarks
and leptons. While our simple model can explain the masses of the Ws and Zs, it has no
mechanism to generate mass for the ordinary quarks and leptons.
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129 8.2 Fermion masses: extended technicolor

If we are to avoid introducing fundamental scalars, the only way to break these
symmetries is to introduce further gauge interactions. Consider first a single generation
of quarks and leptons. Enlarge the gauge group to SU(3) x SU(2) x U(1) x SU(N+1). The
technicolor group will be an SU(N) subgroup of the last factor. Take each quark and lepton
to be part of an N+ 1 or N + 1 representation of this larger group. To avoid anomalies, we
will also include a right-handed neutrino. In other words, our multiplet structure is:

(0 GG 0 06 e

Here ¢, u, d, ¢, etc., are the usual quarks and leptons; the fields denoted by capital letters
are the techniquarks. Now suppose that the SU(N+ 1) is broken to SU(N) at a scale Ay >
At by some other gauge interactions, in a manner similar to that of technicolor. Then there
is a set of massive gauge bosons with mass of order A,. Exchanges of these bosons give
rise to operators such as

1 _
Lag = ——Q0, 4" Us" " +h.c. (8.15)
Aetc

Using the following identity for the Pauli matrices,

AL (8.16)
n

permits us to rewrite the four-fermion interaction as

Lag = QUq*u* + h.c. (8.17)

AgTC
We can replace QU by its expectation value, which is of order Afc. This gives rise to a
mass for the u quark. The other quarks and leptons gain mass in a similar fashion.

This particular extended technicolor (ETC) model is clearly unrealistic on many counts:
it has only one generation; there is a massive neutrino; there are relations among the masses
which are unrealistic; there are approximate global symmetries which lead to unwanted
pseudo-Goldstone bosons. Still, it illustrates the basic idea of extended technicolor models:
additional gauge interactions break the unwanted chiral symmetries which protect the
quark and lepton masses from radiative corrections.

One can try to build realistic models by considering more complicated groups and
representations for the extended technicolor (ETC) interactions. Rather than attempt this
here, we will consider some issues in a general way. We will imagine that we have a model
with three generations. The extended technicolor interactions generate a set of four-fermion
interactions which break the chiral symmetries acting on the separate quarks and leptons.
In a model of three generations, there are a number of challenges which must be addressed.

1. Perhaps the most serious is the problem of flavor-changing neutral currents. In addition
to four-fermion operators which generate mass, there will also be four-fermion operators
involving just the ordinary quarks and leptons. These operators will not, in general,
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130 Technicolor: a first attempt to explain hierarchies

respect flavor symmetries. They are likely to include terms like

Las— = sds*d*, (8.18)

etc

which violate strangeness by two units. Unless Agy is extremely large (of order
hundreds of TeV), this will lead to unacceptably large rates for K0 <> K.

2. Generating the top quark mass is potentially problematic; it is larger than the W and Z
masses. If the ETC scale is large, it is hard to see how to achieve this.

3. The problem of pseudo-Goldstone bosons is generic to technicolor models, in just the
fashion we saw for the simple model.

The challenge of technicolor model building is to construct models which solve these
problems. We will not attempt to review the various approaches which have been put
forward here. Models which solve these problems are typically extremely complicated.
Instead, we briefly discuss another serious difficulty: the precision measurement of
electroweak processes.

8.3 The Higgs discovery and precision electroweak measurements
I

In Section 4.5 we stressed that the parameters of the electroweak theory have been mea-
sured with high precision and compared with detailed theoretical calculations, including
radiative corrections. One naturally might wonder whether a strongly interacting Higgs
sector could reproduce these results. The answer is that it is difficult. There are two
categories of corrections which one needs to consider. The first are, in essence, corrections
to the relation

MW:M2COS9W. (8.19)

In a general technicolor model these will be large. But we have seen why this relation holds
in the minimal Standard Model: there is an approximate global SU(2) symmetry. This is in
fact the case of the simplest technicolor model we encountered above. So this problem is
likely to have solutions.

There are, however, other corrections as well, resulting from the fact that in these
strongly coupled theories the gauge boson propagators are quite different from those in
weakly coupled field theories. They have been estimated in many models and are found
to be far too large to be consistent with the data. More details about this problem, and
speculations on possible solutions, can be found in the suggested reading.

The discovery of a Higgs particle behaving very much as a simple fundamental doublet
poses further challenges. In analogy with QCD, in general we would not expect to find
scalars much lighter than the TeV scale, and would expect that any such scalars would
be quite broad resonances. There is no reason to expect that they should be narrow, with
couplings close to those of the Standard Model, never mind couplings as expected in the
Minimal Supersymmetric Standard Model.
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131 Suggested reading

8.4 The Higgs as a Goldstone particle

An attractive possibility which has received much attention over the years is that the
Higgs doublet is a pseudo-Goldstone particle of some approximate global symmetry. If
the characteristic scale of the underlying theory is A, so that the next lightest excitations
have masses of this order while the parameters of the Higgs potential are loop suppressed,
we might hope that the doublet will behave like an elementary field up to terms suppressed
by powers of A.

Necessarily this symmetry is broken by the gauge interactions. This is important, as such
symmetry breaking is necessary to obtain a potential for the Higgs field. As an example,
we might imagine that the underlying global symmetry is SU(3), and the Goldstone bosons
of this SU(3) symmetry can be described by a non-linear sigma model with a field ¥ living
on the coset SU(3)/SU(2). The components of X include the Higgs field. The difficulty
with the simplest version is that the scales f (the Goldstone decay constant) and A are
not appreciably separated. At one loop there are quadratically divergent corrections to the
Higgs mass from gauge loops. These are cut off at some scale A. From considerations of
unitarity — the scale A should be such that loop corrections are at most of order one — one
expects that A> < 4zf2. This is insufficient to explain precision electroweak breaking or
the Higgs width.

To avoid this difficulty, models have been constructed with more intricate symmetries.
Often, a phenomenon known as collective symmetry breaking is invoked. The basic idea
is that there are several gauge interactions and only collectively do they break enough
symmetry that one can generate a Higgs potential. In the resulting “little Higgs™ theories
the symmetries prevent a one-loop contribution to the Higgs mass at one-loop order, and
the Higgs field appears to be elementary to the required precision.

It is important that the fermions also respect these larger symmetries. This requires,
at a minimum, additional vector-like fields. At a more microscopic level one expects
that these global symmetries are accidents of the underlying structure. Non-Abelian
symmetries acting both on scalars and fermions in the required, rather intricate, ways may
be challenging to discover. Some existing models invoke supersymmetry to achieve this.

Suggested reading

An up-to-date set of lectures on technicolor, including the problems of flavor and elec-
troweak precision measurements, are given in the online article of Chivukula (2000). An
introduction to the analysis of precision electroweak physics is provided by Peskin (1990);
for an application to technicolor theories, see Peskin and Takeuchi (1990). The Particle
Data group summary of technicolor theories surveys the status of dynamical models for
electroweak symmetry breaking, in light of the Higgs discovery. Little Higgs theories are
described in the reviews of Perelstein (2007) and Schmaltz and Tucker-Smith (2005).
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132 Technicolor: a first attempt to explain hierarchies

Exercises
. |

(1) Determine the relations between the quark and lepton masses in the extended techni-
color model above.

(2) What are the symmetries of the extended technicolor model in the limit where we
turn off the ordinary SU(3) x SU(2) x U(1) gauge interactions? How many of these
symmetries are broken by the condensate? Each broken symmetry gives rise to an
appropriate Nambu—Goldstone boson. Some of these approximate symmetries are
broken explicitly by the ordinary gauge interactions. The corresponding Goldstone
bosons will then gain mass, typically of order o; Aetc. Some will not gain mass of this
order, however. Which symmetry (or symmetries) will be respected by the ordinary
gauge interactions?
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Supersymmetry

In a standard advanced field theory course, one learns about a number of symmetries:
Poincaré invariance, global continuous symmetries, discrete symmetries, gauge symme-
tries, approximate and exact symmetries. These latter symmetries all have the property
that they commute with Lorentz transformations and in particular with rotations. So, the
multiplets of the symmetries always contain particles of the same spin; in particular, they
always consist of either bosons or fermions.

For a long time, it was believed that these were the only allowed types of symmetry;
this statement was even embodied in a theorem, known as the Coleman-Mandula theorem.
However, physicists studying theories based on strings stumbled on a symmetry which
related fields of different spin. Others quickly worked out simple field theories with this
new symmetry, called supersymmetry.

Supersymmetric field theories can be formulated in dimensions up to eleven. These
higher-dimensional theories will be important when we consider string theory. In this
chapter we consider theories in four dimensions. The supersymmetry charges, because they
change spin, must themselves carry spin — they are spin-1/2 operators. They transform as
doublets under the Lorentz group, just like the two-component spinors x and x*. (The
theory of two-component spinors is reviewed in Appendix A, where our notation, which is
essentially that of the text by Wess and Bagger (1992), is explained.) There can be 1, 2, 4 or
8 such spinors; correspondingly, the symmetry is said to be N = 1,2, 4 or 8 supersymmetry.
Like the generators of an ordinary group, the supersymmetry generators obey an algebra;
unlike an ordinary bosonic group, however, the algebra involves anticommutators as well
as commutators (it is said to be “graded”).

There are at least four reasons to think that supersymmetry might have something to do
with TeV-scale physics. The first is the hierarchy problem: as we will see, supersymmetry
can both explain how hierarchies arise, and why there are no large radiative corrections.
The second is the unification of couplings. We have seen that while the gauge group of
the Standard Model can in a rather natural way be unified in a larger group, the couplings
do not unify properly. In the minimal supersymmetric extension of the Standard Model
(the minimal supersymmetric Standard Model, or MSSM) the couplings unify nicely if
the scale of supersymmetry breaking is about 1 TeV. Third, the assumption of TeV-scale
supersymmetry almost automatically yields a suitable candidate for dark matter, with a
density in the required range. Finally, low-energy supersymmetry is strongly suggested by
string theory, though at present one cannot assert that this is an actual prediction.

135
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136 Supersymmetry

9.1 The supersymmetry algebra and its representations
I

Because the supersymmetry generators are spinors, they do not commute with the Lorentz
generators. Perhaps, then, it is not surprising that a supersymmetry algebra involves
translation generators Q, (Qy = Q(’;)1 with anticommutators

{00 O} = 20758"°P., ©.)
{0%. OF) = eapX™; 9.2)

here 4, B =1, ..., N, where the integer N labels a particular algebra. The X4Bg are Lorentz
scalars, antisymmetric in 4, B, known as central charges.

If nature is supersymmetric, it is likely that for the low-energy symmetry N = 1, cor-
responding to only one possible value for the index 4 above. Only N = 1 supersymmetry
has chiral representations. Of course, one might imagine that the chiral matter would arise
at the point where supersymmetry was broken. As we will see, it is very difficult to break
N > 1 supersymmetry spontaneously; however, this is not the case for N = 1. The smallest
irreducible representations of N = 1 supersymmetry which can describe massless fields are
as follows:

e chiral superfields (¢, V), comprising a complex scalar and a chiral fermion;

e vector superfields (A, A4,), comprising a chiral fermion and a vector meson, both, in
general, in the adjoint representation of the gauge group;

e the gravity supermultiplet (¥, «,guv), compressing a spin-3/2 particle, the gravitino,
and a spin-2 particle, the graviton.

One can work in terms of these fields, writing down supersymmetry transformation
laws and constructing invariants. This turns out to be rather complicated; one must use
the equations of motion to realize the full algebra. Great simplification is achieved by
enlarging space—time to include commuting and anticommuting variables. The result is
called superspace.

9.2 Superspace

We may conveniently describe N = 1 supersymmetric field theories by using superspace.
Superspace allows a simple description of the action of the symmetry on fields and
provides an efficient algorithm for the construction of invariant Lagrangians. In addition,
calculations of Feynman graphs and other quantities are often greatly simplified using
superspace, at least in the limit where supersymmetry is unbroken or nearly so.

! The notation with the bar over the Os and 0s is helpful here and conforms with that of the classic text of Wess
and Bagger. Note that this differs from our notation in earlier chapters, where we used a bar on left-handed
fields to distinguish particles transforming in, say, the 3 or 3 representation of SU(3).
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137 9.2 Superspace

In superspace, in addition to the ordinary coordinates x** one has a set of anticommuting,
Grassmann, coordinates, 6, and 63 = 6;. The Grassmann coordinates obey

{60,608} = 164,04} = (60,04} = 0. 93)

Grassmann coordinates provide a representation of the classical configuration space for
fermions; they are familiar from the problem of formulating the fermion functional integral.
Note that the square of any 6 vanishes. The derivatives also anticommute:

0 0
—— ¢ =0, etc. 9.4)

Crucial in the discussion of Grassmann variables is the problem of integration. In
discussing the Poincaré invariance of ordinary field-theory Lagrangians, the property of
ordinary integrals that

/OO dxfix + a) = f: dx f(x) (9.5)

oo _
is important. We require that the analogous property hold for Grassmann integration (here
for one variable):

/ dof(O +¢) = / dof ). (9.6)

This is satisfied by the integration rule
/d@(l,@) = (0,1). 0.7
For the case of 6, 8, one can write a simple integral table:
fdze 6% =1, /dzééz =1, (9.8)

all other such integrals vanish.

One can formulate a superspace description for both local and global supersymmetry.
The local case is rather complicated, and we will not deal with it here, referring the
interested reader to the suggested reading and confining our attention to the global case.

The goal of the superspace formulation is to provide a classical description of the action
of the symmetry on fields, just as one describes the action of the Poincaré generators.
Consider a function of the superspace variables, f(x*,6,6). The supersymmetry generators
act on such a function as differential operators:

3 =4 . 3
Oy = Fr iol 0%8,, Q4= v ARS 0%l 9, 9.9)
o

Note that the 0s have mass dimension —1/2. It is easy to check that the O,s obey the
algebra. For example,

0 — d —4
_ _ a _isV. 0B _
{Ow,0p} = {(89(1 zo(ffdé 8u>> (89,3 zaﬂBG Bv)} =0, (9.10)

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

138 Supersymmetry

since the Os and their derivatives anticommute. With just slightly more effort one can
construct the {Q,, Qd} anticommutator.

One can think of the Os as generating infinitesimal transformations in superspace with
Grassmann parameter €. One can construct finite transformations as well by exponentiating
the Os; because there are only a finite number of non-vanishing polynomials in the 65, these
exponentials contain only a finite number of terms. The result can be expressed elegantly:

e€Q+€Qcp(xM’9’9_) = O(H — ieo™0 + i "E 0 +€,0 + €). (0.11)

If one expands @ in powers of 6, there are only a finite number of terms. These can
be decomposed into two irreducible representations of the algebra, corresponding to the
chiral and vector superfields described above. To understand these, we need to introduce
one more set of objects, the covariant derivatives D, and Dg. These are objects which
anticommute with the supersymmetry generators and thus are useful for writing down
invariant expressions. They are given by

Dy = 3y +i0/30%9,, Dy = —d; — 10”0149, (9.12)
They satisfy the anticommutation relations

We can use the Ds to construct irreducible representations of the supersymmetry algebra.
Because the Ds anticommute with the Os, the condition

Dy® =0 (9.14)

is invariant under supersymmetry transformations. Fields that satisfy this condition are
called chiral fields. To construct such fields, we would like to find combinations of x*, 0
and 6 which are annihilated by D,,. Writing

yH =x* +ifcho, (9.15)
then
D= DY) = () + V20 () + 62 F() (9.16)

is a chiral (scalar) superfield. Expanding in 6, we see that the expansion terminates:
. ] 1 27000
O =¢x) +i0c"09,¢ + 29 0°0°¢ 9.17)

1 V20y — %eeauwaﬂé 1 62F.

We can work out the transformation laws. Starting with
8D = €0, @ + €} 0", (9.18)
the components transform as follows:

8¢ = N2eyr, 8¢ = 2eF +V2ic"e 0,9, SF = iN2e* 510, (9.19)
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139 9.2 Superspace

Vector superfields form another irreducible representation of the algebra; they satisfy the
condition

V=" (9.20)

Again, it is easy to check that this condition is preserved by supersymmetry transforma-
tions. A vector superfield ¥ can be expanded in a power series in the 65s:

__ _ 1 _
V=ix—ix" =00 0%4, + 6?61 — 0?0 + 59292& 9.21)

Here x is not quite a chiral field. It is a superfield which is a function of 6 only, i.e. it has
terms with zero, one or two 0s; x * is its conjugate.

If V is to describe a massless field, the presence of 4, indicates that there should be
some underlying gauge symmetry, which generalizes the conventional transformation of
bosonic theories. In the case of a U(1) theory, gauge transformations act by

V— V4+iA —iA" 9.22)

where A is a chiral field. The 66* term in A is precisely a conventional gauge transforma-
tion of 4,,. In the case of a U(1) theory, one can define a gauge-invariant field strength

1.
Wy = —ZDZDC, V. (9.23)

By a gauge transformation, we can set y = 0. The resulting gauge is known as the
Wess—Zumino gauge. This gauge is analogous to the Coulomb gauge in electrodynamics:

W = —ida +0uD — 04" BF b + 0%/ 8,07 (9.24)
The gauge transformation of a chiral field of charge ¢ is given by
O — e MNP, (9.25)
One can form gauge-invariant combinations using the vector superfield (connection) V-
ot . (9.26)
We can also define a gauge-covariant derivative by
Dy ® =Dy ® + Dy V. (9.27)

This construction has a non-Abelian generalization. It is most easily motivated by first
generalizing the transformation of ® to

O —> e N, (9.28)

where A is now a matrix-valued chiral field.
Now we want to combine ¢' and ¢ in a gauge-invariant way. By analogy with what we
did in the Abelian case, we introduce a matrix-valued field V" and require that

o'’ P (9.29)
be gauge-invariant. So we require that

el — e e e, (9.30)
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140 Supersymmetry

From this, we can define a gauge-covariant field strength,
I-
W, = —ZDze*VDaeV. (9.31)

This transforms under gauge transformations like a chiral field in the adjoint representation:

Wy — et Wye ™. (9.32)

9.3 N = 1Llagrangians

In ordinary field theories we construct Lagrangians that are invariant under translations
by integrating densities over all space. The Lagrangian changes by a derivative under
translations, so the action is invariant. Similarly, if we start with a Lagrangian density
in superspace, a supersymmetry transformation acts by differentiation with respect to x or
6. So, integrating the variation over the full superspace gives zero. This is the basic feature
of the integration rules that we introduced earlier. In terms of equations we have

S/d“x/d“e WD, o', 1) = /d4xd49 (€204 + €60DR(D, 7, 1) =0.  (9.33)

For chiral fields, integrals over half superspace are invariant. If f{®) is a function of chiral
fields only, fitself is chiral. As a result,

8 / d*xd? 6 f(®) = / d*xd® 0(e*Qy + €0 D). (9.34)

The integrals over the O, terms vanish when integrated over x with respect to @>6. The Q*
terms also give zero. To see this, note that f{®) is itself chiral (check), so that

Oaf o 00" 00y f. (9.35)

We can construct a general Lagrangian for a set of chiral fields ®; and gauge group
G. The chiral fields have dimension one (again, note that the s have dimension —1/2).
The vector superfields V' are dimensionless, while W, has dimension 3/2. With these
ingredients, we can write down the most general renormalizable Lagrangian. First, there
are terms involving integration over the full superspace:

Liin = f d*oy ol o, (9.36)
i

where the factor ¢’ is in the representation of the gauge group appropriate to the field ®;.
We can also write down an integral over half of superspace:

Ly = / dPPOW(®D;) + c.c. 9.37)
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141 9.3 N = 1Lagrangians

Here W(®) is a holomorphic function of the ®;s (it is a function of ®;, not q>j), called the
superpotential. For a renormalizable theory,

1 1
W= Emijcbicbj + gry'kcbiq>jq>k- (9.38)
Finally, for the gauge fields we can write
1 .
Lgauge = g2 / o WS>, (9.39)

The full Lagrangian density is
L = Lyin + Ly + £gauge~ (9-40)

The superspace formulation has provided us with a remarkably simple way to write the
general Lagrangian. In this form, however, the meaning of these various terms is rather
opaque. We would like to express them in terms of the component fields. We can do this by
using our expressions for the fields in terms of their components, and our simple integration
table. We first consider a single chiral field ® that is neutral under any gauge symmetries.
Then

Liin = [0, @ + iYe 8,0 ¥ + FiFo. 9.41)

The field F'is referred to as an auxiliary field, as it appears without derivatives in the action.
Its equation of motion will be algebraic and can be solved easily. It has no dynamics. For
several fields, labeled with an index i, the generalization is immediate:

Liin = |0,0i> + ivi0, 0"y + F/°F;. (9.42)

It is also easy to work out the component form of the superpotential terms. We will write
this down for several fields:
oW W

_ . VA 9.43
ﬁW 3@,‘ z"‘aq)iq)j‘pﬂp/ ( )

For our special choice of superpotential this becomes
Lw = Fi(mj®; + L ®;®p) + (myj + A @)y + c.c. (9.44)

It is a simple matter to solve for the auxiliary fields:

ow
Ff=_—. 9.45
i 20, (9.45)

Substituting back into the Lagrangian, we obtain

aw |?

— 9.46
5, (9.46)

V=IF? =‘

To work out the couplings of the gauge fields, it is convenient to choose the
Wess—Zumino gauge. Again, this is analogous to the Coulomb gauge, in that it makes
manifest the physical degrees of freedom (the gauge bosons and gauginos) but the
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142 Supersymmetry

supersymmetry is not explicit. We will leave performing the integrations over superspace
to the exercises, and just quote the full Lagrangian in terms of the component fields:

1
L= —ngFgﬁ — Mot DA+ |Dyil* — iio Dy
1 ow
+ 2—2(0")2 + DY ¢iT i+ F}F; — Fim— +c.c.
g - 99
1w
5 Wij +ivV2 ) ANy Tgr. (9.47)
ij R
The scalar potential is found by solving for the auxiliary D and F fields:
1
V= 4 55 (0’ (9.48)
a
with
ow
Fi=gg D'= > (&b T ). (9.49)
i i

In the case where there is a U(1) factor in the gauge group, there is one more term one
can include in the Lagrangian, known as the Fayet—Iliopoulos D term. In superspace,

£ f d*ov (9.50)

is supersymmetric and gauge invariant, since the integral | d*0® vanishes for any chiral
field. In components, this is simply a term linear in D, £D; so, solving for D from its
equations of motion, we obtain

D=§+) qidi:. (9-51)

9.4 The supersymmetry currents

We have written down classical expressions for the supersymmetry generators, but for
many purposes it is valuable to have expressions for these objects as operators in quantum
field theory. We can obtain these by using the Noether procedure. We need to be careful,
though, because the Lagrangian is not invariant under supersymmetry transformations but
instead transforms by a total derivative. This is similar to the problem of translations in
field theory. To see that there is a total derivative in the variation, recall that the Lagrangian
has the form, in superspace,

f d*0f6,0) + / d?OW () + c.c. (9.52)

The supersymmetry generators all involve a 9/96 term and a 69, term. The variation of
the Lagrangian is proportional to [ d 49eQf+ --- . The term involving 3/96 integrates to
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143 9.5 The ground state energy in globally supersymmetric theories

zero, but the extra term does not; only in the action, obtained by integrating the Lagrangian
density over space—time, does the derivative term drop out.

So, in performing the Noether procedure the variation of the Lagrangian will have the
form

8L = €3, K" + (3,€)T". (9.53)

Integrating by parts, we have that K* — T" is conserved. Taking this into account, for a
theory with a single chiral field,

= «/EG(:B&“BV Yy Byp* + iv/2F oy (9.54)

and similarly for ]5 The generalization for several chiral fields is obvious: one makes
the replacements ¢ — vy, ¢ — ¢, etc. and sums over i. One can check that the
(anti)commutators of the Qs (which are integrals over /%) with the various fields gives
the correct transformations laws. One can do the same for the gauge fields. Working with
the action written in terms of W there are no derivatives, so the variation of the Lagrangian
comes entirely from the 9, K* term in Eq. (9.53). We have already seen that the variation
of [ d?6 is a total derivative. The current is worked out in the exercises at the end of this
chapter.

9.5 The ground state energy in globally supersymmetric theories
|

One striking feature of the Lagrangian of Eq. (9.47) is that the potential V' > 0. This fact
can be traced back to the supersymmetry algebra. Start with the equation

(0. 0) = 2P0l (9.55)

multiply by o and take the trace:

1 _ _
E= ZQan + Qde (9-56)

Since the left-hand side is positive, the energy is always greater than or equal to zero.

In global supersymmetry, £ = 0 is very special: the expectation value of the energy
is an order parameter for supersymmetry breaking. If the supersymmetry is unbroken
then 0,|0) = 0, so the ground-state energy vanishes if and only if the supersymmetry
is unbroken.

Alternatively, consider the supersymmetry transformation laws for A and y. One has,
under a supersymmetry transformation with parameter €,

SY =N2eF+---, SA=ieD+---. 9.57)
In quantum theory the supersymmetry transformation laws become operator equations

8¢ = {0, ¢} (9.58)
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144 Supersymmetry

so, taking the vacuum expectation value of both sides, we see that a non-vanishing field
F means broken supersymmetry. Again the vanishing of the energy is an indicator of
supersymmetry breaking. So, if either " or D has an expectation value, the supersymmetry
is broken.

The signal of ordinary (bosonic) symmetry breakdown is a Goldstone boson. In the case
of supersymmetry the signal is the presence of a Goldstone fermion, or goldstino. One can
prove a goldstino theorem in almost the same way as one proves Goldstone’s theorem.
We will do this shortly, when we consider simple models of supersymmetry and its
breaking.

9.6 Some simple models
I

In this section we consider some simple models, in order to develop some practice with

supersymmetric Lagrangians and to illustrate how supersymmetry is realized in the spectra
of these theories.

9.6.1 The Wess—Zumino model

One of the earliest, and simplest, models is the Wess—Zumino model, a theory of a single
chiral field (no gauge interactions). For the superpotential we take

1 A
W=—mp>+ =¢>. (9.59)
2 3
The scalar potential is (using ¢ for the super-and-scalar field)
V=|m¢ + rp?)? (9.60)

and the ¢ field has mass-squared |m|?. The fermion mass term is

%mwp, (9.61)

so the fermion also has mass m.

We will now consider the symmetries of the model. First, set m = 0. The theory then
has a continuous global symmetry. This is perhaps not obvious from the form of the
superpotential, W = (1/3)¢>. But the Lagrangian is an integral over superspace of 17,
so it is possible for ¥ to transform and for the s to transform in a compensating fashion.
Such a symmetry, which does not commute with supersymmetry, is called an R symmetry.
If, by convention, we take the 0s to carry charge 1 then the dfs carry charge —1 (think of
the integration rules). So the superpotential must carry charge 2. In the present case, this
means that ¢ carries charge 2/3. Note that each component of the superfield transforms
differently:

¢ — ei(2/3)a¢’ w — ei(2/3—1)aw’ F—> ei(2/3—2)OtF. (962)
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145 9.6 Some simple models

Now consider the problem of mass renormalization at one loop in this theory. First
suppose again that m = 0. From our experience with non-supersymmetric theories we
might expect a quadratically divergent correction to the scalar mass. But ¢ carries charge
4/3, and this forbids a mass term in the superpotential. For the fermion the symmetry
does not permit us to draw any diagram which corrects the mass. For the boson, however,
there are two diagrams, one with intermediate scalars and one with fermions. We will
study these in detail later. Consistently with our argument, these two diagrams are found to
cancel.

What if, at tree level, m # 0? We will see shortly that there are still no corrections
to the mass term in the superpotential. In fact, perturbatively, there are no corrections to
the superpotential at all. There are, however, wave-function renormalizations; rescaling ¢
corrects the masses. In four dimensions, the wave-function corrections are logarithmically
divergent, so there are logarithmically divergent corrections to the masses but no quadratic
divergences.

9.6.2 AU(T) gauge theory

Consider a U(1) gauge theory, with two charged chiral fields, ¢+ and ¢, having charges
+1, respectively. First suppose that the superpotential vanishes. Our experience with
ordinary field theories would suggest that we start developing a perturbation expansion
about the point in field space $* = 0. But, consider the potential in this theory. In the
Wess—Zumino gauge we have

28
2

Zero-energy supersymmetric minima have D = 0. By a gauge choice we can set

1
VipE) = 5D (gt — 1o~ )2 (9.63)

pt=v, ¢~ =v'e?, (9.64)

with v, v/ parameters with dimensions of mass. Then D = 0 if v = v’. In field theory,
as discussed in Section 2.3, when one has such a continuous degeneracy, just as in the
case of global symmetry breaking, one must choose a vacuum. Each vacuum is physically
distinct — in this case, the spectra are different — and there are no transitions between vacua.

It is instructive to work out the spectrum in a vacuum with a given v. One has, first, the
gauge bosons, with masses

m? = 4g%? (9.65)

This accounts for three degrees of freedom. From the Yukawa couplings of the gaugino A
to the ¢s, one has a term

L5 = N2gva(gr — Yp-), (9.66)

so we have a Dirac fermion with mass 2gv. Now we have accounted for three bosonic
and two fermionic degrees of freedom. The fourth bosonic degree of freedom is a scalar;
one can think of it as the partner of the Higgs, which is eaten in the Higgs phenomenon.
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146 Supersymmetry

To compute its mass, note that, expanding the scalars as
¢t =v+ 8T, 9.67)
we have
D =gv(8¢pT + 80T — 8¢ — 8¢ ). (9.68)

So D? gives a mass to the real part of §¢ — 8¢, equal to the mass of the gauge bosons
and gauginos. Since the masses differ in states with different v, these states are physically
inequivalent.

There is also a massless state: a single chiral field. For the scalars, this follows on
physical grounds: the expectation value v is undetermined and one phase is undetermined,
so there is a massless complex scalar. For the fermions, the linear combination g+ + v4-
is massless. So we have the correct number of fields to construct a massless chiral multiplet.
We can describe this elegantly by introducing the composite chiral superfield or modulus

O =¢ptp™ ~ v+ vt +8¢7). (9.69)

Its components are precisely the massless complex scalar and the chiral fermion which we
identified above.

This is our first encounter with a phenomenon which is nearly ubiquitous in supersym-
metric field theories and string theory: there are often continuous sets of vacuum states,
at least in some approximation. The set of such physically distinct vacua is known as the
moduli space. In this example the set of such states is parameterized by the values of the
modulus field ®.

In quantum mechanics, in such a situation we would solve for the wave function of
the modulus and the ground state would typically involve a superposition of the different
classical ground states. We have seen, though, that in field theory one must choose a value
for the modulus field. In the presence of such a degeneracy, for each such value one has, in
effect, a different field theory — no physical process leads to transitions between one such
state and another. Once the degeneracy is lifted, however, this is no longer the case and
transitions, as we will frequently see, are possible.

9.7 Non-renormalization theorems
|

In ordinary field theories, as we integrate out the physics between one scale and another,
we generate every term in the effective action permitted by the symmetries. This is not
the case in supersymmetric field theories. This feature gives such theories surprising, and
possibly important, properties when we consider questions of naturalness. It also gives us
a powerful tool to explore the dynamics of these theories, even at strong coupling. This
power comes easily; in this section, we will enumerate these theorems and explain how
they arise.

So far, we have restricted our attention to renormalizable field theories. But we have
seen that, in considering Beyond the Standard Model physics, we may wish to relax this
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147 9.7 Non-renormalization theorems

restriction. It is not hard to write down the most general, globally supersymmetric, theory
with at most two derivatives, using the superspace formalism:

L= / d*0K (¢, o)) + / d*OW (¢) + c.c. + / d2ejg(¢)(Wg“>)2+c.c. (9.70)

The function K is known as the Kahler potential. Its derivatives dictate the form of the
kinetic terms for the different fields. The functions W and f, are holomorphic (what
physicists would comfortably call “analytic”) functions of the chiral fields. In terms of
the component fields (see the exercises) the real part of / couples to F fw; the functions W
and f, thus determine the gauge couplings. The imaginary parts couple to the now-familiar
operator FF. These features of the Lagrangian will be important in much of our discussion
of supersymmetric field theories and string theory.

Non-supersymmetric theories have the property that they tend to be generic; any term
permitted by symmetries in the theory will appear in the effective action, with an order
of magnitude determined by dimensional analysis.> Supersymmetric theories are special
in that this is not the case. In N = 1 theories, there are non-renormalization theorems
governing the superpotential and the gauge coupling functions f of Eq. (9.70). These
theorems assert that the superpotential is not corrected in perturbation theory beyond its
tree level value, while fis at most renormalized at one loop.3

Originally, these theorems were proven by the detailed study of Feynman diagrams.
Seiberg has pointed out that they can be understood in a much simpler way. Both the
superpotential and the functions f are holomorphic functions of the chiral fields, i.e. they
are functions of the ¢;s and not the ¢s. This is evident from their construction. Seiberg
argued that the coupling constants of a theory may be thought of as expectation values of
chiral fields and so the superpotential must be a holomorphic function of these as well. For
example, consider a theory of a single chiral field ® with superpotential

W=m®d? 4 rd>. 9.71)

We can think of A and m as the expectation values of chiral fields A (x, 8) and m(x, ).

In the Wess—Zumino Lagrangian, if we first set A to zero then there is an R symmetry
under which ® has R-charge 1 and A has R-charge —1. Now consider corrections to
the effective action in perturbation theory. For example, renormalizations of A in the
superpotential necessarily involve positive powers of A. But such terms (apart from A!)
have the wrong R-charge to preserve the symmetry. So there can be no renormalization of
this coupling. There can be wave function renormalization, since K is not holomorphic, so
K = K(2) is allowed in general.

There are many interesting generalizations of these ideas, and we will not survey them
here but will just mention two further examples. First, gauge couplings can be thought of

2 In some cases, there may be suppression by a few powers of the coupling.

3 There is an important subtlety connected with these theorems. Both should be interpreted as applying only to a
Wilsonian effective action, in which one integrates out the physics above some scale w. If infrared physics is
included, the theorems do not necessarily hold. This is particularly important for the gauge couplings.
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148 Supersymmetry

in the same way, i.e. we can treat g~ as part of a chiral field. More precisely, we define

8 2
S=T a4 (9.72)
g

The real part of the scalar field in this multiplet couples to Ffw but the imaginary part, a,
couples to FF. Because FF is a total derivative, in perturbation theory there is a symmetry
under constant shifts of a. The effective action should respect this symmetry. Because the
gauge coupling function f'is holomorphic, this implies that

] 2
f(g2) = S+ const = Lz + const. (9.73)
g

The first term is just the tree level term. One-loop corrections yield a constant, but there are
no higher-order corrections in perturbation theory! This is quite a striking result. It is also
paradoxical, since the two-loop beta functions for supersymmetric Yang—Mills theories
were computed long ago and are, in general, non-zero. The resolution of this paradox is
subtle and interesting. It provides a simple computation of the two-loop beta function. In a
particular renormalization scheme, it gives an exact expression for the beta function. This
is explained in Appendix D.

Before explaining the resolution of the above paradox, there is one more non-
renormalization theorem which we can prove rather trivially here. This is the statement
that if there is no Fayet—Iliopoulos D term at tree level, this term can be generated at most
at one loop. To prove this, write the D term as

/ d*od(g, V. 9.74)

Here d(g, A) is some unknown function of the gauge and other couplings in the theory. But,
if we think of g and A as chiral fields then this expression is only gauge invariant if d is a
constant, corresponding to a possible one-loop contribution. Such contributions do arise in
string theory.

In string theory, all the parameters are expectation values of chiral fields. Indeed,
non-renormalization theorems in string theory, both for world-sheet and string perturbation
theory, were proven by the sort of reasoning we have used above.

9.8 Local supersymmetry: supergravity
|

If supersymmetry has anything to do with nature, and is not merely an accident, then
it must be a local symmetry. There is not space here for a detailed exposition of local
supersymmetry. For most purposes, both theoretical and phenomenological, there are
fortunately only a few facts we need to know. The field content (in four dimensions) is
like that of global supersymmetry, except that now one has a graviton and a gravitino.
Note that the number of additional bosonic and fermionic degrees of freedom (a minimal
requirement if the theory is to be supersymmetric) is the same. The graviton is described
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by a traceless symmetric tensor; in d — 2 = 2 dimensions, this has two independent
components. Similarly, the gravitino v, has both a vector and a spinor index. It satisfies a
constraint similar to tracelessness,

Y, = 0. (9.75)

In d — 2 dimensions, this amounts to two conditions, leaving two physical degrees of
freedom.

As in global supersymmetry (without the restriction of renormalizability), the terms in
the effective action with at most two derivatives or four fermions are completely specified
by three functions:

1. the Kahler potential K(¢, ¢ "), a function of the chiral fields;

2. the superpotential W(¢), a holomorphic function of the chiral fields;

3. the gauge coupling functions f,(¢), which are also holomorphic functions of the chiral
fields.

The Lagrangian which follows from these is quite complicated, as it includes many two-
and four-fermion interactions. It can be found in the suggested reading. Our main concern
in this text will be the scalar potential. This is given by

v ek [ (O KN i (O K, 3|2 (9.76)
= e e — — —_— RS — s .
o o9 )¢ \ogr T dgr
where
_ 7K (9.77)
8 3gi0; '

is the (Kahler) metric associated with the Kahler potential. In this equation, we have
adopted units in which M = 1, where Newton’s gravitational constant is given by

1
- 8nM?
and M ~ 2 x 10'® GeV is known as the reduced Planck mass.

Gn (9.78)

Suggested reading
I —

The text by Wess and Bagger (1992) provides a good introduction to superspace, the
fields and Lagrangians of supersymmetric theories in four dimensions and supergravity.
Other texts include those by Gates et al. (1983) and Mohapatra (2003). Appendix B
of Polchinski’s (1998) text provides a concise introduction to supersymmetry in higher
dimensions. The supergravity Lagrangian is derived and presented in its entirety in
Cremmer ef al. (1979) and Wess and Bagger (1992) and is reviewed in, for example, Nilles
(1984). Non-renormalization theorems were first discussed from the viewpoint presented
here by Seiberg (1993).
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150 Supersymmetry

Exercises
. |

(1) Verify the commutators of the Os and the Ds.

(2) Check that, given the definition Eq. (9.15), ® is chiral. Show that any function of chiral
fields is a chiral field.

(3) Verify that ¥, transforms as in Eq. (9.32) and that Tr##72 is gauge invariant.

(4) Derive the expression (9.47) for the component Lagrangian including gauge interac-
tions and the superpotential, by performing the superspace integrals. For an SU(2)
theory with a scalar triplet d: and singlet, X, take W = A(qu — 1?). Find the ground
state and work out the spectrum.

(5) Derive the supersymmetry current for a theory with several chiral fields. For a single
field ® and W = (1/2) md2, verify, using the canonical commutation relations,
that the Qs obey the supersymmetry algebra. Work out the supercurrent for a pure
supersymmetric gauge theory.
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A first look at supersymmetry breaking

If supersymmetry has anything to do with the real world, it must be a broken symmetry,
as we do not see any degeneracy between bosons and fermions in nature. In the
globally supersymmetric framework that we have presented so far, this breaking could
be spontaneous or explicit. As we will argue later, once we promote the symmetry to
a local symmetry, the breaking of supersymmetry must be spontaneous. The signal of
such a breaking is a massless fermion, the goldstino, whose interactions are governed by
low-energy theorems. However, as we will also see, at low energies the theory can appear
to be a globally supersymmetric theory with explicit, “soft”, breaking of the symmetry. In
this chapter we will discuss some features of both spontaneous and explicit breaking.

10.1 Spontaneous supersymmetry breaking
e ——————

We have seen that supersymmetry breaking is signaled by a non-zero expectation value
of an F component of a chiral superfield or a D component of a vector superfield.
Models involving only chiral fields with no supersymmetric ground state are referred
to as O’Raifeartaigh models. A simple example has three singlet fields, 4, B and X, with
superpotential

W=2r4(X? — u?) + mBX. (10.1)

With this superpotential, the equations

ow ow
=0, F =0

F:—_, = — =
4= %4 5= 3B

(10.2)

are incompatible. To actually determine the expectation values and the vacuum energy,
it is necessary to minimize the potential. There is no problem in satisfying the equation
Fyx = 0. So, we need to minimize

Vet = [Ful” + |Fpl* = [R2|IX? — u” + m? X1, (103)
Assuming that 2 and A are real, the solutions are given by

22242 — m?

X=0, X’=
222

. (10.4)
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152 Afirst look at supersymmetry breaking

The corresponding vacuum energies are

n =1t P =it - s (10.5)
The vacuum at X # 0 disappears at a critical value of w.
Let us consider the spectrum in the first of these (the solution with X = 0). We will focus,
in particular, on the massless states. First, there is a massless scalar. This arises because at
this level not all the fields are fully determined. The equation

ow
— =0 10.6
ox (10.6)
can be satisfied provided that
204X+ mB = 0. (10.7)

This vacuum degeneracy is accidental and, as we will see later, is lifted by quantum
corrections.

There is also a massless fermion, 4. This fermion is the goldstino. Replacing the
auxiliary fields in the supersymmetry current for this model (Eq. (9.54)) gives

J& = iV2F ol v (10.8)

You should check that the massive states do not form Bose—Fermi degenerate multiplets.

10.1.1 The Fayet-Iliopoulos D term

It is also possible to generate an expectation value for a D term. In the case of a U(1) gauge
symmetry, we saw that

w? / d*o v=u’D (10.9)

is gauge invariant. Under the transformation 87 = A + A', the integrals over the chiral
and antichiral fields A and AT are zero. This can be seen either by doing the integrations
directly or by noting that differentiation by Grassmann numbers is equivalent to integration
(recall our integral table). As a result, for example, | d*6 o (D)?. This Fayet-Iliopoulos D
term can lead to supersymmetry breaking. For example, if one has two charged fields ®+
with charges £1 and superpotential m®*®~, one cannot simultaneously make the two
auxiliary F fields and the auxiliary D field vanish.

One important feature of both types of model is that at tree level, in the context of global
supersymmetry, the spectra are never realistic. They satisfy a sum rule,

> (=) = 0. (10.10)

Here (—1)F = 1 for bosons and —1 for fermions. This guarantees that there are always light
states, and often color and/or electromagnetic symmetry are broken. These statements are
not true of radiative corrections or of supergravity, as we will explain later.
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153 10.2 The goldstino theorem

It is instructive to prove this sum rule. Consider a theory with chiral fields only (no gauge
interactions). The potential is given by

2

V:Z‘% . (10.11)

The boson mass matrix has terms of the form qil.*qu and ¢;¢; + c.c., where we are using
indices 7 and j for complex conjugate fields. The latter terms, as we will now see, are
connected with supersymmetry breaking. The various terms in the mass matrix can be
obtained by differentiating the potential:

, 3V 3w *wx

m% = _ = —, (10.12)
Yo 0¢idgs  04iddr 04704

, VoW BPW

m;; = = _—. (10.13)
U 0gidd; 007 0 9¢idd;
The first term has just the structure of the square of the fermion mass matrix,
3*w
My = ——. (10.14)
T 0¢idg

So, writing the boson mass matrix MZB in the basis (¢; ¢§*) we see that Eq. (10.10) holds.

The theorem is true whenever a theory can be described by a renormalizable effective
action. Various non-renormalizable terms in the effective action can give additional
contributions to the mass. For example, in our O’Raifeartaigh model, [ d*0ATAZTZ will
violate the tree level sum rule. Such terms arise in renormalizable theories when one
integrates out heavy fields to obtain an effective action at some scale. In the context of
supergravity, such terms are present already at tree level. This is perhaps not surprising,
given that these theories are non-renormalizable and must be viewed as effective theories
from the very beginning (perhaps as the effective low-energy description of string theory).
We will discuss the construction of realistic models shortly. First, however, we turn to the
issues of the goldstino theorem (the fermionic analog of Goldstone’s theorem) and explicit,
soft, supersymmetry breaking.

10.2 The goldstino theorem

In each of the examples of supersymmetry breaking there is a massless fermion in the
spectrum. We might expect this, by analogy with Goldstone’s theorem. The essence of
the usual Goldstone theorem is the statement that, for a spontaneously broken global
symmetry, there is a massless scalar. There is a coupling of this scalar to the symmetry
current j*. From Lorentz invariance (see Appendix B),

O/ 17 (p)) = /" (10.15)

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

154 Afirst look at supersymmetry breaking

Correspondingly, in the low-energy effective field theory (valid below the scale of
symmetry breaking) the current takes the form

"=l (x). (10.16)

Analogous statements for the spontaneous breaking of global supersymmetry are easy
to prove. Suppose that the symmetry is broken by the F' component of a chiral field (this
can be a composite field). Then we can study

f d*x 3, (T4 () Ya(0)) = 0, (10.17)

where T is the time-ordering operator and /% is the supersymmetry current; the integral
of jg over space is the supersymmetry charge. This expression vanishes because it is an
integral of a total derivative. Now evaluating the derivatives, there are two non-vanishing
contributions: one from the exponential and one from the action on the time-ordering
symbol. Obtaining these derivatives and then taking the limit ¢ — 0 gives

({Qus Vo () = igu T{jly Vo (0))gr, (10.18)

where FT indicates the Fourier transform. The left-hand side is constant, so the Green’s
function on the right-hand side must be singular as ¢ — 0. By the usual spectral represen-
tation analysis, this shows that there is a massless fermion coupled to the supersymmetry
current. In weakly coupled theories we can understand this more simply. Recalling the
form of the supersymmetry current, if one of the F's has an expectation value then

J4 = ivV2(0M)ag ¥ F. (10.19)

To leading order in the fields, current conservation amounts to just the massless Dirac
equation; F, here, is the goldstino decay constant. We can understand the massless fermion
which appeared in the O’Raifeartaigh model in terms of this theorem. It is easy to check
that

Ve « Fqrg + Fpira, (10.20)

as in Eq. (10.8) for the case F3 = 0.

10.3 Loop corrections and the vacuum degeneracy
I

We saw that in the O’Raifeartaigh model, at the classical level there is a large vacuum
degeneracy. To understand the model fully, we need to investigate the fate of this
degeneracy in the quantum theory. Consider the vacuum with X = 0. In this case, 4 is
undetermined at the classical level. But 4 is only an approximate modulus. At one loop,
quantum corrections generate a potential for 4. Our goal is to integrate out the various

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

155 10.4 Explicit soft supersymmetry breaking

massive fields to obtain the effective action for 4. At one loop, this is particularly easy.
The tree level mass spectrum depends on 4. The one-loop vacuum energy is

1
Z( 1 /(2 )32,/ +m?. (10.21)

Here the sum is over all possible helicity states; again the factor (—1)f" weights bosons
with 1 and fermions with —1. In field theory this expression is usually very divergent
in the ultraviolet, but in the supersymmetric case it is far less so. If supersymmetry is
unbroken, the boson and fermion contributions cancel and the correction simply vanishes.
If supersymmetry is broken, the divergence is only logarithmic. To see this we can
simply study the integrand at large k, expanding the square root in powers of m?/k>. The
leading, quartically divergent, term is independent of m? and so vanishes. The next term is
quadratically divergent, but it vanishes because of the sum rule: 3 (—1)% ml2 =0.
So, at one loop the potential behaves as

V) == (=1)fm 4/ &k ~ Y (=1 'm] 1 1nm—2 (10.22)
16(27)%43 To4n? T A2 '

To compute the potential precisely, we need to work out the spectrum as a function of 4.

We will content ourselves with the limit of large 4. Then the spectrum consists of a massive
fermion 1y, with mass 214, and the real and imaginary parts of the scalar components of
X, with masses

m? = 40247 + 22070 (10.23)
So
A2 aA)?
V(A4) = 22|t (1+ el o ) (10.24)

This result has a simple interpretation. The leading term is the classical energy; the
correction corresponds to replacing A> by A%(4), the running coupling at scale 4. In this
theory, a more careful study shows that the minimum of the potential is precisely at 4 = 0.

10.4 Explicit soft supersymmetry breaking

Ultimately, if nature is supersymmetric, it is likely that we will want to understand
supersymmetry breaking through some dynamical mechanism. But we can be more
pragmatic, accept that supersymmetry is broken and parameterize the breaking using the
mass differences between the ordinary fields and their superpartners. It turns out that this
procedure does not spoil the good ultraviolet properties of the theory. Such mass terms are
said to be “soft” for precisely this reason.

We will consider soft breakings in more detail in the next chapter when we discuss the
Minimal Supersymmetric Standard Model (MSSM), but we can illustrate the main point
simply. Take as a model the Wess—Zumino model, with m = 0 in the superpotential. Add
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156 Afirst look at supersymmetry breaking

One-loop corrections to scalar masses arising from Yukawa couplings.

to the Lagrangian an explicit mass term mgoft|¢|2. Then we can calculate the one-loop
correction to the scalar mass from the two graphs of Fig. 10.1. In the supersymmetric case
these two graphs cancel. With the soft breaking term, the cancelation is not exact; instead
one obtains

| A |2 5 A2
sm?> = ———m> . In — (10.25)
2 "*soft 2
167 soft
We can understand this simply on dimensional grounds. We know that for mgoﬁ = 0 there is

no correction. Treating the soft term as a perturbation, the result is necessarily proportional
to mgoﬂ; at most, then, any divergence must be logarithmic.

In addition to soft masses for scalars, one can add soft masses for gauginos; one can
also include trilinear scalar couplings. We can understand how these might arise at a more
fundamental level, which also makes clear the sense in which these terms are soft. Suppose
that we have a field Z with non-zero F component, as in the O’Raifeartaigh model (but
in a more general form). Suppose, further, that at tree level there are no renormalizable
couplings between Z and the other fields of the model, which we will denote generically as
¢. Non-renormalizable couplings, such as

L7 = % / d*oZ'z¢' ¢, (10.26)
can be expected to arise as we integrate high-energy processes to obtain the effective
Lagrangian; they are not forbidden by any symmetry. Replacing Z by its expectation value,

(Z) = -+ 0%(Fy), gives a mass term for the scalar component of ¢:
AP o
Ly = R 10.27
2= "5 1" + ( )

This is precisely the soft scalar mass we described above; it is soft because it is associated
with a high-dimensional operator Similarly, the operator:

/dzeﬂéwg = %M 4. (10.28)
gives rise to a mass for gauginos. The term
/ d?o £¢¢¢ (10.29)
M

leads to a trilinear coupling of the scalars. Simple power counting shows that loop cor-
rections to these couplings due to renormalizable interactions are at most logarithmically
divergent.
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157 10.5 Supersymmetry breaking in supergravity models

To summarize, there are three types of soft-breaking term which can appear in a
low-energy effective action:

e soft scalar masses, mé|¢|2 and me>pop + c.c.;
e gaugino masses, 7, AA;
e trilinear scalar couplings, I'dpo.

All three types of coupling will play an important role when we think about possible
supersymmetry phenomenologies.

10.5 Supersymmetry breaking in supergravity models
I —

We stressed in the last chapter that, since nature includes gravity, if supersymmetry is not
simply an accident it must be a local symmetry. If the underlying scale of supersymmetry
breaking is high enough, supergravity effects will be important. The potential of a
supergravity model will be sufficiently important to us that it is worth writing it down

again:
oW K -(ow 8K
V=K — 4+ —Ww)g" W) = 31w |. 10.30
¢ [(a¢f+a¢,» )g (843”8@* ) 'm} (10-39)

In supergravity the condition for unbroken supersymmetry is that the Kahler derivative
of the superpotential should vanish:
o K
g 3¢;
When this is not the case, supersymmetry is broken. If we require the vanishing of the
cosmological constant then we have

D;W W= 0. (10.31)

3w = ZD,-WD;W*g"f". (10.32)
Lj
In this case the gravitino mass turns out to be

m3y = (52 w). (10.33)

There is a standard strategy for building supergravity models. One introduces two sets
of fields, the hidden-sector fields, denoted by Z;, and the visible-sector fields, denoted
by y4. The Z;s are assumed to be connected with supersymmetry breaking and to have
only very small couplings to the ordinary fields y,. In other words, one assumes that the
superpotential /¥ has the form

W= WZ) + W,(, (10.34)

at least up to terms suppressed by 1/M. The y fields should be thought of as the ordinary
matter fields and their superpartners.
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158 Afirst look at supersymmetry breaking

One also usually assumes that the Kahler potential has a “minimal” form,

K=Y"ZZi+> yiya (10.35)

One chooses (i.e. tunes) the parameters of 7 in such a way that

(Fz) ~ MwM (10.36)
and
(Vy=0. (10.37)
Note that this means that
(W) ~ MyM>. (10.38)

The simplest model of the hidden sector is known as the Polonyi model. In this model
W=m*Z+pB), (10.39)
B =2+ 3M. (10.40)

In global supersymmetry, with only renormalizable terms, this would be a rather trivial
superpotential, but this is not so in supergravity. The minimum of the potential for Z lies at

Z=(3-1M, (10.41)
and
m3 )y = (m2/M)eV3=D2, (10.42)

This symmetry breaking also leads to soft-breaking mass terms for the fields y, i.e. terms
of the form

m|yil*. (10.43)

These arise from the |(3;K) W|* = |y,~|2| W)? terms in the potential. For the simple Kahler
potential,

mg =233m3 ;. A= (3—3)msp. (10.44)

If we now allow for a non-trivial ), we also find supersymmetry-violating quadratic
and cubic terms in the potential. These are known as the B and 4 terms and have the form

Bjjms 2¢id; + Aijms 2ij . (10.45)

For example, if /¥ is homogeneous and of degree three, there are terms in the supergravity
potential of the form

oW oK
~ (W) +c.c. =3m3 2 W(y). (10.46)
aya aya
Additional contributions arise from
ow
K <—> ZHW* +c.c. (10.47)
821‘
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159 Exercises

There are analogous contributions to the B terms. In the exercises, these are worked out for
specific models.

Gaugino masses m, (both in local and global supersymmetry) can arise from a
non-trivial gauge coupling function

z
ff= Ve (10.48)
which gives
— (10.49)
M

These models have just the correct structure to build a theory of TeV-scale super-
symmetry, provided that m3,, ~ TeV. They have soft breakings of the correct order of
magnitude. We will discuss their phenomenology further when we discuss the Minimal
Supersymmetric Standard Model (MSSM) in the next chapter.

Even without a deep understanding of local supersymmetry, there are a number of
interesting observations we can make. Most important, our arguments for the non-
renormalization of the superpotential in global supersymmetry remain valid here. This will
be particularly important when we come to string theory, which is a locally supersymmetric
theory.

Suggested reading
e ————

It was Witten (1981) who most clearly laid out the issues of supersymmetry breaking. His
paper remains extremely useful and readable today. The notion that one should consider
adding soft-breaking parameters to the MSSM was developed by Dimopoulos and Georgi
(1981). Good introductions to models with supersymmetry breaking in supergravity are
provided by a number of review articles and textbooks, for example those of Mohapatra
(2003) and Nilles (1984).

Exercises
. ]

(1) Work out out the spectrum of the O’Raifeartaigh model. Show that the spectrum is not
supersymmetric, but verify the sum rule > (—1)"m? = 0.

(2) Work out the spectrum of a model with a Fayet—Iliopoulos D term and supersymmetry
breaking. Again verify the sum rule.

(3) Check Egs. (10.40)—(10.44) for the Polonyi model.
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1 The Minimal Supersymmetric Standard Model

We can now very easily construct a supersymmetric version of the Standard Model. For
each gauge field of the usual Standard Model we introduce a vector superfield. For each
fermion (quark or lepton) we introduce a chiral superfield with the same gauge quantum
numbers. Finally, we need at least two Higgs doublet chiral fields; if we introduce only
one, as in the simplest version of the Standard Model, the resulting theory possesses gauge
anomalies and is inconsistent. So, the theory is specified by the gauge group SU(3) x
SU(2) x U(1) and enumeration the chiral fields,

On up dn Ly &, f=1,2,3; Hy, Hp. (11.1)

The gauge-invariant kinetic terms, auxiliary D terms and gaugino—matter Yukawa cou-
plings are completely specified by the gauge symmetries. The superpotential can be taken
to be

W= HU(FU)f,f’Qfljf’ + HD(FD)f,f’Qfo + HD(FE)f,_f/Lfe__f/' (11.2)

If the Higgs fields obtain suitable expectation values then SU(2) x U(1) is broken and
quarks and leptons acquire mass, just as in the Standard Model.

There are other terms which can also be present in the superpotential. These include
the u term, wHyHp. This is a supersymmetric mass term for the Higgs fields; see Section
11.1.1. We will see later that we need u > M7z to have a viable phenomenology. A set of
dimension-four terms permitted by the gauge symmetries raise serious issues. For example,
one can have the terms

iy dgdp 8" + Or Lody )%, (11.3)

These couplings violate B and L! This is our first serious setback. In the Standard Model,
there is no such problem. The leading B- and L-violating operators permitted by gauge
invariance possess dimension six, and they will be highly suppressed if the scale of
interactions which violates these symmetries is high, as in grand unified theories.

If we are not going to simply give up, we need to suppress B and L violation at the
level of dimension-four terms. The simplest approach is to postulate additional symmetries.
There are various possibilities one can imagine.

1. Global continuous symmetries It is hard to see how such symmetries could be
preserved in any quantum theory of gravity, and in string theory there is a theorem which
asserts that there are no global continuous symmetries. We will prove this statement, at
least for a large subset of known string theories, later.

160

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BACT7


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

161 The Minimal Supersymmetric Standard Model

2. Discrete symmetries As we will see later, discrete symmetries can be gauge symme-
tries. As such they will not be broken in a consistent quantum theory. They are common
in string theory. These symmetries are often R symmetries, symmetries which do not
commute with supersymmetry.

A simple (though not unique) solution to the problem of B- and L-violation by
dimension-four operators is to postulate a discrete symmetry known as R-parity. Under
this symmetry, all ordinary particles are even while their superpartners are odd. Imposing
this symmetry immediately eliminates all the dangerous operators. For example,

/lﬁeaéaA«wgwgi (11.4)

(we have changed notation again: the tilde here indicates the superpartner of the ordinary
field, i.e. the squark) is odd under the symmetry.
More formally, we can define this symmetry as the following set of transformations on

superfields:
6o — —ba, (11.5)
(Op ip, dp, Ly, &) — —(Op iy, dp, Ly, &), (11.6)
(Hy,Hp) — (Hu, Hp). (11.7)

Alternatively, we can describe it as multiplication of the quark and lepton superfields
by —1, multiplication of the Higgs fields by 1 and a 27 rotation in space (which rotates all
fermions by —1). Because invariance under 27 rotations is automatic in Lorentz-invariant
theories, we need only the overall multiplication of the superfields. With this symmetry the
full, renormalizable, superpotential is just that in Eq. (11.2).

In addition to solving the problem of very fast proton decay, R-parity has another striking
consequence: the lightest of the new particles predicted by supersymmetry, the Lightest
supersymmetric particle (LSP), is stable. This particle can easily be neutral under the gauge
groups. It is then, inevitably, very weakly interacting. This in turn means the following.

e The generic signature of R-parity-conserving supersymmetric theories is the occurrence
of events with missing energy.
e Supersymmetry is likely to produce an interesting dark-matter candidate.

This second point is one of the principal reasons that many physicists have found the
possibility of low-energy supersymmetry so compelling. If one calculates the dark-matter
density then, as we will see in the chapter on cosmology, one automatically finds a density
in the right range if the scale of supersymmetry breaking is about 1 TeV. Later, we will
see an additional piece of circumstantial evidence for low-energy supersymmetry: the
unification of the gauge couplings within the MSSM.

We can imagine more complicated symmetries which would have similar effects, and
we will have occasion to discuss these later. We can also relax the assumption of exact
R-parity conservation. If, for example, the lepton-number-violating couplings are for-
bidden then the restrictions on the baryon-number-violating couplings are not so severe
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162 The Minimal Supersymmetric Standard Model

and the phenomenological consequences are interesting. In most of what follows we will
assume a conserved Z» R-parity.

1.1 Soft supersymmetry breaking in the MSSM

If supersymmetry is a feature of the underlying laws of nature then it is certainly broken.
The simplest approach to model building with supersymmetry is to add soft-breaking terms
to the effective Lagrangian in such a way that the squarks, sleptons and gauginos have
sufficiently large masses that they have not yet been observed (or, in the event that they are
discovered, to account for their values).

Without a microscopic theory of supersymmetry breaking, all the soft terms are
independent. It is of interest to ask how many soft-breaking parameters there are in the
MSSM. More precisely, we will count the parameters of the model beyond those of
the minimal Standard Model with a single Higgs doublet. Having imposed R-parity, the
number of Yukawa couplings is the same in both theories, as are the numbers of gauge
couplings and 6 parameters. The quartic couplings of the Higgs fields are completely
determined by the gauge couplings. So the “new” terms arise from the soft-breaking terms
as well as the p term for the Higgs fields. We will speak loosely of all of this as the soft-
breaking Lagrangian. Suppressing flavor indices, we have

Lo = é*szé + L:t*m%ft + é*mf?c? + Z*m%i + e:*mg—e:—i— HU@Aufl + HD@AdZI
+ HpL A1+ c.c. + M + c.c. + 3y |Hyl? +my | Hp|*+ uBHyHp

+ nYHYH. (11.8)

The matrices mZQ, m% etc. are 3 x 3 Hermitian matrices, so they have nine independent

entries. The matrices 4,, Ay etc. are general 3 x 3 complex matrices, so they each
possess 18 independent entries. Each of the gaugino masses is a complex number, so these
introduce six additional parameters. The quantities u and B are also complex; they add
four more. In total, then, there are 111 new parameters. As in the Standard Model, not all
these parameters are meaningful; we are free to make field redefinitions. The counting is
significantly simplified if we just ask how many parameters there are beyond the usual 18
of the minimal theory.

To understand what redefinitions are possible beyond the transformations on the quarks
and leptons which go into defining the CKM parameters, we need to ask what are the
symmetries of the MSSM before the introduction of the soft-breaking terms and the
w term (the p term is more or less on the same footing as the soft-breaking terms, since it is
of the same order of magnitude; as we will discuss later, it might well arise from the physics
of supersymmetry breaking). Apart from the usual baryon and lepton numbers, there are
two more. The first is a Peccei—Quinn symmetry, under which the two Higgs superfields
rotate by the same phase while the right-handed quarks and leptons rotate by the opposite
phase. The second is an R symmetry, a generalization of the symmetry we found in the
Wess—Zumino model (see Section 9.6.1). It is worth describing this in some detail. By
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163 1.1 Soft supersymmetry breaking in the MSSM

definition, an R symmetry is a symmetry of the Hamiltonian which does not commute with
the supersymmetry generators. Such symmetries can be continuous or discrete. In the case
of continuous R symmetries, by convention we can take the s to transform by a phase e/®.
Then the general transformation law takes the form

hi — €%, (11.9)
for the gauginos, while, for the elements of a chiral multiplet, we have
D;(x,0) — "D (x,0e), (11.10)
or, in terms of the component fields,
i — &M%, Yy — VTV R s Qi De R (11.11)

In order that the Lagrangian exhibit a continuous R symmetry, the total R charge of all
terms in the superpotential must be 2. In the MSSM, we can take »; = 2/3 for all the chiral
fields.

The soft-breaking terms, in general, break two of the three lepton-number symmetries,
the R-symmetry and the Peccei—Quinn symmetry. So there are four non-trivial field
redefinitions which we can perform. In addition, the minimal Standard Model has two
Higgs parameters. So from our 111 parameters, we can subtract a total of six, leaving 105
as the number of new parameters in the MSSM.

Clearly we would like to have a theory which predicts these parameters. Later, we will
study some candidates. To get started, however, it is helpful to make an ansatz. The simplest
thing to do is suppose that all the scalar masses are the same, all the gaugino masses
the same and so on. It is necessary to specify also a scale at which this ansatz holds,
since, even if true at one scale, it will not continue to hold at lower energies. Almost
all investigations of supersymmetry phenomenology assume such a degeneracy at a large
energy scale, typically the reduced Planck mass M. It is often said that degeneracy is
automatic in supergravity models, so this is frequently called the supergravity (SUGRA)
model but, as we will see, supergravity by itself makes no prediction of degeneracy. Some
authors, similarly, include this assumption as part of the definition of the MSSM, but in
this text we will use the term MSSM to refer to the particle content and the renormalizable
interactions. In any case, the ansatz consists of the following statements at the high-energy
scale.

1. All the scalar masses are the same, 7> = m%. This assumption is called the universality
of the scalar masses.

2. The gaugino masses are the same, M; = Mj. This is referred to as the GUT relation,
since it holds in simple grand unified models.

3. The soft-breaking cubic terms are assumed to be given by

Lyi = A(HyQvyit + HpQyad + HpLy€). (11.12)

The matrices y,, yq etc. are the same as those which appear in the Yukawa couplings.
This is the assumption of proportionality.
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164 The Minimal Supersymmetric Standard Model

Note that with this ansatz, if we ignore the various phases possibilities, five parameters
are required to specify the model (m%,MO,A,BM, ). One of these can be traded for M,
so this is quite an improvement in predictive power. In addition, this ansatz automatically
satisfies all constraints coming from rare processes. As we will explain, rare decays and
flavor violation are suppressed (b — s + y is not as strong a constraint, but it requires
other relations among soft masses). However, we need to ask: just how plausible are these
assumptions? We will try to address this question later.

.11 The  term

One puzzle in the MSSM is the p term, the supersymmetric mass term for the Higgs
fields. This term is not forbidden by the gauge symmetries, so the first question is: why is
it small, of order a few TeV rather than of order M}, or Mgy:? One possibility is that there
is a symmetry which accounts for this. There might, for example, be a discrete symmetry
forbidding HyHp in the superpotential, spontaneously broken by the fields which also
break supersymmetry. Another possibility is related to the non-renormalization theorems.
If for some reason, there is no mass term at lowest order for the Higgs fields, one will not be
generated perturbatively. The u term, then, might be the result of the same non-perturbative
dynamics, for example, those responsible for supersymmetry breaking. In string theories,
as we will see later, it is quite common to find massless particles at tree level, simply “by
accident”. Such a phenomenon can also be arranged in grand unified theories.

In the absence of a large, tree level, o term, supersymmetry breaking can quite easily
generate a 4 term of order m3 ;. Consider, for example, the Polonyi model. The operator

1 .
d*0—Z HyHp (11.13)
[ o5

would generate a u term of just the correct size. In simple grand unified theories, such a
term is often generated.

When we discuss other models for supersymmetry breaking, such as gauge mediation,
we will see that the o term sometimes poses additional challenges.

11.1.2 Cancelation of quadratic divergences in gauge theories

We have already seen that soft supersymmetry-violating mass terms receive only logarith-
mic divergences. While not essential to our present discussion, it is perhaps helpful to see
how the cancelation of quadratic divergences for scalar masses arises in gauge theories like
the MSSM.

Take, first, a U(1) theory, with (massless) chiral fields ¢ and ¢~. Without doing any
computation it is easy to see that, provided we work in a way which preserves supersym-
metry, there can be no quadratic divergence. In the limit where the mass term vanishes, the
theory has a chiral symmetry under which ¢ and ¢~ rotate by the same phase,

9= — ¢*. (11.14)
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165 1.1 Soft supersymmetry breaking in the MSSM
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One-loop diagrams contributing to scalar masses in a supersymmetric gauge theory.

This symmetry forbids a mass term A¢+¢~ in the superpotential the only from in which
a supersymmetric mass term could appear. The actual diagrams we need to compute are
shown in Fig. 11.1. Since we are interested only in the mass, we can take the external
momentum to be zero. It is convenient to choose the Landau gauge for the gauge boson.
In this gauge the gauge boson propagator is

. qugv \ 1
D,, = —i (g ——) —, (11.15)
v L
so the first diagram vanishes. The second, third and fourth are straightforward to work out
from the basic Lagrangian. One finds:

3 d*k

Io— o2 i ar
bEEIIoE | R

2 4
gﬂ% ‘%‘ Tr(k, 0" k,G") (11.17)

(11.16)

__ & [4F (11.18)

1 d*k
Id=g2(i)(i)mfk—2. (11.19)

It is easy to see that the sum I, + Iy, + I + I3 = 0.
Including a soft-breaking mass for the scalars only changes /4:

Iy — g’ / d'
4 0nd | e w2

. g? / d*kg
= —1
Qm)* ] kE+m?

)
_~2 g
- mindependent + 1672

A2
i’ In = (11.20)
m
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166 The Minimal Supersymmetric Standard Model

We have worked here in Minkowski space and have indicated the factors i to assist the
reader in obtaining the correct signs for the diagrams. In the second line of Eq. (11.20)
we have performed a Wick rotation. In the third line we have separated off the mass-
independent part, since we know that this is canceled by the other diagrams.
Summarizing, the one-loop mass shift is
A2

81712=—1§;217121nﬁ. (11.21)
Note that the mass shift is proportional to 72, the supersymmetry-breaking mass, which we
expect since supersymmetry is restored as 722 — 0. In the context of the Standard Model
we see that the scale of supersymmetry breaking cannot be much larger than the Higgs
mass scale itself without fine tuning. Roughly speaking, it cannot be much larger than this
scale than by a factor of order 1/,/ayy, i.e. of order six. We also see that the correction has
a logarithmic sensitivity to the cutoff. So, just as for the gauge and Yukawa couplings, the
soft masses run with the energy.

1.2 SU(2) x U(1) breaking

In the MSSM there are a number of general statements which can be made about the
breaking of SU(2) x U(1). The only quartic couplings of the Higgs fields arise from the
SU(2) and U(1) D?* terms. The general form of the soft-breaking mass terms has been
described above. So, before we worry about any detailed ansatz for the soft breakings, we
note that the Higgs potential is given quite generally by

Vhiggs = m%iylHU|2 + m%{D \Hp|* — m3(HyHp + h.c.)
1 1
+ & + M (HUP — |Hp)? + Sg* | HuHp". (11.22)

This potential by itself conserves CP; a simple field redefinition removes any phase in m%
(As we will discuss shortly, there are many other possible sources of CP violation in the
MSSM.) The physical states in the Higgs sector are usually described by assuming that
CP is a good symmetry. In that case there are two CP-even scalars, H° and 4°, where, by
convention, /° is the lighter of the two. There are a CP-odd neutral scalar 4 and charged
scalars H. At tree level, one also defines a parameter which is the ratio of the vevs of Hy
and Hp or v| and vy:

= = —, 11.23
@np = ) T % (1123)

Note that, with this definition, as tan 8 grows so does the Yukawa coupling of the b quark.
To obtain a suitable vacuum, there are two constraints which the soft breakings must
satisfy.

1. Without the soft-breaking terms, Hy = Hp (vi = v» = v) makes the SU(2) and
U(1) D terms vanish, i.e. there is no quartic coupling in this direction. So the energy
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167 11.3 Embedding the MSSM in supergravity

is unbounded below, unless
miy, + mgy, — 2lms|* > 0. (11.24)

2. In order to obtain symmetry breaking, the Higgs mass matrix must have a negative
eigenvalue. This gives the requirement

2
|m§| > m%{Um%{D. (11.25)

When these conditions are satisfied, it is straightforward to minimize the potential and

determine the spectrum. One finds that
2
my=—3 (11.26)
sin B cos B8

It is conventional to take mfl as one parameter. Then one finds that the charged Higgs
masses are given by

Mo = miy +m?, (11.27)
while the neutral Higgs masses are
1
My o = 5 |:mi +m5+ \/(mi +m2)’ — dmdm? cos 2B ] (11.28)
Note the inequalities
myo < my, myo < mg, my+ > my. (11.29)

With the discovery of the Higgs at 125 GeV, it would appear that the MSSM is ruled
out. However, these are tree level relations. We will shortly turn to the issue of radiative
corrections and will see that these can be quite substantial. We will also see, however, that
accounting for a Higgs mass of 125 GeV appears to require a significant fine tuning of the
parameters.

1.3 Embedding the MSSM in supergravity

In the previous chapter we introduced N = 1 supergravity theories. These theories are not
renormalizable and must be viewed as effective theories, valid below some energy scale
which might be the Planck scale or unification scale (or something else).

The approach we have introduced to model building is quite useful when we are
considering models for the origin of supersymmetry breaking in the MSSM. The basic
assumptions of this approach were as follows.

e The theory consists of two sets of fields the visible sector fields y,, which in the context
of the MSSM would be the quark and lepton superfields, and the hidden sector fields z;,
responsible for supersymmetry breaking.
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168 The Minimal Supersymmetric Standard Model

e The superpotential was taken to have the form
Wz,y) = W:(2) + Wy (). (11.30)

e For the Kahler potential we took the simple ansatz
K= "ylya+Y zlz. (11.31)
a i

In this case, we saw that if the supersymmetry-breaking scale was of order
Mine = m3 oM, (11.32)

then there was an array of soft-breaking terms of order m3,>. In particular, there were
universal masses and 4 terms,

am%/z [Va |2 + bm3/2 Wabyayp + cms3 o Wabcyaypye- (11.33)
Here W, = 0,0, W and W p. = 0,050 W.

Given that the MSSM is at best an effective-low-energy theory, one can ask how
natural are our assumptions, and what would be the consequences of relaxing them? The
assumption that there is some sort of hidden sector, and that the superpotential breaks
up as we have hypothesized, is, as we will see, a reasonable one. It can be enforced
by symmetries. The assumption that the Kahler potential takes this simple (often called
“minimal”) form is a strong one, not justified by symmetry considerations. It turns out not
to hold in any general sense in string theory, the only context in which presently we can
compute it. If we relax this assumption, we lose the universality of scalar masses and the
proportionality of the 4 terms to the superpotential. As we will see later in this chapter,
without these or something close the MSSM is not compatible with experiment.

1.4 Radiative corrections to the Higgs mass limit
|

We have seen that, in the MSSM, the Higgs mass at tree level is less than the Z mass. This
bound is clearly violated in nature. In this section and the next, we will see that a 125 GeV
Higgs particle can be accommodated within the MSSM, though it requires either a large
scale of supersymmetry breaking or the introduction of new degrees of freedom.

In the MSSM, at tree level, the form of the Higgs potential is highly constrained
because the quartic couplings are completely determined by the gauge interactions. Once
supersymmetry (susy) is broken, however, there can be corrections to the quartic terms
from radiative corrections.These corrections are soft, in that the susy-violating four-
point functions vanish rapidly at momenta above the susy-breaking scale. Still, they are
important in determining the low-energy properties of the theory, such as the Higgs vacuum
expectation values (vevs) and the spectrum.

The largest effect of this kind comes from loops involving top quarks or their scalar
partners, the stops. It is not hard to get a rough estimate of the effect. In the limit 72, >
my, the effective Lagrangian is not supersymmetric below ;. As a result, there can be
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169 1.4 Radiative corrections to the Higgs mass limit

Corrections to quartic Higgs couplings from top loops.
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Higgs mass as a function of susy-breaking parameters.
corrections to the Higgs quartic couplings. Consider the diagrams of Fig. 11.2. In this limit

we can get a reasonable estimate by just keeping the top quark loop. The result will be
logarithmically divergent, and we can take the cutoff to be 71, So we have

d*k 1
S = (=1t x 3 Tr (11.34)
! Qm)* (K —my)*
2% w2
=— In—. 11.35
1672 m? ( )

One can get a better estimate by keeping finite terms and higher-order corrections. There
exist online tools to perform these calculations (mentioned in the references at the end of
this chapter). For large tan 8 these corrections are most effective; this corresponds precisely
to the decoupling limit discussed in Chapter 3, where the Higgs is principally Hy. A typical
plot of my as a function of m;, for small values of the 4 parameter for the stops and for
large tan 8, is that of Fig. 11.3. We see that, for moderate values of the 4 parameter, a Higgs
of 125 GeV corresponds to a stop mass of order 10 TeV. As we will see in the next section,
this, in turn, implies a significant tuning of the Higgs mass.
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170 The Minimal Supersymmetric Standard Model

11.5 Fine tuning of the Higgs mass
I

We saw earlier that in the Wess—Zumino model at one loop there is a negative renormal-
ization of the soft-breaking scalar masses. This calculation can be translated to the MSSM,
with a modification for the color and SU(2) factors. One obtains

2 2 _ 6y% 1 A? ~2 2 11.36
My, = (M) Ton? n =) (mt —i—m;), (11.36)
4y2 A2
~2 __ ~\2 t ~7
my = (mt)o — @ In WmH. (1137)

So, we see that loop corrections involving the top quark Yukawa coupling reduce both the
Higgs and the stop masses. If r7112 = 10 TeV, and if A ~ M,, the correction to the stop mass
is of order one but the correction to the Higgs mass is of order SOOOm%! This suggests a
tuning of the parameter (mHU)(Z) at nearly the one part in 10 000 level, and a more refined
renormalization group analysis supports this.

Such a tuning of parameters is troubling, given that we introduced supersymmetry in
order to avoid such problems with naturalness. It is, at least, not as extreme as the situation
without supersymmetry. It is also consistent with the data. In the next section, we will
mention a few ideas to ameliorate this tuning.

11.6 Reducing the tuning: the NMSSM

We have seen that in the MSSM the effective Higgs quartic coupling is small because it
is determined by the gauge couplings; this is what accounts for the tree level Higgs mass
bound. The requirement of a large stop mass was driven by the need to enhance the quartic
coupling. One might also hope to enhance the quartic coupling by introducing additional
fields with superpotential couplings to the Higgs. The simplest approach yields the Next
to Minimal Supersymmetric Standard Model, or NMSSM. In its simplest version the field
content of the model is that of the MSSM plus an additional singlet, S. The superpotential
includes a term

Wnmssm = ASHyH (11.38)

in addition to the Yukawa couplings of the Higgs. This superpotential leads to a quartic
coupling

SV = |A\HyH,|%, (11.39)

which can increase the Higgs mass. However, A cannot be arbitrarily large otherwise
perturbation theory would break down. Requiring that there be no Landau pole for A
typically implies that 1 < 0.7.
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m 1.7 Constraints on low-energy supersymmetry: direct searches and rare processes

One difficulty with this proposal is that the maximum effect occurs when tan 8 ~ 1, so
that Hy and Hp are more or less aligned. In this limit the top quark corrections to the quartic
coupling are less effective. Adding other terms to the superpotential, such as %msS2 and
$3 as well as the various possible soft breakings, yields a large parameter space to explore.
One typically finds that fine tuning can be significantly improved over the MSSM, but
because of the constraints on A it is still significantly worse than 10%.

There are other proposals to reduce the tuning of the MSSM by introducing additional
degrees of freedom. Additional gauge interactions, for example, can help. Perhaps a
compelling model may yet emerge. As we will see in the following sections, however,
direct searches for supersymmetric particles, especially with the LHC, have placed
stringent lower limits on the masses of supersymmetric partners of ordinary particles.

1.7 Constraints on low-energy supersymmetry: direct searches

and rare processes
I —

Naturalness points to supersymmetry at a scale below the TeV scale — arguably of order
M. We have already discussed how the Higgs mass points towards a significantly higher
scale, somewhere around 10 TeV. Direct searches for supersymmetric particles, as we will
briefly review here, also point to a high scale. Current limits on squarks and gluinos are,
over much of the parameter space, larger than a TeV and they will become stronger (or
evidence for supersymmetry will emerge) during future LHC runs. The limits on leptons,
charginos and neutralinos (see below) are significant, though not quite as strong.

There are also strong constraints on the supersymmetry parameters (the 101 parameters
we counted in the MSSM, for example) from rare processes.

1.7.1 Direct searches for supersymmetric particles

As mentioned above, direct searches for supersymmetric particles at LEP, the Tevatron
and the LHC have placed significant limits on their masses. Among the states in the
MSSM which are possible discovery channels for supersymmetry, are the charginos, linear
combinations of the partners of the W* and H*, and the neutralinos, linear combinations
of the partners of the Z and y (B and W?) and the neutral Higgs. The mass matrix for the
charginos, w* and /¥ is given by

Ly = O*mb0 + it*mii + d*m3d + L*m} L + &mé + HyOAyii + HpOAqd
+ (Hu)* +nify, \Hp)? + uBHyHp

+ wYuYH. (11.40)

The matrices m?

, mzi/ and so on that give mass to the scalar partners of quarks and
leptons (squarks and sleptons) are 3 x 3 Hermitian matrices, so they have nine independent

entries. The matrices 4, A4 etc. are general 3 x 3 complex matrices, so they each possess
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172 The Minimal Supersymmetric Standard Model

Slepton production in e™ e~ annihilation.

18 independent entries. Each gaugino mass is a complex number, so these introduce six
additional parameters; M1, M, and M3 are Majorana mass terms for the U(1), SU(2)
and SU(3) gauginos. The quantities i and B are also complex and so introduce four
more parameters. In total, then, there are 111 new parameters. As in the Standard Model,
they are not all meaningful since we are free to make field redefinitions. The counting is
significantly simplified if we just ask how many parameters there are beyond the usual 18
of the minimal theory.

For the neutralinos, WO, b, 71?], ﬁ%, there is a 4 x 4 mass matrix. We will leave the study
of these for the exercises. Conventionally, the charginos are denoted )Zl"’ » X1 s )Z;' s X7 s
where the label 2 indicates a chargino having greater mass. The neutralinos are denoted
)Z? , )Zg , )Zé) , )Zf , again ordered by increasing mass. The lightest of these states is stable if
R-parity is conserved and is a natural dark-matter candidate.

The direct searches are easy to describe, and production and decay rates can be computed
given a knowledge of the spectrum since the couplings of the fields are known. If R-parity
is conserved then the LSP is stable and weakly interacting, so the characteristic signal
for supersymmetry is missing energy. For example, in ete™ colliders one can produce
slepton pairs, if they are light enough, through the diagram of Fig. 11.4. These then decay,
typically, to a lepton and a neutralino, as indicated. So the final state contains a pair of
acoplanar leptons and missing energy. The LEP ran at center of mass energies as high as
/s = 209 GeV, setting limits of order 90 GeV on sleptons and 103.5 GeV on charginos.
The LHC has strengthened these limits in some regions of the parameter space.

In hadron colliders at high energies, one has the potential to produce colored hadrons —
squarks and gluinos — at high rates. As a result the most dramatic limits on supersymmetric
particles have been set by the LHC (following earlier searches at the Tevatron). The LHC
has run at 7 and 8 GeV, collecting 20 (femtobarns)~! of data per detector at the higher
energy, Setting limits, however, on gaugino and squark masses (and those of other states)
is a model-dependent process. For example, if gauginos are heavier than squarks, they will
first decay to a gluon and a squark; the squark may decay to a quark and a neutralino or to a
quark and a chargino, with the chargino in turn decaying by a variety of possible channels.
If the squarks are heavier than gluinos, there are alternative decay chains.
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173 1.7 Constraints on low-energy supersymmetry: direct searches and rare processes

Many analyses employ the ansatz we called SUGRA (see Section 11.1), with five
parameters. Quite stringent limits can then be set on these different parameters, and
correspondingly on the masses of the various superparticles. In recent years this model
has been refined somewhat and rebranded as the Constrained Minimal Supersymmetric
Standard Model, or CMSSM. A more phenomenological variant with assumptions which
are not quite as restrictive is the PMSSM. The strategy, in this framework, is to allow the
maximum (or close to the maximum) number of parameters consistent with the various
facts of low-energy physics. An alternative approach, adopted by many theorists and
employed in many experimental analyses, is referred to as the “simplified model” method.
Here one focuses on signals, i.e. particular production and decay possibilities, rather than
on fitting to models. From all these types of analysis one finds lower limits on gluinos of
order 1.2—1.7 TeV and similar limits for squarks.

1.7.2 Constraints from rare processes

Rare processes provide another set of strong constraints on the soft-breaking parameters.
In the simple ansatz, all the scalar masses are the same at some very high energy scale.
However, even if this is assumed to be true at one scale, it is not true at all scales, i.e. these
relations are renormalized. Indeed, all 105 parameters are truly parameters and it is not
obvious that the assumptions of universality and proportionality are natural. However,
there are strong experimental constraints which suggest some degree of degeneracy.

As one example, there is no reason, a priori, why the mass matrix for the Ls (the partners
of the lepton doublets) should be diagonal in the same basis as the charged leptons. If it is
not then there is no conservation of separate lepton numbers, and the decay u — ey will
occur (Fig. 11.5). To see that we are potentially in serious trouble, we can make a crude
estimate. The muon lifetime is proportional to G%-mi The decay © — ey occurs owing to
the operator

Lyuey = eCFyiice. (11.41)

If there is no particular suppression, we might expect that

o m
C=—-F (11.42)
T msusy
Y
X
E .
u e

Contributionto . — ey.
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174 The Minimal Supersymmetric Standard Model

Therefore the branching ratio, i.e. the ratio of the rate of decay to e;, and the rate for all
decays, would be of order

r w2 [ My \*
pr— LW—>ety) (“_) w (11.43)
I'(uw — all) Y Msusy

This ratio might become as small as 10~8—107 if the supersymmetry-breaking scale is
large, 1 TeV or so. But the current experimental limit is 1.2 x 10~!!. So even in this case
it is necessary to suppress the off-diagonal terms. More detailed descriptions of the limits
are found in the suggested reading at the end of the chapter.

Another troublesome constraint arises from the neutron and electron electric dipole
moments, d, and d.. Any non-zero value of these quantities signifies CP violation.
Currently, one has d, < 2.9 x 1072%¢ cm and d, < 18.7 x 107%°¢ cm. The soft-breaking
terms in the MSSM contain many new sources of CP violation. Even with the assumptions
of universality and proportionality, the gaugino mass and the 4, u and B parameters are
all complex and can violate CP. At the quark level, the issue is that one-loop diagrams
can generate a quark dipole moment, as in Fig. 11.6. Note that this particular diagram is
proportional to the phases of the gluino and the 4 parameter. It is easy to see that, even if
msusy ~ 500 GeV, these phases must be smaller than about 1072, More detailed estimates
can be found in the suggested reading at the end of the chapter.

In the real world CP is violated, so it is puzzling that all the soft-supersymmetry-
violating terms should preserve CP to such a high degree. This is in contrast with the
minimal Standard Model, with a single Higgs field, which can reproduce the observed
CP violation with phases of order 1. It is thus a serious challenge to understand why CP
should be such a good symmetry if nature is supersymmetric. Various explanations have
been offered. We will discuss some of these later, but it should be kept in mind that the
smallness of CP violation suggests that either the low-energy supersymmetry hypothesis is
wrong or there is some interesting physics which explains the surprisingly small values of
the dipole moments.

So far, we have discussed constraints on slepton degeneracy and CP-violating phases.
There are also constraints on the squark masses, arising from various flavor-violating
processes. In the Standard Model the most famous of these are strangeness-changing
processes such as KK mixing. One of the early triumphs of the Standard Model was that
it successfully explained why this mixing is so small. Indeed, the Standard Model gives

Contribution to dy, in supersymmetric theories.
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Gluino exchange contribution to KX mixing in the MSSM.

a quite good estimate for the mixing. This was originally used to predict — amazingly
accurately — the charm quark mass. The mixing receives contributions from box diagrams
such as that shown in Fig. 11.7. If we consider only the first two generations and ignore the
quark masses (compared with Mjy), we have that

MEK® — K% (VdiI/lTY)(V;I/jd) = 0. (11.44)
Including fermion masses leads to terms in the low-energy effective action L of order
2 2
BV e Grln < Gy Pysd) (dy ™y Ss) + - (11.45)
4r My, m;,

The matrix element of the operator appearing here can be estimated in various ways, and
one finds that this expression roughly saturates the observed value (this was the origin of
the prediction by Gaillard and Lee of the value of the charm quark mass). Similarly, the
CP-violating parameter in the kaon system (the “€” parameter) is in rough accord with
observation for reasonable values of the CKM parameter §.

In supersymmetric theories, if squarks are degenerate then there are similar cancelations.
However, if they are not then there are new, very dangerous, contributions. The most
serious is that indicated in Fig. 11.8, arising from the exchange of gluinos and squarks.
This is nominally larger than the Standard Model contribution by a factor (as/a)* & 10.
Also, the Standard Model contribution vanishes in the chiral limit whereas the gluino
exchange does not, and this leads to an additional enhancement of nearly an order of
magnitude. However, the diagram is highly suppressed in the limit of exact universality
and proportionality. Proportionality means that the 4 terms in Eq. (11.8) are suppressed by
factors of order the light quark masses, while universality means that the squark propagator
(q*q) is proportional to the unit matrix in flavor space. So, on the one hand, there are no
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176 The Minimal Supersymmetric Standard Model

appreciable off-diagonal terms which can contribute to the diagram. On the other hand,
there is surely some degree of non-degeneracy. One finds that, even if the characteristic
susy scale is 1 TeV, one needs degeneracy in the down squark sector at the one part in 30
level.

So the CP-preserving part of the KK mass matrix already tightly constrains the down
squark mass matrix and the CP-violations part provides even more severe constraints.
There are also strong limits on DD mixing, which significantly restrict the mass matrix
in the up squark sector. Other important constraints on soft breakings come from other rare
processes such as b — sy. Again, more details can be found in the references given in the
suggested reading.

Suggested reading

The minimal supersymmetric Standard Model is described in most reviews of super-
symmetry. Probably the best place to look for up-to-date reviews of the model and
the experimental constraints is the Particle Data Group website. A useful collection of
renormalization group formulas for supersymmetric theories is provided in the review by
Martin and Vaughn (1994). Limits on rare processes are discussed in a number of articles,
such as that by Masiero and Silvestrini (1997). The status of the NMSSM, including
questions of tuning, is discussed in Hall et al. (2012).

Exercises
|

(1) Derive Egs. (11.24)—(11.27).
(2) Verify the formula for the top quark corrections to the Higgs mass. Evaluate y; in terms
of m; and sin 8. Show that, to this level of accuracy,
12 2 4 N
m; < mycos 2B + £ (m*m?).

1672 m3,

(3) Estimate the sizes of the supersymmetric contributions to the quark electric dipole
moment, assuming that all the superpartner masses are of order mgysy and that § is a
typical phase. Assuming, as well, that the neutron electric dipole moment is of order the
quark electric dipole moment, how small do the phases have to be if mgusy = 500 GeV?
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Supersymmetric grand unification

In this brief chapter we discuss one of the most compelling pieces of circumstantial
evidence in favor of supersymmetry: the unification of coupling constants. Earlier, we
introduced grand unification without supersymmetry. In this chapter we consider how
supersymmetry modifies that story.

12.1 A supersymmetric grand unified model
e ————————

Just as in theories without supersymmetry, the simplest group into which one can unify the
gauge group of the Standard Model is SU(S). The quark and lepton superfields of a single
generation again fit naturally into a 5 and a 10.

To break SU(5) down to SU(3) x SU(2) x U(1), we can again consider a 24-dimensional
representation of the Higgs field X. If we wish supersymmetry to be unbroken at high
energies, the superpotential for this field should not lead to supersymmetry breaking. The
simplest renormalizable superpotential is

A
W(Z) =mTrs? + gTrz3. (12.1)

Treating this as a globally supersymmetric theory (i.e. ignoring supergravity corrections),
the equations

W _ 0 (12.2)
T '
are conveniently studied by introducing a Lagrange multiplier to enforce Tr ¥ = 0. The
resulting equations have three solutions:

=0, »= %diag(l, 1,1,-4), ¥= %diag@, 2,2,-3,-3). (12.3)

These solutions either leave SU(5) unbroken or break SU(5) down to SU(4) x U(1) or the
Standard Model group. Each solution is isolated; you can check that there are no massless
fields from ¥ in any of these states. At the classical level they are degenerate.

If we include supergravity corrections, however, these states are split in energy. Provided
that the unification scale m is substantially below the Planck scale, these corrections

can be treated perturbatively. In order to make the cosmological constant vanish in the
77
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178 Supersymmetric grand unification

SU3) x SU2) x U(1) (in brief, (3,2, 1)) vacuum, it is necessary to include a constant in
the superpotential such that, in this vacuum, the expectation value of the superpotential is
zero. As a result the other two states have negative energy (as we will see in the chapter on
gravitation, they correspond to solutions in which space—time is not Minkowski but anti-de
Sitter).

We will leave working out the details of these computations to the exercises and turn to
other features of this model. It is necessary to include Higgs fields to break SU(2) x U(1)
down to U(1). The simplest choice for the Higgs is the 5-dimensional representation. As in
the MSSM, it is actually necessary to introduce two sets of fields so as to avoid anomalies:
a 5 and 5 are the minimal choice. We denote these fields by H and H.

Once again it is important that the color triplet Higgs fields in these multiplets be massive
in the (3,2, 1) vacuum. The most general renormalizable superpotential that couples the
Higgs to the adjoint is

myHH + yHX H. (12.4)

By carefully adjusting y (or m) we can arrange that the Higgs doublet is massless. As
a result the triplet is automatically massive, with a mass of order my. Of course, this
represents an extreme fine tuning. We will see that the unification scale is about 106 GeV,
so this is a tuning of one part in 10'3 or so. But it is curious that this tuning only needs be
done classically. Because the superpotential is not renormalized, radiative corrections do
not lead to large masses for the doublets.

12.2 Coupling constant unification
|

The calculation of coupling constant unification in supersymmetric theories is quite
similar to that in non-supersymmetric theories. We assume that the threshold for the
supersymmetric particles is somewhere around 1 TeV. So, up to that scale, we run the
renormalization group equations just as in the Standard Model. Above that scale there are
new contributions from the superpartners of ordinary particles. The leading terms in the
beta functions are as follows:

33
SUG).bo=3; SU@).by=~1; U(D),by =~ (12.5)

One can be more thorough, including two-loop corrections and threshold effects. The
result of such an analysis are shown in Fig. 12.1. One has:

1
Mgy = 1.2 x 10'°GeV, gy ~ %5 (12.6)
The agreement in the figure is striking. One can view this as a successful prediction of o
(see below Eq. (3.100)), given the values of the SU(2) and U(1) couplings.
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179 12.3 Dimension-five operators and proton decay
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In the Standard Model the couplings do not unify at a point. In the MSSM they do, provided that the threshold for
new particle production is at about 1TeV. Reprinted with permission from P. Langacker and N. Polonsky,
Uncertainties in coupling constant unification, Phys. Rev. D, 47, 4028, 1993. Copyright (1993) by the American
Physical Society.

12.3 Dimension-five operators and proton decay

We have seen that, in supersymmetric theories, there are dangerous dimension-four
operators. These can be forbidden by a simple Z, symmetry, i.e. R-parity. But there are
also operators of dimension five which can potentially lead to proton decay rates far larger
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180 Supersymmetric grand unification

than the experimental limits. The MSSM possesses B- and L-violating dimension-five
operators which are permitted by all symmetries. For example, R-parity does not forbid
such operators as

1 - 1
0f = H/sz iidet, 0% = M/dze 00O0L. (12.7)

These are still potentially very dangerous. When one integrates out the squarks and
gauginos they will lead to dimension-six B- and L-violating operators in the Standard
Model with coefficients (optimistically) of order

o 1

4 Mmgysy

(12.8)

Comparing with the usual minimal SU(5) prediction, and supposing that M ~ 10'® GeV,
one sees that a suppression of order 10° or so is needed.

Fortunately, such a suppression is quite plausible, at least in the framework of super-
symmetric GUTs. In a simple SU(5) model, for example, the operators in Eq. (12.7)
will be generated by exchange of the color triplet partners of ordinary Higgs fields, and
thus one obtains two factors of Yukawa couplings. Also, in order that the operators be
SU(3) invariant the color indices must be completely antisymmetrized, so more than one
generation must be involved. This suggests that suppression by factors of order the CKM
angles is plausible. So we can readily imagine a suppression by factors 107°—10~!1,
Proton decay can be used to restrict — and does severely restrict — the parameter space
of particular models. The simplest SU(5) model, with TeV-scale squarks and gauginos and
the simplest Higgs structure, can be ruled out, for example. But what is quite striking is
that we are automatically in the right range to be compatible with experimental constraints,
and perhaps even to see something. It is not obvious that things would work out like this.

So far we have phrased this discussion in terms of baryon-violating physics at Mgy.
But, whatever the underlying theory at M, may be, there is no reason to think that it
should preserve baryon number. So one expects that already at scales just below M,
these dimension-five terms are present. If their coefficients were simply of order 1/M,,
the proton decay rate would be enormous, five orders of magnitude or more faster than
the current bounds. In any such theory one must also explain the smallness of the Yukawa
couplings. One popular approach is to postulate approximate symmetries. Such symmetries
could well suppress the dangerous operators at the Planck scale. One might expect that
there would be further suppression in any successful underlying theory. After all, the rate
from Higgs exchange in GUTs is very small because the Yukawa couplings are small. We
do not really know why the Yukawa couplings are small, but it is natural to suspect that
this is a consequence of (approximate) symmetries. These same symmetries, if present,
would also suppress dimension-five operators from Planck-scale sources, presumably by a
comparable amount.

Finally, we mentioned earlier that one can contemplate symmetries that would suppress
dimension-four operators beyond a Z, R-parity. Such symmetries, as we will see, are
common in string theory. One can write down R-symmetries which forbid not only all
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181 Exercises

the dangerous dimension-four operators but some or all the dimension-five operators as
well. In this case, proton decay could be unobservable in feasible experiments.

Suggested reading

A good introduction to supersymmetric GUTs is provided in Witten (1981). The reviews
and texts which we have mentioned on supersymmetry and grand unification all provide
good coverage of the topic. The Particle Data Group website has an excellent survey,
including up-to-date unification calculations and constraints on dimension-five operators.
Murayama and Pierce (2002) discussed the constraints on minimal SU(5) unification from
dimension-five operators.

Exercises
1 —

(1) Work through the details of the simplest SU(5) supersymmetric grand unified model.
Solve the equations

aw

T

Couple the system to supergravity, and determine the value of the constant in the

0.

superpotential required to cancel the cosmological constant in the (3,2, 1) minimum.
Determine the resulting value of the vacuum energy in the SU(5) symmetric minimum.

(2) In the simplest SU(5) model, include a 5 and a 5 representation of Higgs fields.
Write down the most general renormalizable superpotential for these fields and
the 24-dimensional representation, X. Find the condition on the parameters of the
superpotential such that there is a single light doublet. Using the fact that only
the Kahler potential is renormalized, show that this tuning of parameters at tree
level ensures that the doublet remains massless to all orders of perturbation theory.
Now consider the couplings of quarks and leptons required to generate masses
for the fermions. Show that exchanges of 5 and 5 Higgs lead to baryon- and
lepton-number-violating dimension-five couplings.

(3) Show how various B-violating four-fermion operators are generated by squark and
slepton exchange, starting with the general set of B- and L-violating terms in the
superpotential.
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Supersymmetric dynamics

In the previous chapter, we learned how to build realistic particle physics models based on
supersymmetry. There are already significant constraints on such theories, and experiments
at the LHC will test whether these sorts of ideas are correct.

If supersymmetry is discovered, the question will become: how is supersymmetry
broken? Supersymmetry breaking offers particular promise for explaining large hierar-
chies. Consider the non-renormalization theorems. Suppose that we have a model consist-
ing of chiral fields and gauge interactions. If the superpotential is such that supersymmetry
is unbroken at tree level, the non-renormalization theorems for the superpotential which
we proved in Section 9.7 guarantee that supersymmetry is not broken to all orders of
perturbation theory. But they do not necessarily guarantee that effects smaller than any
power of the couplings will not break supersymmetry. So, if we denote the generic coupling
constants by g2, there might be effects of order, say, e~¢/ 2 which break the symmetry. In
the context of a theory like the MSSM, supposing that soft breakings are of this order might
account for the wide disparity between the weak scale (correlated with the susy-breaking
scale) and the Planck or unification scale.

So, one reason why the dynamics of supersymmetric theories is of interest is its role in
aiding our understanding of dynamical supersymmetry breaking and perhaps in studying a
whole new class of phenomena in nature. But there are yet other reasons to be interested, as
was first clearly appreciated by Seiberg. Supersymmetric Lagrangians are far more tightly
constrained than ordinary Lagrangians. It is often possible to make strong statements about
the dynamics which would be difficult if not impossible for conventional field theories. We
will see this includes phenomena such as electric—magnetic duality and confinement.

13.1 Criteria for supersymmetry breaking: the Witten index
. _________________________________________________________________________________________|]

We will consider a variety of theories, some of them strongly coupled. One might
imagine that it is a hard problem to decide whether supersymmetry is broken. Even in
weakly coupled theories, one might wonder whether one could establish reliably that
supersymmetry is not broken since, unless one has solved the theory exactly, it would
seem hard to assert that there is no tiny non-perturbative effect which does not break the
symmetry. One thing we will learn in this chapter is that this is not, however, a particularly
difficult problem. We will exploit several tools. One is known as the Witten index. Consider
the field theory of interest in a finite box. At finite volume the supersymmetry charges
182
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183 13.1 (riteria for supersymmetry breaking: the Witten index

are well defined, whether or not supersymmetry is spontancously broken. Because of the
supersymmetry algebra,

0By = VEIF), QIF)=E|B), (13.1)

i.e. non-zero-energy states come in Fermi—Bose pairs. Zero-energy states are special; they
need not be paired. In the infinite-volume limit, the question of supersymmetry breaking
amounts to the question whether there are zero-energy states. To count these, Witten
suggested evaluating

A=Tr (=) e PH, (13.2)

Non-zero-energy states do not contribute to the index. The exponential is present to provide
an ultraviolet regulator: the Witten index A is independent of . More strikingly, the index
is independent of all the parameters of the theory. The only way in which A can change
as some parameter is changed is by some zero-energy state acquiring non-zero energy
or a non-zero-energy state acquiring zero energy. But, because of Eq. (13.1), whenever
the number of zero-energy bosonic states changes, the number of zero-energy fermionic
states changes by the same amount. The Witten index is thus topological in character, and
it is from this that it derives its power as well as its applications in a number of areas of
mathematics. What can we learn from this index? If A 7 0 then we can say with confidence
that supersymmetry is not broken. If A = 0, we do not know whether it is.

Let us consider an example: a supersymmetric gauge theory with gauge group SU(2)
and no chiral fields. Since A is independent of the parameters, we can consider the theory
in a very tiny box, with very small coupling. We can evaluate A, somewhat heuristically, as
follows. Work in the 49 = 0 gauge. Consider, first, the bosonic degrees of freedom, the 4;s,
which are matrix valued. In order for the energy to be small, we need the 4;s to be constant
and to commute. So take A4; to lie in the third dimension in isospin space, and ignore the
other bosonic degrees of freedom. One might try to remove these remaining variables by a
gauge transformation g = exp(i4;x’), but g is only a sensible gauge transformation if it is
single-valued, which means that A? = 2mn/L. Thus A? is a compact variable. This reduces
the problem to the quantum mechanics of a rotor. Thus in the lowest state the wave function
is a constant. Because the A?s are non-zero, the lowest energy states will only involve the
gluinos in the three direction. There are two, )»% and A% (again independent of coordinates).

Now recall that in the 49 = 0 gauge the states must be gauge invariant. One interesting
gauge transformation is multiplication by o. This flips the sign of 4% and A>. If we assume
that our Fock ground state is even under this transformation, the only invariant states are
|0) and A?)@O). So we find A = 2. If we assume that the state is odd then we obtain
A=-2

As we indicated, this argument is heuristic. A more detailed, but still heuristic, argument
was provided by Witten in his paper on the index A. But Witten also provided a more
rigorous proof, which yields the same result. For general SU(N), one finds that A = N.

This already establishes that a vast array of interesting supersymmetric field theories do
not break supersymmetry, not only all the pure gauge theories but any theory with massive
matter fields. This follows because A is independence of parameters. If the mass is finite,
one can take it to be large; if it is sufficiently large we can ignore the matter fields and
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184 Supersymmetric dynamics

recover the pure gauge result. Later, we will understand the dynamics of these theories in
some detail and will reproduce the result for the index. But we will also see that the limit
of zero mass is subtle, and the index calculation is not directly relevant to that case.

13.2 Gaugino condensation in pure gauge theories
- |

Our goal in this section is to understand the dynamics of a pure SU(N) gauge theory with
massless fermions in the adjoint representation. Without thinking about supersymmetry
one might expect the following, from our experience with real QCD.

1. The theory has a mass gap, i.e. the lowest excitations of the theory are massive.
2. Gauginos, like quarks, condense, i.e.

(Ah) = cAS = ce~ @7 /bog)), (13.3)

Note that there is no Goldstone boson associated with the gluino (gaugino) condensate.
The theory has no continuous global symmetry; the classical symmetry,

A — €%, (13.4)
is anomalous. However, a discrete subgroup,
A — TNy, (13.5)

is free of anomalies. One can see this by considering instantons in this theory. The instanton
has 2N zero modes; this would appear to preserve a Zpy symmetry. But the transfor-
mation . — —X\ is actually equivalent to a Lorentz transformation (a rotation by 27).
Multi-instanton solutions also preserve this symmetry, and it is believed to be exact. So
the gaugino condensate breaks the Zy symmetry; there are N degenerate vacua. This neatly
accounts for the N value of the index. Later we will show that, even though the theory
is strongly coupled, we can demonstrate the existence of the condensate by a controlled
semiclassical computation.

Gluino condensation implies a breakdown of the non-renormalization theorems at the
non-perturbative level. Recall that the Lagrangian is

L= /d29 SW2, (13.6)
s0 (AA) gives rise to a superpotential, i.e.
L= /dze S(AA). (13.7)

This is our first example of a non-perturbative correction to the superpotential. Note,
however, that (A1) must depend on S, since it depends on g?:

SON) = e 35/bo (13.8)
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185 133 Supersymmetric QCD

So we actually have a superpotential for S:
wW(S) = e S/N, (13.9)

This superpotential violates the continuous shift symmetry which we used to prove the
non-renormalization theorem, but it is compatible with the non-anomalous R symmetry,

S — S+iaN, r— 1. (13.10)

Under this symmetry the superpotential transforms with charge 2.

13.3 Supersymmetric QCD

A rich set of theories for study is that collectively referred to as supersymmetric
QCD. These are gauge theories with gauge group SU(N), Nt flavor fields O in the N
representation and Ny flavor fields Qf in the N representation; here f'= 1,..., Nr. We will
see that the dynamics is quite sensitive to the value of N¢. First, we will consider the theory
without any classical superpotential for the quarks. In this case the theory has a large global
symmetry. We can transform the Qs and Qs by separate SU(Ny) transformations. We can
also multiply the Os by a common phase and the Os by a separate common phase:

Or— €0, Or— €0y (13.11)

Finally, the theory possesses an R symmetry, under which the Os and Qs are neutral. In
terms of component fields, under this symmetry we have

Yo — e Yo, Y5— e MY A U0 (13.12)

Now consider the question of anomalies. The SU(Ny) symmetries are free of anomalies,
as is the vector-like symmetry,

Or— €0, Qr— e Q. (13.13)

The R symmetry and the axial U(1) symmetry are both anomalous. But we can define a
non-anomalous R by combining the two. The gauginos give a contribution to the anomaly
proportional to &V, so we need the fermions to carry an R-charge —N/Ny. Since the bosons
(and the chiral multiplets) carry an R-charge that is larger by 1, we have

Of(x,0) — @N=NINt g (x 0e™®),  Qp(x,0) — *NTNNIG(x ge™™).  (13.14)

So, the symmetry of the quantum theory is SU(Ny)L x SUNp)r x U(1)g x U(1)y, where
the vector symmetry U(1)y transforms the O and Q fields by opposite phases.

We have seen that supersymmetric theories often have, classically, a large vacuum
degeneracy and this is true of this theory. In the absence of a superpotential, the potential
is completely determined by the D terms for the gauge fields. It is helpful to treat D as a
matrix-valued field,

D=) TD". (13.15)
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186 Supersymmetric dynamics

As a matrix, D can be expressed elegantly in terms of the scalar fields. We start with the
identity
1

ol
518k (13.16)

(/T = 818 —

One can derive this result in a number of ways. Consider propagators for fields (such as
gauge bosons) in the adjoint representation of the gauge group. Take the group, first, to be
U(N). The propagator of the matrix-valued fields satisfies

(d4L) o 515, (13.17)
But this is the same thing as
(448 (T,(TP)L). (13.18)

So we obtain the identity without the 1/N terms. Now remembering that 4 must be
traceless, we see that we need to subtract the trace as above. (This identity is important
in understanding the 1/N expansion in QCD.) Thus a field ¢ in the fundamental
representation makes a contribution

30| = 974/ — oloie" (13.19)

In the antifundamental representation the generators are —7% (this follows from the
fact that these generators are minus the complex conjugates of those in the fundamental
representation, and the fact that the 7%s are Hermitian). So the full D term is

D;=Y"0:0" — 0,0 — Tr terms, (13.20)
-

In this matrix form it is not difficult to look for supersymmetric solutions, i.e. solutions of
Dﬁ = 0. A simple strategy is first to construct

D,=3"0r0 - 0:0* (13.21)
7

and demand that D either vanish or be proportional to the identity. Let us start with the case
Nt < N. For definiteness, take N = 3, Nr = 2; the general case is easy to work out. By a
sequence of SU(3) transformations, we can bring Q to the following form:

Yt V12
0= 0 v |. (13.22)
0 o0

Vi 0
o= 0 » | (13.23)
0 0
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187 13.3 Supersymmetric QCD

At this point we have used up our freedom to make further symmetry transformations on Q.
But it is easy to find the most general O which makes the D terms vanish. The contribution
of O to D: is simply

D = diag(|v1 %, [v2]%). (13.24)

So, in order that D vanish, O must make an equal and opposite contribution. In order that
there be no off-diagonal contributions, O can have entries only on the diagonal, so

) ey, 0
0= 0 ey |. (13.25)
0 0

In general, in these flat directions — directions in field space in which the potential is
flat — the gauge group is broken to SU(N — Ns). The unbroken flavor group depends on
the values of the v;s. We have exhibited Nr complex moduli above, but actually there are
more, associated with the generators of the broken flavor symmetries (SU(Ng) x U(1)).
Thus there are N% + 2Nf complex moduli. Note that there are 2NNy — N% broken gauge
generators, which gain mass by “eating” the components of Q, O that are not moduli. Of
the original 2NNr chiral fields this leaves precisely N% + 2N massless fields, so we have
correctly identified the number of moduli.

Our discussion, so far, does not look gauge invariant. But this is easily, and elegantly,
rectified. The moduli can be written as the gauge-invariant combinations

Mfffz 0; 0 (13.26)

Expanding the fields Q and Q about their expectation values gives back the explicit form
for the moduli in terms of the underlying gauge-invariant fields. This feature, we will see,
is quite general.

The case Ny=N is similar to the case Ny < N, but there is a significant new feature.
In addition to the flat directions with Q = O (up to phases), the potential also vanishes
if O = vl, where I is the identity matrix. This possibility can also be described in a
gauge-invariant way since now we have an additional pair of gauge invariant fields, which
we will refer to as “baryons”:

B=e""Ney 00 - O, (13.27)
and similarly for B.

In the case Ny > N there is a larger set of baryon-like objects, corresponding to additional
flat directions. We will describe them in greater detail later. Before closing this section we
should stress that for Ny > N — 1 the gauge symmetry is completely broken. For large
values of the moduli, the effective coupling of the theory is g(v) since infrared physics
cuts off at the scale of the gauge field masses. By taking v as sufficiently large that g*(v)
is small, the theories can be analyzed by perturbative and semiclassical methods. Strong
coupling is more challenging, but much can be understood. We will see that the dynamics
naturally divides into three cases: Ny < N, Ny = N, and Nf > N.
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188 Supersymmetric dynamics

13.4 Nf < N:anon-perturbative superpotential
I

Our problem now is to understand the dynamics of these theories. Away from the origin
of the moduli spaces, this turns out to be a tractable problem. We consider first the case
Nf < N. Suppose that the v;s are large and roughly uniform in magnitude. Even here, we
have to distinguish two cases. If Ny = N — 1, the gauge group is completely broken and
the low-energy dynamics consists of the set of chiral fields Mz, If Nf < N — 1, there is an
unbroken gauge group, SU(N — Ny), with no matter fields (chiral fields) transforming under
this group at low energies. The gauge theory is an asymptotically free theory, essentially
like ordinary QCD with fermions in the adjoint representation. Such a theory is believed
to have a mass gap of order the scale of the theory, Ay_y;. Below this scale, again, the
only light fields are the moduli M}f;. In both cases we can try to guess the form of the
very-low-energy effective action for these fields from symmetry considerations.

We are particularly interested in whether there is a superpotential in this effective action.
If not then the moduli have exactly no potential. In other words, even in the full quantum
theory, they correspond to an exact, continuous, set of ground states. What features should
this superpotential possess? Most important, it should respect the flavor symmetries of
the original theory (because the fields M are gauge invariant, it automatically respects
the gauge symmetry). Among these symmetries are the SU(Nr) x SU(Nr) non-Abelian
symmetry. The only invariant that we can construct from M is

® = det M. (13.28)

The determinant is invariant because it transforms under M — VMU as det V'det U det M
and, for SU(Ny) transformations, the determinant is unity. Under baryon number symmetry,
M is invariant. But, under U(1)g symmetry the its transformation law is more complicated:

O — ZeNi=N) (13.29)

Under this R-symmetry, any would-be superpotential must transform with charge 2, so the
form of the superpotential is unique:

W — AGN=ND/(N=Np) g —1/(N—Np) (13.30)

Here we have inserted a factor A, the scale of the theory, on dimensional grounds.

Our goal in the next two sections will be to understand the dynamical origin of this
superpotential, known as the Affleck, Dine and Seiberg (ADS) superpotential. We will see
that there is a distinct difference between the cases Ny = N — 1 and Ny < N—1. First, though,
consider the case N= Nr. Then the field ® has R-charge zero, and no superpotential is
possible. So, no potential can be generated, perturbatively or non-perturbatively. Similarly,
in the case Ny > N we cannot construct a gauge-invariant field which is also invariant under
the SU(Nf) x SU(Ny) flavor symmetry. This may not be obvious, since it would seem that
we could again construct ® = det M. But in this case ® = 0 in the flat directions.

From the perspective of ordinary, non-supersymmetric, field theories, what we have
established here is quite surprising. Normally, we would expect that in an interacting
theory, even if the potential vanished classically there would be quantum corrections. For
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189 13.4 N < N:anon-perturbative superpotential

theories with N > Ny, we have just argued that this is impossible. So this is a new feature
of supersymmetric theories: there are often exact moduli spaces, even at the quantum level.

In the next few sections we will demonstrate that non-perturbative effects do indeed
generate the superpotential of Eq. (13.30). The presence of the superpotential means that,
at least at weak coupling (large v;), there is no stable vacuum of the theory. At best, we
can consider time-dependent, possibly cosmological, solutions. If we add a mass term for
the quarks, however, we find an interesting result. If the masses are the same, we expect
that all the v;s will be the same, v; = v. Suppose that the mass term is small. Then the full
superpotential, at low energies, is

W — mQQ—l— A GN=Np)/(N=Np) g—1/(N=Np) (13.31)
Remembering that & ~ v?Vf, the equation for a supersymmetric minimum has the form

VN (N=Np) (%) A2N/(N=Np) (13.32)

Note that v is a complex number; this equation has N roots

v = TN 5 (ﬂ (13.33)

A

What is the significance of these N solutions? The mass term breaks the SU(N¢) x SU(N¢)

symmetry to the vector sum. It also breaks the U(1)g. But it leaves unbroken a Zy subgroup

of the U(1). In Egs. (13.14), « = 2N¢/N is a symmetry of the mass term. So these N vacua

are precisely those expected from the breaking of the Zy subgroup. This Zy is the same

as that expected for a pure gauge theory, as one can see by thinking of the case where the
mass of the Qs and Qs is large.

)(N*Nf)/2N

13.4.1 The A-dependence of the superpotential

Previously, we proved a non-renormalization theorem for the gauge couplings by thinking
of the gauge coupling itself as a background field S. This relied on the shift symmetry

S— S+ia.

This symmetry, however, is only a symmetry of perturbation theory. On the one hand,
since the imaginary part a of S, couples to FF, instanton and other non-perturbative effects
violate the symmetry. On the other hand the theory also has an anomalous chiral symmetry,
the R symmetry, under which we can take all the scalar fields to be neutral. So the theory
is symmetric under this R symmetry combined with a simultaneous shift

S — S+ i(N — Np)e. (13.34)

Any superpotential must transform with charge 2 under this symmetry. The field & is
neutral. But we have, for the A parameter,

872 872
A=exo(— —exp——2 13.35
exp( bog2> exp( 3N—Nf> (13.33)
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190 Supersymmetric dynamics

so it transforms as follows:

AGN=Np)/(N=Np) _, j2icr \ BN=Np)/(N—Np) (13.36)

13.5 The superpotential in the case Ny < N — 1

Consider first the case Ny < N— 1. At energies well below the scale v, the theory consists of
apure (supersymmetric) SU(N—Nr) gauge theory and a number of neutral chiral multiplets.
The chiral multiplets can couple to the gauge theory only through non-renormalizable
operators. Because the moduli are neutral, there are no dimension-four couplings. There
are possible dimension-five couplings; they are of the form

sp W2, (13.37)

where §¢ represents the fluctuations of the moduli fields about their expectation values;
the coefficient of this operator will be of order 1/v.

We can be more precise about the form of this coupling by noting that it must respect the
various symmetries if it is written in terms of the original, unshifted fields (this is similar
to our argument for the form of the superpotential). In particular, a coupling of the form

Leowp = (S+ aln @)W (13.38)

respects all the symmetries: it clearly respects the SU(Nr) symmetries, and it also respects
the non-anomalous U(1)r symmetry, for a suitable choice of a, since

In ® — In ® + (N — Ny) /Ny, (13.39)
It is not hard to see how this coupling is generated:
o ~ vV Vg, (13.40)

Thus Im ¢ couples to FF through the anomaly diagram, just like an axion. The real part
couples to FZ. One can see this by a direct calculation or by noting that the masses of the
heavy fields are proportional to v, so the gauge coupling of the SU(N — Nr) theory depends
on v
1 1 SN_Nf) I
otN_Nf(;L) =ay (v)+ e In o (13.41)

Since ® ~ VM, we see that we have precisely the correct coupling. It is easy to see which
Feynman graphs generate the couplings to the real and imaginary parts.
But we have seen that in the SU(N — Ny) theory, gaugino condensation gives rise to a
superpotential for the coefficient of #2; in this case, it is precisely
A BN=Np)/(N—Ny)

= T (13.42)

So we have understood the origin of the superpotential in these theories.

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

191 13.6 Nf =N — 1: the instanton-generated superpotential

13.6 Nf = N — 1: the instanton-generated superpotential
I —

In the case Ny = N—1, the superpotential is generated by a different mechanism: instantons.
Before describing the actual computation we give some circumstantial evidence for this
fact. Consider the instanton action. This is

—87?

Here we have assumed that the coupling is to be evaluated at the scale of the scalar vevs.
The gauge group is, after all, completely broken so, provided that the computation is finite,
this is the only relevant scale (we are also assuming that all the vevs are of the same order).
Thus any superpotential we might compute behaves as

A 2N+1 A2N+1
3

which is the behavior predicted by the symmetry arguments.

To actually compute the instanton contribution to the superpotential, we need to develop
further than in Chapter 5 the instanton computation and the structure of the supersymmetry
zero modes. The required techniques were developed by ’t Hooft, when he computed
the baryon-number-violating terms in the effective action of the standard model; ’t Hooft
started by noting that, in the presence of the Higgs field, there is no instanton solution. This
can be seen by a simple scaling argument. Here the instanton solution will involve A" and
¢. Suppose one has such a solution. Now simply do a rescaling of all lengths such that

1
Xt — pxt, A — —A*, P — (13.45)
0

(because ¢ must tend to its expectation value at co, we cannot rescale it). Then the gauge
kinetic terms are invariant but the scalar kinetic terms are not; |D¢|> — p?|Dé|?. So the
action is changed, and there is no solution.

However, the instanton configuration, while not a solution, is still distinguished by its
topology; ’t Hooft argued that it makes sense to integrate over solutions of a given topology.
This just means that we write down a configuration for each value of p, and integrate
over p. For small p we can understand this in the following way. The non-zero modes
of the instanton, before turning on the scalar vevs, all have eigenvalues of order 1/p or
larger and can be ignored. There are also zero modes. Those associated with rotations and
translations will remain at zero, even in the presence of the scalar, since they correspond
to exact symmetries. But this is not the case for the dilatational zero mode; this mode is
slightly lifted. The scaling argument above shows that the action is smallest at small p; we
will see in a moment that the action of the interesting configurations vanishes as p — 0.
We know from our earlier studies of QCD, however, that renormalization of the coupling
tends to make the action large at small p. Together, these effects yield a minimum of the
action at small but finite p, giving a self-consistent justification of the approximation.
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192 Supersymmetric dynamics

To proceed with the computation, we will use ’t Hooft’s notation for the instanton, which
we introduced in Chapter 5. Recall that

2NauvX
agy _ HMapvXy
It is straightforward to work out F,, (see the exercises):
Fa = M (13.47)

w1 )t

We note that F is self-dual, since 7 is, so this is a solution of the Euclidean equations.
A second-rank antisymmetric tensor F,, is a six-dimensional representation of SO(4);
under SU(2) x SU(2) it decomposes as (3,1) + (1, 3), where these are the self-dual and
anti-self-dual parts of the tensor. The 1 symbol is essentially a Clebsch—Gordan coefficient,
which describes a mapping of one SU(2) subgroup of SO(4) into SU(2).

At large distances, the instanton is a gauge transformation of “nothing”. i.e. vanishing
values for the fields. The gauge transformation is just

= Min
g =io; . (13.48)

This can be thought of as a mapping of S5 into SU(2); the winding number of the instanton
just counts the number of times space is mapped onto the group.

In this form it is useful to note another way to describe the instanton solution. By an
inversion of coordinates one can write

2 p? x¥
A = = ——— —. 13.49
nT RNy 2 Mapv 3 ( )

This singular gauge instanton is often useful since it falls off more rapidly at large x than
the original instanton solution.

Now, for the doublets we solve the equation
D*Q=D*0=0. (13.50)

This has solutions
1/2
i _ AT s Hiap 1 / J 13.51
0'=0" =i/ (5 ) (@), (13.51)

and similarly for Q. Like the solution for A%, these solutions are “pure gauge” configura-
tions as » — 00, i.e. they are gauge transformations by g of the constant vev. (Note, here
and above, that the o#s are the Euclidean versions of the two-component Dirac matrices,
ot = (i,0),0" = (i,—0).)

The action of this configuration is
1
S(p) = — (87* + 42 ph?). (13.52)
g

Some features of this result are worth noting.

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

193 13.6 Nf =N — 1: the instanton-generated superpotential

1. The integral over p now converges for large p, since it is exponentially damped.

2. Terms in the potential involving |Q|* make smaller contributions to the action,
according to powers of p. Rescaling x as px, one sees that these terms are of order p*.
But p is at most of order gv—! = m,, (from item 1 above), so these terms are suppressed.
This justifies their neglect in the equations of motion.

Our goal is to compute the instanton contribution to the effective action. We particularly
want to see whether the instanton generates the conjectured non-perturbative superpoten-
tial. In order to compute the effective action, we need to ask about the fermion zero modes.
Before turning on the vevs for the scalars, there are six zero modes. Two of these are
generated by supersymmetry transformations of the instanton solution

Sh =l eg, (13.53)
SO
So,ﬂaﬁ
ssp) _ _ %0
haa' = oy pois (13.54)

Note that, because of the anti-self-duality of 6"V, two supersymmetry generators annihilate
the lowest-order solution, i.e. there are only two supersymmetry zero modes. If we neglect
the Higgs, the classical Yang—Mills action has a conformal (scale) symmetry. This is the
origin of the zero mode associated with changes in p. in the classical solution. In the super-
symmetric case, there is, apart from supersymmetry, an additional fermionic symmetry
called superconformal invariance. In superspace the corresponding generators are

0% =40, (13.55)
SO
8){0”“’3
SC[B] _ o
haa = o2 g (13.56)

There are also two matter-field zero modes, one for each of the quark doublets:
8

Voo = (2t p2)32

=v5 (13.57)
(in the last equation we treated O as a doublet also; one can instead treat it as a 2*
representation by multiplying by ;).

When we turn on the scalar vevs these modes are corrected. The superconformal
symmetry is broken by the vevs and, not surprisingly, the superconformal zero modes are
lifted. In fact, they pair with the two quark zero modes. We can compute this pairing by
treating the Yukawa terms in the Lagrangian as a perturbation, replacing the scalar fields
by their classical values. Expanding to second order, i.e. including

/ d*x O*yroh f d*y 0*y 51 (13.58)

and expanding the fields in the lowest-order eigenmodes, the superconformal and matter-
field zero modes can be absorbed by these terms. Note, in particular, that both Q. and
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194 Supersymmetric dynamics

A5C are odd under x — —x while the matter-field zero modes are even, so the integral is
non-zero. The supersymmetry zero modes, being even, cannot be soaked up in this way.
The wave functions of the supersymmetry zero modes are altered in the presence of the

Higgs fields, and they now have components in the wé and 1,05 directions. For o, for
example, we need to solve the equation
D"y = A550". (13.59)

This equation is easy to solve, starting with our solution of the scalar equation. If we simply
take

Vo = Duot 0%, (13.60)
then, substituting back into the left-hand side of Eq. (13.59) we obtain

D*Q+ 0, F*0; (13.61)

the first term vanishes for the classical solution, while the second is indeed just A550Q*.

With these ingredients we can compute the superpotential terms in the effective action.
In particular, the non-perturbative superpotential predicts a non-zero term in the component
form of the effective action proportional to

2w
9000
We can calculate this term by studying the corresponding Green’s function. We need to

be careful, now, about the various collective coordinates. We want to study the gauge-
invariant correlation function

1
= VoV (13.62)

(@Yo Y3(10() (13.63)

in the presence of the instanton. Since we are interested in the low-momentum limit of the
effective action, we can take x and y to be widely separated. We need to integrate over the
instanton location xy and the instanton orientation and scale size. Because the gauge fields
are massive, we can take x and y both to be far from the instanton. Then, from our explicit
solution for the supersymmetry zero modes, we obtain

ia“(x“ — xé‘)

(x —x0)% + p?]'/2

Yo(x) x PO @[ — g(x — x0)SF(x — xo), (13.64)
with a similar equation for Vo The g and g' factors are canceled by corresponding factors
in O and Q, at large distances. Substituting these expressions into the path integral and
integrating over xq gives a convolution, v f d*xo Sp(x — x0)Sr(y — yo). Extracting the
external propagators, we obtain the effective action. Integrating over p gives a term of
precisely the desired form. If we contract the gauge and spinor indices in a gauge and
rotationally invariant manner, the integral over rotations just gives a constant factor. It
requires some work to do all the bookkeeping correctly. The evaluation of the determinant
is greatly facilitated by supersymmetry: there is a precise fermion—boson pairing of all
the non-zero modes. In the exercises, you are asked to work out more details of this
computation; further details can also be found in the references.
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195 13.6 Nf =N — 1: the instanton-generated superpotential

Schematic description of the instanton computation of the superpotential. Four zero modes are tied together by
the scalar vevs; two gluino zero modes turn into v zero modes as well.

Without working through all the details we can see the main features.

1. The perturbative lifting of the zero modes gives rise to a contribution proportional to v
(see Fig. 13.1).

2. The matter-field component of the supersymmetry zero modes studied above gives a
contribution to the gauge-invariant correlation function:

[ a5 o). (13.65)

3. The integral over the gauge collective coordinates (equivalently the rotational collective
coordinates) simply gives a constant, since we have computed a gauge- and rotationally
invariant quantity.

4. The scale-size collective coordinate integral behaves as

8 2
W:A/dpv4exp— |:( 27{ +4n2,02v2>] (13.66)
g°(p)
where the power of p has been determined from dimensional analysis and A4 is a

constant.

5. Extracting the constant requires careful attention to the normalization of the zero modes
and to the Jacobians for the collective coordinates. However, the non-zero modes come
in Fermi—Bose pairs, and their contribution to the functional integral cancels.

6. The final p integral gives

A5
W=d=, (13.67)
v

which is consistent with the expectations of the symmetry analysis.

This analysis generalizes straightforwardly to the case of general N..
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196 Supersymmetric dynamics

13.6.1 Anapplication of the instanton result: gaugino condensation

The instanton calculation for the case Ny=N — 1 is a systematic weak-coupling computa-
tion of the superpotential which appears in the low-energy-effective action. Seiberg noted
that this result, plus holomorphy, allows systematic study of the strongly coupled regime
of other theories. To understand this, take N = 2 and add a mass term for the quark. In this
case, for very small mass the superpotential is

2N+1

W=m00 + ——. 13.68
mQQ 50 ( )

We can solve the equation for Q:

5\ 1/4
0= (S) v = (%) . (13.69)

Using this we can evaluate the expectation value of the superpotential at the minimum:
Wim, A) = A m!/2. (13.70)

Because I is holomorphic, this result also holds for large m. For large m, the low-energy
theory is just a pure SU(2) gauge theory. We expect for large m that the superpotential is
(ML) = A135' But this is equal to

3 82

W=\ =m’exp|— . (13.71)
2g%(m)

The right-hand side is simply A13e. We have, in fact, done a systematic, reliable computation

of the gluino condensate in a strongly interacting gauge theory!

Suggested reading

Excellent treatments of supersymmetric dynamics appear in the text by Weinberg (1995),
and in Michael Peskin’s lectures (1997). We have already mentioned ’t Hooft’s original
instanton paper (1976). The instanton computation of the superpotential is described in
Affleck et al. (1984).

Exercises
O

(1) Verify that o, and 6,,, are self-dual and anti-self-dual, respectively. This means that
Tro%oy, is a self-dual tensor. Verify the connection to 7; do the same thing for 7.

(2) Verify Eq. (13.47), which shows that F' is self-dual and so solves the Euclidean Yang—
Mills equations. Check that asymptotically the instanton potential is a gauge transform
of “nothing.”
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197 Exercises

(3) Verify the solution Eq. (13.51) of the scalar field equation. Compute the action of this
field configuration.

(4) Perform the zero-mode counting for the case of general N, Nf = N, — 1. Show that,
again, all but two zero modes pair with matter-field zero modes; two supersymmetry
zero modes contain matter-field components which can give rise to the expected
superpotential.
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Dynamical supersymmetry breaking

One of the original reasons for the interest in supersymmetry was the possibility of
dynamical supersymmetry breaking. So far, however, we have exhibited models in which
supersymmetry is unbroken in the true ground state, as in the case of QCD with only mas-
sive quarks or models with moduli spaces or approximate moduli spaces. In this chapter,
we describe a number of models in which a non-trivial dynamics breaks supersymmetry.
We will see that dynamical supersymmetry breaking occurs under special, but readily
understood, conditions. In some cases we will be able to exhibit this breaking explicitly,
through systematic calculations. In others we will have to invoke more general arguments.
Then we will turn to theories in which supersymmetry is preserved in the lowest energy
state but in which there exist metastable states with broken supersymmetry. We will argue
that this is a generic phenomenon and see that it is even sometimes true in massive QCD.

14.1 Models of dynamical supersymmetry breaking
O —

We might ask why, so far, we have not found supersymmetry to be dynamically broken.
In supersymmetric QCD with massive quarks, we might give the Witten index as an
explanation. We might also note that there is no promising candidate for a goldstino. With
massless quarks we have flat directions and, as the fields get larger, the theory becomes
more weakly coupled so that any potential tends to zero.

This suggests two criteria for finding models with dynamical supersymmetry breaking
(DSB).

1. The theory should have no flat directions at the classical level.
2. The theory should have a spontaneously broken global symmetry.

The second criterion implies the existence of a Goldstone boson. If the supersymmetry
were unbroken, any would-be Goldstone boson must lie in a multiplet with another scalar
as well as a Weyl fermion. This other scalar, like the Goldstone particle, has no potential
so the theory has a flat direction. But, by assumption, the theory classically (and therefore
almost certainly quantum mechanically) has no flat direction. So supersymmetry is likely
to be broken. These criteria are heuristic but, in practice, when a systematic analysis is
possible, they always turn out to be correct.

Perhaps the simplest model with these features is a supersymmetric SU(5) theory with
a single 5 and a single 10 representation. In the exercises, you can show that this theory,
in fact, has no flat directions and that it has two non-anomalous U(1) symmetries. One can

198
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199 14.1 Models of dynamical supersymmetry breaking

give arguments showing that these symmetries are broken. So it is likely that this theory
breaks supersymmetry.

However, this is a strongly coupled model and it is difficult actually to prove that super-
symmetry is broken. In the next section, we will describe a simple weakly coupled theory
in which dynamical supersymmetry breaking occurs within a controlled approximation.

14.1.1 The (3, 2) model

A model in which supersymmetry turns out to be broken is the (3, 2) model. This theory
has gauge symmetry SU(3) x SU(2), and matter content

03,2, UG, L(1,2), DG,1). (14.1)

This is similar to the field content of a single generation of the standard model, but without
the extra U(1) and the positron. The most general renormalizable superpotential consistent
with the symmetries is

W= 1QLU. (14.2)

This model admits an R symmetry that is free of anomalies. There is also a conventional
U(1) symmetry, under which the charges of the various fields are the same as in the
standard model (one can gauge this symmetry if one also adds an e* field).

While this model has global symmetries, it is different from supersymmetric QCD in
that it does not have classical flat directions. To see this, note that by SU(3) x SU(2)
transformations one can bring Q to the form

a 0
o=1|10 b (14.3)
0 0
Now, the vanishing of the SU(2) D term forces
L= (0, 12| — |b2|). (14.4)
The vanishing of the F terms for u requires |a| = |b|. Then the vanishing of the SU(3) D
term forces
a 0
U=[|0|, D=|da" (14.5)
0 0

(up to interchange of the two vevs), with
|d'| = |a"| = lal.

Finally, the 9 W/dL equations lead to a = 0.
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200 Dynamical supersymmetry breaking

To analyze the dynamics of this theory, consider first the case where A3 > A». Ignoring,
at first, the superpotential term this is just SU(3) with two flavors. In the flat direction of
the D terms there is a non-perturbative superpotential
RS
= @ e
The full superpotential in the low-energy theory is the sum of this term and the perturbative

term. It is straightforward to minimize the potential and establish that supersymmetry is
broken. One finds

p (14.6)

A A 10/7 A 4
a= 1.287m, b= 1'249W’ E =35931" A", (14.7)

If Ay > Ajz, supersymmetry is still broken but the mechanism is different. In this case,
before including the classical superpotential the strongly coupled theory is SU(2) with two
flavors. This is an example of a model with a quantum moduli space. This notion will be
explained in the next chapter but it implies that (OL) # 0, so at low energies there is a
superpotential (F term) for U.

There does not exist, at the present time, an algorithm to generate all models which
exhibit dynamical supersymmetry breaking, but many classes have been identified. A
generalization of the SU(5) model, for example, is provided by an SU(N) model with
an antisymmetric tensor field 4; and N — 4 F terms. It is also necessary to include a
superpotential,

W= AgpAF*F. (14.8)

Other broad classes are known, including generalizations of the (3,2) model. A
somewhat different, and particularly interesting, set of models is described in Section
15.4. Catalogs of known models, as well as studies of their dynamics, are given in some
references in the suggested reading at the end of this chapter.

14.2 Metastable supersymmetry breaking

In the previous section we established criteria for dynamical supersymmetry breaking and
exhibited an example, the (3,2) model, which satisfies the criteria and exhibits dynamic
supersymmetry in a stable ground state. But there are a number of ways in which we
might view these criteria as limiting. First, while there are many models which satisfy
them, they seem exceptional and not particularly generic. Second, it is difficult to build
realistic models without spoiling the chiral structure of these theories. Finally, the criteria
themselves are troubling, especially the requirement of a continuous global symmetry. We
do not expect such symmetries in theories of gravity, so these symmetries must arise as
accidents and must hold to some high degree of accuracy. Indeed, these criteria seem less
sharp in the framework of supergravity.

If we consider theories with metastable ground states, i.e. theories having a stable ground
state with unbroken supersymmetry but where supersymmetry is broken in a higher-energy,
classically stable, state, the possibilities are greatly enlarged. Indeed, we can consider this
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201 142 Metastable supersymmetry breaking

question in the O’Raifeartaigh models. Rather than imposing a continuous R symmetry, we
can consider discrete symmetries, for example a Zy subgroup of a continuous R symmetry.

2mi

For the fields Z, Y, 4 we can require, witha = e~ ,
Z—>a’Z, YoV, A— A (14.9)
while the superpotential transforms as
W — o’ W. (14.10)

Imposing, for simplicity, an additional symmetry 4 — —A4, ¥ — —Y, the most general
renormalizable superpotential takes the form of a simple O’Raifeartaigh model but where,
beyond the renormalizable level, additional couplings are allowed:

N+-2

W:Z(AZ—M2)+mYA+W+~~. (14.11)

Focusing just on the ZV*? term, there is now a supersymmetric vacuum at
(N4 22V = p2mV 1, (14.12)

For M large (e.g of order the Planck or unification scale) compared with w this vacuum
is far away. Near the origin, the Coleman—Weinberg calculation still leads to a local
minimum of the potential. The time required to tunnel from the metastable vacuum
to the supersymmetric vacuum grows exponentially with power M/p (on including
effects of general relativity, the time often becomes infinite). So this instability is not
a phenomenological concern.

One might imagine that the phenomenon of metastable supersymmetry breaking in
theories with discrete R symmetries is rather generic. In models with singlet chiral fields
and a continuous R symmetry, if all fields have R charge 0 or 2 then supersymmetry
breaking occurs when the number of fields X; with charge 2 exceeds the number 4, with
charge 0. A similar statement holds for the discrete symmetries.

14.2.1 Metastable dynamical supersymmetry breaking: the ISS model

The phenomenon of dynamical metastable supersymmetry breaking appears, then, to be
rather generic. Remarkably, this already occurs in supersymmetric QCD with Ny > N,
with massive quarks, as first pointed out by Intriligator, Shih and Seiberg (ISS). We have
already explained that, quite generally, supersymmetric theories with massive, vector-like,
fields do not break supersymmetry, in the sense that they possess multiple (typically N,
for the gauge group SU(N)) supersymmetric ground states. But, consider the case 3N/2 >
Nt > N + 1. Turning off the mass term we will see in Section 16.4 that the theory is dual
to a theory with gauge group SU(Nt — N;), with:

1. Nr quarks in the fundamental representation, gy, transforming in the (1, Nf) representa-
tion of the flavor symmetry, SU(Nf)p, X SU(Np)R;

2. Ny in the antifundamental representation, transforming as (Ng, 1) under flavor;

3. a chiral field <fo, transforming in the (N, Ny) representation, which is a singlet of the
dual gauge group.
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202 Dynamical supersymmetry breaking

The superpotential of the magnetic theory is
Winag = nq®q. (14.13)
Now turn on a small mass term in the underlying, “electric”, theory,
SW = OmQ. (14.14)

We expect the appearance of a small term proportional to 7, in the dual, “magnetic”, theory.
The term w Tr & m transforms under the global symmetries (including the anomalous
U(1)s) in the same way as the original mass term. So we will assume that it is in fact
present, i.e. that the full superpotential of the magnetic theory is

Wiag = ng®q + pn Tr & m. (14.15)

Recalling that the fields ¢, ¢ are fundamentals of the dual gauge group and requiring that
the D term conditions of this group be satisfied, the vacuum of the dual theory breaks
supersymmetry. It is important that Ny — N < Np; the resulting breaking is called “rank
breaking”. One can see this by using the flavor symmetries to write, for example, for
N:.=2, and Nr = 3,

vi 0 0 --.
g=¢=10 v 0 ---]. (14.16)
0 0 V3

With this choice, we can satisfy the equations

o =0 (14.17)

adrf
only for f,f = 1,2, 3, not for larger /. This generalizes to the other values of Ny, N in this
class of models.

It still remains to verify that there is a good non-supersymmetric vacuum in the magnetic
theory. For this, we need to consider the pseudomoduli of the classical theory. These are
components of @, essentially those components which cannot gain mass by mixing with
the gr, gy superfields. Clearly, in particular the components of <I>ﬁfwith f.f > N are massless
at the tree level. A Coleman—Weinberg calculation is necessary to determine the masses of
these fields and to establish whether & = 0 is a good ground state. The answer turns out to
be yes.

We know that in the electric theory there are N supersymmetric ground states. These can
be found in the magnetic description; decays to them are highly suppressed for small quark
mass.

14.2.2 Retrofitting

A broad class of models exhibiting dynamical metastable supersymmetry breaking can
be found by starting with the O’Raifeartaigh models. Again, a simple example is that
of Eq. (14.11) above. Now, however, we replace the dimensional parameters m and ju°
by couplings to a strongly interacting group which generates these scales dynamically.
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203 14.3 Particle physics and dynamical supersymmetry breaking

For simplicity, we will consider u?. We introduce an SU(N) gauge group with field
strength W,

Z
W:AZA2+A—/IW§+mYA (14.18)

(we will see that couplings of chiral fields to gauge fields of this type are common in string
theory, where M might be the Planck scale or the scale of the string theory). Gaugino
condensation in the SU(N) group gives rise to an expectation value A3 for Wg,

W= Z(A> — p2e 2/ M0y 4 myy, (14.19)

where by is the beta function of the gauge theory.

Near the origin the Coleman—Weinberg calculation is identical to that of the
O’Raifeartaigh model, and the potential has a minimum at Z = 0. But clearly there
are lower energy states at larger fields due to:

1. the exponential term in Eq. (14.19);
2. possible higher-order terms in powers of Z/M,,.

Models of this type illustrate the fact that metastable dynamical supersymmetry breaking
is a generic phenomenon in supersymmetric field theories. They vastly expand the
possibilities for supersymmetric model building.

We have seen, in this section, that the dynamical breaking of supersymmetry is common.
Flat directions are often lifted and, in many instances the supersymmetry is broken with a
stable ground state. So, we are ready to address the question: how might supersymmetry
be broken in the real world?

143 Particle physics and dynamical supersymmetry breaking
|

14.3.1 Gravity mediation and dynamical supersymmetry breaking:
anomaly mediation

One simple approach to model building which we explored in Chapter 11 was to treat
a theory which breaks supersymmetry as a “hidden sector”. This construction, as we
presented it, was rather artificial. If we replace, say, the Polonyi sector by a sector which
breaks supersymmetry dynamically, the situation is dramatically improved. If we suppose
that there are some fields transforming under only the Standard Model gauge group and
some transforming under only the gauge group responsible for symmetry breaking, the
visible/hidden sector division is automatic. As we will see, this sort of division can arise
rather naturally in string theory.

In such an approach the scale of supersymmetry breaking is again mj3,,M,, where we
now understand this scale as the exponential of a small coupling at a high-energy scale
(presumably the Planck, GUT or string scale). For scalars, soft-supersymmetry-breaking
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204 Dynamical supersymmetry breaking

masses and couplings arise just as they did previously. There is no symmetry reason why
these masses should exhibit any sort of universality.

One puzzle in this scenario is related to gluino masses. Examining the supergravity
Lagrangian, the only term which can lead to gaugino masses is

Ly = 1 (DRAAF (14.20)

Here f'is the gauge coupling function. So, in order to obtain a substantial gaugino mass,
it is necessary that there be gauge-singlet fields with non-zero F terms. In most models
of stable dynamical supersymmetry breaking there are no scalars which are singlets under
all the gauge interactions. In metastable models, such as retrofitted models, it is necessary
to suppose that there is some sort of discrete symmetry which accounts for the absence
of certain couplings. These symmetries will forbid the coupling of hidden sector fields to
visible sector gauge fields through low-dimension operators. In other words, we do not
have couplings of the form

% 2, (14.21)
where the F' component of S has a non-zero vev. This suggests that gaugino masses would
be suppressed relative to squark and slepton masses by powers of Mjy/M,,.

But this turns out to be not quite correct. This is associated with a phenomenon known
as “anomaly mediation”. The term is arguably a misnomer; no actual symmetry of the
theory is anomalous. The appearance of these terms can be understood, in some cases,
as an issue of locality: the gaugino masses are themselves local but the supersymmetric
operator which gives rise to them is not (i.e. it includes non-local terms). In other cases,
a completely Wilsonian description is not available. Here we simply note that such terms
are, in many instances, required by supersymmetry. Consider for example a pure SU(N)
gauge theory coupled to supergravity, with a small constant W in the superpotential. In
this theory, gaugino condensation occurs and gives rise to a non-perturbative correction to
the superpotential,

N
Wnp - —W()\.)\)

From V' = =3|Wy + Wnp|2, then, we predict the following term in the potential:

IN L
— 5572 W5 ). (14.22)

It is natural to interpret this as resulting from an underlying term in the action,

bo
M =—— Ak 14.23
Te 2302 (14.23)
One can argue for the presence of such a term for all N and Ny in a similar fashion. But the
term can be found more directly from the structure of the underlying supergravity theory.
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205 14.3 Particle physics and dynamical supersymmetry breaking

14.3.1.1 Split supersymmetry

The anomaly-mediated expression for the gaugino masses suggests an approach to model
building of particular interest, given the large mass scale for squarks suggested by the
Higgs mass. Even if one is willing to accept some fine tuning, one might need lighter
gauginos to account for WIMP dark matter and to improve the quality of gauge coupling
unification. If X denotes the field, with a non-vanishing /' component, responsible for
supersymmetry breaking, then one might suppose that there is no XW& coupling. In this
case, assuming that the scalar masses are of order m3 >, one can contemplate gauginos with
masses lighter by a loop factor. So, for example, if squarks are at 30 TeV, one might have
gluinos at scales slightly above one TeV and winos (the LSP), according to Eq. (14.23), a
factor 3 or so lighter. One can debate how generic a phenomenon this might be.

14.3.2 Low-energy dynamical supersymmetry breaking: gauge mediation

An alternative to the conventional supergravity approach is to suppose that supersymmetry
is broken at some much lower energy, with gauge interactions serving as the messengers
of supersymmetry breaking. The basic idea is simple. One again supposes that one has
some set of new fields and interactions which break supersymmetry. Some of these fields
are taken to carry ordinary Standard Model quantum numbers, so that “ordinary” squarks,
sleptons and gauginos can couple to them through gauge loops. This approach, which is
referred to as gauge mediated supersymmetry breaking (GMSB), has a number of virtues.

1. It is highly predictive: as few as two parameters describe all soft breakings.

2. The degeneracies required to suppress flavor-changing neutral currents are automatic.
3. GMSB easily incorporates DSB and so can readily explain the hierarchy.

4. GMSB makes dramatic and distinctive experimental predictions.

The approach, however, also has drawbacks. Perhaps most serious is related to the
“u problem”, which we discussed in the context of the MSSM. In theories with high-scale
supersymmetry breaking we saw that there is not really a problem at all; a i term of order
the weak scale is quite natural. The u problem, however, finds a home in the framework
of low-energy breaking. The difficulty is that if one is trying to explain the weak scale
dynamically then one does not want to introduce the p term by hand. Various solutions
have been offered for this problem. One possibility is that it is protected by symmetries
and generated by the same dynamics which generates supersymmetry breaking. In the rest
of our discussion we will simply assume that a x term has been generated in the effective
theory and will not worry about its origin.

14.3.2.1 Minimal gauge mediation (MGM)

The simplest model of gauge mediation contains, as messengers, a vector-like set of quarks
and leptons, ¢, 7, £ and £. These have the quantum numbers of a 5 and a 5 representation
of SU(S). The superpotential is taken to be

Wingm = 144 + A2SeL. (14.24)
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206 Dynamical supersymmetry breaking

Two-loop diagrams contributing to squark masses in a simple model of gauge mediation.

We will suppose that some dynamics gives rise to non-zero expectation values for S and
Fs. We will not provide here a complete microscopic model to explain the origin of the
parameters Fg and (S) that will figure in our subsequent analysis; retrofitting provides
one strategy. To find a compelling model of the underlying dynamics is a good research
problem. Instead, we will go ahead and immediately compute the superparticle spectrum
for such a model. Ordinary squarks and sleptons gain mass through the two-loop diagrams
shown in Fig. 14.1. While the prospect of computing a set of two-loop diagrams may seem
intimidating, the computation is actually quite easy. If one treats Fs/S as small then there
is only one scale in the integrals. It is a straightforward matter to write down the diagrams,
introduce Feynman parameters and perform the calculation. There are also various non-
trivial checks. For example, the sum of the diagrams must vanish in the supersymmetric
limit. These masses can alternatively be computed by writing down an effective action
in terms of spurion fields and computing the wave function renormalization factors as
functions of the spurions.
One obtains the following expressions for the scalar masses:

2
~2 P o3 \2 arx\2 5/(Y o1 \2
—2A2|C (—) C (—) 2(= (—) , 14.25
" [34n+24n+32 4 (14.25)
where A = Fg/S, C3 = 4/3 for color triplets and zero for singlets and C; = 3/4 for weak
doublets and zero for singlets. For the gaugino masses one obtains
o

my, = Ci—A. (14.26)
4

This expression is valid only to lowest order in A. Higher-order corrections have been
computed; it is straightforward to compute them exactly in A.

All these masses are positive and they are described in terms of a single new
parameter, A. The lightest new particles are the partners of the SU(3) x SU(2) singlet
leptons. If their masses are of order 100 GeV, we have that A ~ 30 TeV. The spectrum has
a high degree of degeneracy. In this approximation the masses of the squarks and sleptons
are functions only of their gauge quantum numbers, so flavor-changing processes are sup-
pressed.
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207 14.3 Particle physics and dynamical supersymmetry breaking

Flavor violation arises only through Yukawa couplings, and these can appear only in
graphs at high loop order; it is further suppressed because all but the top Yukawa coupling
is small.

Apart from the parameter A, one has the u and B, parameters (B, is the coefficient of
the soft-breaking HyHp term in the potential; u and B, are both complex), for a total of
five. This is three beyond the minimal Standard Model. If the underlying susy-breaking
theory conserves CP, this can eliminate the phases, reducing the number of parameters by
two.

14.3.2.2 SU(2) xU(1) breaking

At lowest order, all the squark and slepton masses are positive. The large top quark Yukawa
coupling leads to large corrections to m%IU, however, which tend to drive it negative. The
calculation is just a repeat of the one we did in the case of the MSSM. Treating the mass
of 7 as independent of momentum is consistent provided that we cut the integral off at a
scale of order A (at this scale the calculation leading to Eq. (14.25) breaks down, and the
propagator falls rapidly with momentum) and we have

2 6y A%

m%{U = (mHU)O T l6n2 In ﬁi_tz(mt)o. (14.27)

While the loop correction is nominally three-loop in order, because the stop mass arises
from gluon loops while the Higgs mass arises at lowest order from ¥ loops we have a

substantial effect,
~ 2
16
( = ) — <%> ~ 20 (14.28)
My ) 9 \ay

and the Higgs mass-squared is negative. These contributions are quite large and, given the
large value of the Higgs mass, it is again necessary to tune the u term and other possible
contributions to the Higgs mass to a high degree in order to obtain sufficiently small /" and
Z masses.

14.3.2.3 General gauge mediation

The minimal model of gauge mediation of the previous section makes a quite sharp set
of predictions. These predictions, in fact, are referred to as minimal gauge mediation
(MGM). 1t is clearly of interest to ask how general they are. It turns out that they are
peculiar to our assumption that there is a single set of messengers and that just one
singlet is responsible for supersymmetry breaking and R symmetry breaking. Indeed,
our messengers have the quantum numbers of a 5 and a 5 representation of SU(5). If,
for example, we had considered two singlets, Z; and Z, with Z; and F; non-zero, we
could have obtained independent soft-breaking masses for squarks and leptons. Had we
allowed different singlets, and taken a 10 and 10 for the messengers, we could have
obtained a richer spectrum. Meade, Seiberg and Shih formulated the problem of gauge
mediation in a general way and dubbed this formulation general gauge mediation (GGM).
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208 Dynamical supersymmetry breaking

They studied the problem in terms of the correlation functions of (gauge) supercurrents.
Analyzing the restrictions imposed by Lorentz invariance and supersymmetry on these
correlation functions, they found that the general gauge-mediated spectrum is described by
three complex parameters and three real parameters. The spectrum can be significantly
different from that of the MGM, but the masses are still only functions of the gauge
quantum numbers and flavor problems are still mitigated.

The basic structure of the spectrum is readily described. In the formulas for the fermion
masses we introduce a separate complex parameter m;, i = 1,2,3 for each Majorana
gaugino. Similarly, for the scalars we introduce a real parameter A% for the contributions
from SU(3) gauge fields Aa, for those from SU(2) gauge fields and A% for those from
hypercharge gauge fields:

2 2 7\ 2 2
=2 [03 (Z—;) A 4G (:—;) A2+ §<§> (4“—]11) AZY} . (14.29)
One can construct models which exhibit the full set of parameters. In MGM the messengers
of each set of quantum numbers each have a supersymmetric contribution to their masses,
AM, while the supersymmetry-breaking contribution to the scalar masses goes as AM?, so
in the ratio of these two contributions the coupling cancels out. In GGM model building,
additional fields and couplings lead to more complicated relations.

One feature of MGM which is not immediately inherited by GGM is the suppression of
new sources of CP violation. Because the gaugino masses are independent parameters, in
particular, they introduce additional phases which are inherently CP-violating. Providing
a natural explanation of the suppression of these phases is one of the main challenges of
GGM model building.

14.3.2.4 Light gravitino phenomenology

There are other striking features of these models. One of the more interesting is that the
lightest supersymmetric particle, or LSP, is the gravitino. Its mass is

F
—25(——_)ev. 14.30
32 ((100 TeV)2> © (14.30)

The next-to-lightest supersymmetric particle, or NLSP, can be a neutralino or a charged
right-handed slepton. The NLSP will decay to its superpartner plus a gravitino in a time
long compared with typical microscopic times but still quite short. The lifetime can be
determined from low-energy theorems, in a manner reminiscent of the calculation of the
pion lifetime. Just as the chiral currents are linear in the (nearly massless) pion field,

M =frdtm, 9" = 9% &0, (14.31)
so the supersymmetry current is linear in the goldstino G,
JE=Fy*G+ oM AF, + -, (14.32)

where F, here, is the goldstino decay constant. From this, if one assumes that the LSP is
mostly photino then one can calculate the amplitude for y — G + y in much the same
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209 Suggested reading

Decay leading to e™ e~y y events.

way as one considers processes in current algebra. From Eq. (14.32) one sees that 9,/ is
an interpolating field for G, so

- 1 o)~
(Gy17) = 2|9k |7) (14.33)
The matrix element can be evaluated by examining the second term in the current,
Eq. (14.32), and noting that 9 X = m A.
Given the matrix element, the calculation of the NLSP lifetime is straightforward and
yields
2 5
cos” Oy m;

[y - Gy) = BT

(14.34)

This yields a decay length:

4
100 GeV'\° F
cr = 130( ¢ ) VE wm. (14.35)
m; 100 TeV

In other words, if F is not too large then the NLSP may decay in the detector. One even
has the possibility of measurable displaced vertices. The signatures of such low decay
constants would be quite spectacular. Assuming the photino (bino) is the NLSP, one has
processes such as ete™ — yy +H, and pp — ete"yy +H,, as indicated in Fig. 14.2,
where#; is the missing transverse energy.

Suggested reading

There are a number of good reviews of dynamical supersymmetry breaking, including
those of Shadmi and Shirman (2000) and Terning (2003). The former includes catalogs of
models and mechanisms. The recent interest in metastable supersymmetry breaking was
launched by Intriligator et al. (2006). There is a large literature on gauge-mediated models
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210 Dynamical supersymmetry breaking

and their phenomenology; a good review is provided by Giudice and Rattazzi (1999).
The recent development of General Gauge Mediation is described in Meade et al. (2008).
Models which achieve the full set of parameters are described in Buican ef al. (2009) and
Carpenter et al. (2009). A clear exposition of the origin of anomaly mediation is provided
in Bagger et al. (2000), in Weinberg’s text (1995), and in the more recent work of Dine and
Seiberg (2007), Dine and Draper (2013), and DiPietro ez al. (2014).

Exercises
. ]

(1) Check that the SU(N) models, with an antisymmetric tensor and N — 4 antifundamen-
tals, have no flat directions and that they have a non-anomalous U(1) symmetry.

(2) Verify Eq. (14.3) for the case of a U(1) gauge theory with charged field ¢+ and ¢~
introducing a Pauli—Villars regulator field.

(3) Check that Eqn. (14.5) is the most general expression that is consistent with symme-
tries, at least up to terms linear in m. Verify that there is no supersymmetric vacuum
for this superpotential.
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Theories with more than four conserved

supercharges

In theories with more than four conserved supercharges (extended supersymmetry), the
supersymmetry generators obey the relations

(04,04} =ps”. {0L.04} =Z"eup. (15.1)

The quantities Z* are known as central charges. We will see that these can arise in a number
of physically interesting ways.

In theories with four supersymmetries, we saw in Chapters 13 and 14 supersymmetry
provides powerful constraints on the possible dynamics. Theories with more than four
supercharges (N > 1 in four dimensions) are not plausible as models of the real
world but they do have a number of remarkable features. As in some of our N = 1
examples, these theories typically have exact moduli spaces. Gauge theories with N = 4
supersymmetry exhibit an exact duality between electricity and magnetism. Theories with
N = 2 supersymmetry have a rich — and tractable — dynamics, closely related to important
problems in mathematics. In all these cases supersymmetry provides remarkable control
over the dynamics, allowing one to address questions which are inaccessible in theories
without supersymmetry. Supersymmetric theories in higher dimensions generally have
more than four supersymmetries, and a number of the features of the theories we study
in this chapter will reappear when we come to higher-dimensional field theories and string
theory.

15.1 N = 2 theories: exact moduli spaces
e —

Theories with N = 1 supersymmetry are tightly constrained, but theories with more
supersymmetry are even more highly constrained. We have seen that often, in perturbation
theory, N = 1 theories have moduli; non-perturbatively, sometimes, these moduli are
lifted. In theories with N = 1 supersymmetry, a detailed analysis is usually required to
determine whether the moduli acquire potentials at the quantum level. For theories with
more supersymmetries (N > 1 in four dimensions; N > 1 in five or more dimensions), one
can show rather easily that the moduli space is exact. Here we consider the case of N = 2
supersymmetry in four dimensions. These theories can also be described by a superspace,
in this one case built from two Grassmann spinors, 6 and 6. There are two basic types of
superfields: vectors and hypermultiplets. The vectors are chiral with respect to both D, and
Al
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212 Theories with more than four conserved supercharges

D, and have an expansion, in the case of a U(1) field,
V= +0“Wy + 6°D*¢", (15.2)

where ¢ is an N = 1 chiral multiplet and W, is an N = 1 vector multiplet. The fact that
¢" appears as the coefficient of the §2 term is related to an additional constraint satisfied
by . This expression can be generalized to non-Abelian symmetries; the expression for
the highest component of ¢ is then somewhat more complicated but we will not need it
here.

The theory possesses an SU(2) R-symmetry under which 6 and 6 form a doublet. Under
this symmetry, the scalar component of ¢ and the gauge field are singlets, while ¢ and A
form a doublet.

We will not describe the hypermultiplets in detail except to note that, from the
perspective of N = 1, they consist of two chiral multiplets. The two chiral multiplets
transform as a doublet of the SU(2) group. The superspace description of these multiplets
is more complicated.

In the case of a non-Abelian theory, the vector field ¥ is in the adjoint representation
of the gauge group. For these fields the Lagrangian has a very simple expression as an
integral over half the superspace:

L= /dzedzé vy, (15.3)
or, in terms of N = 1 components,
L= /d29 w2 +/d49¢*eV¢. (15.4)

The theory with vector fields alone has a classical moduli space, given by the values of the
fields for which the scalar potential vanishes. Here this just means that the D fields vanish.
Written as a matrix we have

D=1[¢,9, (15.5)

which vanishes for diagonal ¢, i.e. for

a(l 0
¢’=§<o _1>. (15.6)

For many physically interesting questions one can focus on the effective theory for the
light fields. In the present case the light field is the vector multiplet ¥. Roughly,

YR YY =a +ady + (15.7)

What kind of effective action can we write for ¥? At the level of terms with up to four
derivatives, the most general effective Lagrangian has the form!

L= /dzedzéf(w) +/d86 H, ). (15.8)

! This, and essentially all the effective actions we will discuss, should be thought of as Wilsonian effective
actions, obtained by integrating out heavy fields and high-momentum modes.

Downloaded from https://www.cambridge.org/core. IP address: 18.116.164.246, on 29 Apr 2024 at 01:00:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/D2945789E71C68C60153D44DFO8BAC17


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/D2945789E71C68C60153D44DF08BAC17
https://www.cambridge.org/core

213 15.2 Astill simpler theory: N = 4 Yang—Mills

Terms with covariant derivatives correspond to terms with more than four derivatives when
written in terms of ordinary component fields.

The first striking result we can read off from this Lagrangian, with no knowledge of
‘H and £, is that there is no potential for ¢, i.e. the moduli space is exact. This statement is
true both perturbatively and non-perturbatively.

One can next ask about the function f. This function determines the effective coupling
in the low-energy theory and is an object studied by Seiberg and Witten, which we will
discuss in Section 15.4.

15.2 Astill simpler theory: N = 4 Yang—Mills

The N=4 Yang—Mills theory is interesting in its own right: it is finite and conformally
invariant. It also plays an important role in our current understanding of non-perturbative
aspects of string theory. The N=4 Yang-Mills has 16 supercharges and is even more
tightly constrained than the N =2 theories. First, we will describe the theory. In the lan-
guage of N =2 supersymmetry, it consists of one vector multiplet and one hypermultiplet.
In terms of N =1 superfields, it contains three chiral superfields, ¢; and a vector multiplet.
The Lagrangian is

L= / oW + f d*o ¢l g + / &0 ¢! i ejpe . (15.9)

In the above description there is a manifest SU(3) x U(1) R-symmetry. Under this symmetry
the ¢;s have U(1)g charge 2/3 and form a triplet of SU(3). But the real symmetry is
larger — it is SU(4). Under this symmetry, the four Weyl fermions form a 4-dimensional
representation, while the six scalars transform in the 6-dimensional representation. Later,
our studies of the toroidal compactifications of the heterotic string (Chapter 25) will
later give us an heuristic understanding of this SU(4) symmetry: it reflects the O(6)
symmetry of the compactified six dimensions. In string theory this symmetry is broken by
the compactification manifold; this reflects itself in higher-derivative, symmetry-breaking,
operators.

In the N = 4 theory there is, again, no modification of the moduli space, perturbatively
or non-perturbatively. This can be understood in a variety of ways. We can use the N = 2
description of the theory, defining the vector multiplet to contain the N = 1 vector and
one (arbitrarily chosen) chiral multiplet. Then an identical argument to that given above
ensures that there is no superpotential for the chiral multiplet alone. The SU(3) symmetry
then ensures that there is no superpotential for any chiral multiplet. Indeed, we can make
an argument directly in the language of N = 1 supersymmetry. If we tried to construct
a superpotential for the low-energy theory in the flat directions, it would have to be an
SU(3)-invariant holomorphic function of the ¢;s. But there is no such object.

Similarly, it is easy to see that there are no corrections to the gauge couplings. For
example, in the N = 2 language, we want to ask what sort of function f'is allowed in
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214 Theories with more than four conserved supercharges

L= /dzedzéf(zp). (15.10)
The theory has a U(1) R-invariance under which
etV IS L L L) (15.11)
Already, then,
/d20d2§ s (15.12)

is the unique structure which respects these symmetries. Now we can introduce a
background dilaton field, t. Classically the theory is invariant under shifts in the real part of
7,7 — 7-+p. This ensures that there are no perturbative corrections to the gauge couplings.
With a little more work one can show that there are no non-perturbative corrections either.

One can also show that the quantity H in Eq. (15.8) is unique in this theory, again using
the symmetries. The expression

H=clnyIny’ (15.13)

respects all the symmetries. At first sight it might appear to violate scale invariance; given
that v is dimensionful one would expect a scale A sitting in the logarithm. However, it is
easy to see that if one integrates over the full superspace, any A-dependence disappears
since Y is chiral. Similarly, if one considers the U(1) R-transformation, the shift in the
Lagrangian vanishes after the integration over superspace. To see that this expression is
not renormalized, one merely needs to note that any non-trivial T-dependence spoils these
two properties. As a result, in the case of SU(2) the four derivative terms in the Lagrangian
are not renormalized. Note that this argument is non-perturbative. It can be generalized to
an even larger class of higher-dimensional operators.

15.3 A deeper understanding of the BPS condition

In our study of monopoles we saw that, under certain circumstances, the complicated
second-order non-linear differential equations reduce to first-order differential equations.
The main condition is that the potential should vanish. We are now quite used to the idea
that supersymmetric theories often have moduli, and we have seen that this is an exact
feature of N = 4 and many N = 2 theories. In the case of an N = 2 supersymmetric gauge
theory the potential is just that arising from the D term, and one can construct a Prasad—
Sommerfield solution. We will now see that the Bogomol’nyi—Prasad—Sommerfield (BPS)
condition is not simply magic but is a consequence of the extended supersymmetry of the
theory. The resulting mass formula, as a consequence, is exact; it is not simply a feature of
the classical theory but a property of the full quantum theory. This sort of BPS condition is
relevant not only to the study of magnetic monopoles but to topological objects in various
dimensions and contexts, particularly in string theory. Here we will give the flavor of the
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215 15.3 A deeper understanding of the BPS condition

argument without worrying about factors of two. More details can be worked out in the
exercises; see also the references.

First, we show that the electric and magnetic charges enter in the supersymmetry algebra
of this theory as central charges. Thinking of this as an N = 1 theory, we have seen that
the supercurrents take the form

i =o', (@) Fppiy + 009", (a")P7 i + F-term contributions.  (15.14)

In this theory, however, there is an SU(4) symmetry and the supercurrents should transform
as a 4 representation. It is not hard to guess the other three currents

St = (@)ag (@) Footrl + i d/o’, (0,07 ¥ + F-term contributions. (15.15)

We are interested in proving bounds on the mass. It is useful to define Hermitian
combinations of the charges Qy; = [ d> x S, since we want to study positivity constraints.
In this case, it is more convenient to write a four-component expression, using a Majorana
(real) basis for the y matrices. Taking an N = 2 subgroup and carefully computing the
commutators of the charges, we obtain

{Oui, Opj} = Syyol,fgpu + €j(8apUr + (¥5)ap Vi) (15.16)

Here
Uk = / d3x8i(¢fe kE? + ¢iam /(B?)’
Vk :/d3x8i(¢§n ](E? + ¢;le ka)

In the Higgs phase the integrals are, by Gauss’s theorem, of electric and magnetic charges
multiplied by the Higgs expectation value. From these relations we can derive bounds on
masses, using the fact that Qg is a positive operator. Taking the expectations of both sides
we have, for an electrically neutral system of mass M in its rest frame,

(15.17)

M= Qv > 0. (15.18)

This bound is saturated when Q annihilates the state. Examining the form of Qy, this is just
the BPS condition.

15.3.1 N = 4Yang—Mills theories and electric—magnetic duality

The N = 4 theory contains, from the point of view of N = 1 supersymmetry, a gauge
multiplet and three chiral multiplets in the adjoint representation. In addition to the
interactions implied by the gauge symmetry, there is a superpotential

1 .
W= Sabc€ii®f O D (15.19)

We have normalized the kinetic terms for the fields ® with a 1/g? factor. So, this interaction
has a strength related to the strength of the gauge interactions. This theory has a global
SU(4) symmetry. Under this symmetry, the four adjoint fermions transform as a 4, the
scalars transform as a 6 and the gauge bosons are invariant. The theory has a large set of
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216 Theories with more than four conserved supercharges

flat directions. If we simply take all the @ fields, regarded as matrices, to be diagonal then
the potential vanishes. As a result, this theory has monopoles of the BPS type.

This theory has a symmetry even larger than the Z, duality symmetry that we
contemplated when we examined Maxwell’s equations; the full symmetry is SL(2,Z2).
We might have guessed this by remembering that the coupling constant is part of the
holomorphic variable

0 4
= — 4+ —. 15.20
Ly + e? ( )

Thus in addition to our conjectured e — 1/e symmetry there is a symmetry 6 — 6 + 2.
So, in terms of T we have the two symmetry transformations

1
T—>—, T—>71+4+1 (15.21)
T
Together, these transformations generate the group SL(2, Z):
at +b
—, ad—bc=1. 15.22
ct+d . ¢ ( )

Now we can look at our BPS formula. To understand whether it respects the SL(2, Z)
symmetry we need to understand how this symmetry acts on the states. Writing

M= eQev+ 21¥. (15.23)
e
with
0 m
Oc = e — M~y  Om = 4n ™™, (15.24)
2 e

the spectrum is invariant under the SL(2, Z) transformation of t accompanied by

Mo d —b\ [ ne
(nm> — (c B > <Hm> (15.25)

Because it follows from the underlying supersymmetry the mass formula is exact, so this
duality of the spectrum of BPS objects is a non-perturbative statement about the theory.

15.4 Seiberg-Witten theory

We have seen that N=4 theories are remarkably constrained, and this allowed us, for
example, to explore an exact duality between electricity and magnetism. Still, these
theories are not nearly as rich as field theories with N < 1 supersymmetry. The N = 2
theories are still quite constrained, but exhibit a much more interesting array of phenomena.
They illustrate the power provided by supersymmetry over non-perturbative dynamics.
They will also allow us to study phenomena associated with magnetic monopoles in a
quite non-trivial way. In this section, we will provide a brief introduction to Seiberg—Witten
theory. This subject has applications not only in quantum field theory but also for our
understanding of string theory and, perhaps most dramatically, in mathematics.
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217 154 Seiberg—Witten theory

It is convenient to describe the N = 2 theories in N = 1 language. The basic N = 2
multiplets are the vector multiplet and the tensor (or hyper) multiplet. From the point of
view of N = 1 supersymmetry, the N = 2 vector contains an N = 1 a vector multiplet and
a chiral multiplet. The tensor contains two chiral fields. We will focus mainly on theories
with only vector multiplets, with gauge group SU(2). In the N = 1 description the fields
are a vector multiplet " and a chiral multiplet ¢, both in the adjoint representation. The
Lagrangian density is

L= /d“e éwe% _ ﬁ / 20 T W + h.c. (15.26)
Here
S il (15.27)
2 i .

The 1/g? in front of the chiral field kinetic term is somewhat unconventional, but it makes
the N = 2 supersymmetry more obvious. As we indicated earlier, one way to understand
the N = 2 supersymmetry is to note that the Lagrangian we have written down has a
global SU(2) symmetry. Under this symmetry the scalar fields ¢“ and the gauge fields 47,
are singlets, while the gauginos A% and the fermionic components ¥ of ¢ transform as a
doublet. Acting on the conventional N = 1 generators, the SU(2) symmetry produces four
new generators. So, we have generators Q4, with 4 = 1,2.
As it stands, the model has flat directions, with

a1 0
¢ = 5 <0 _1>. (15.28)

In these directions the spectrum consists of two massive gange bosons and one massless
gauge boson, a massive complex scalar that is degenerate with the gauge bosons and a
massive Dirac fermion as well as a massless vector and a massless chiral multiplet. The
masses of all these particles are

My = \2a. (15.29)

This is precisely the right number of states to fill an N = 2 multiplet. Actually, it is a
BPS multiplet. It is annihilated by half the supersymmetry generators. The classical theory
possesses, in addition to the global SU(2) symmetry, an anomalous U(1) symmetry,

¢ — 9 Y — %y (15.30)
Under this symmetry, we have
0 — 0 — 4o (15.31)
or
T—>1—21a. (15.32)

Because the physics is periodic in 6 with period 27, « = 7/2 is a symmetry, i.e. the theory
has a Z4 symmetry,

¢ — ™. (15.33)
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218 Theories with more than four conserved supercharges

Note that ¢ is not gauge invariant. A suitable gauge-invariant variable for the analysis of
this theory is

u = (Tr ¢). (15.34)
Under the discrete symmetry, we have © — —u; at weak coupling
u~da. (15.35)

The spectrum of this theory includes magnetic monopoles, in general with electric
charges. At the classical level the monopole solutions in this theory are precisely those
of Prasad and Sommerfield, with mass

Myt = 42, (15.36)
4
As in the N = 4 theory, there is a BPS formula for the masses:
m = ~/21a0. + apOm|. (15.37)
At tree level,
4
ap = —-ia = ta, (15.38)
4

where the last equation holds if 6 = 0. The appearance of i in this formula is not
immediately obvious. To see that it must be present, consider the case of dyonic excitations
of monopoles. These should have energy of order the charge, with no factors of 1/g2. This
is ensured by the relative phase between a and ap. These formulas will receive corrections
in perturbation theory and beyond; our goal is to understand the form of these corrections
and their (dramatic) physical implications.

Equation (15.38) is not meaningful as it stands; 7 is a function of scale. Instead, Seiberg
and Witten suggested that

daD
= — 15.39
1 ( )
They also proposed the existence of a duality symmetry, under which
1
ap < a, T—> ——. (15.40)
T

To formulate our questions more precisely and to investigate this proposal, it is helpful,
as always, to consider a low-energy effective action. This action should respect the N = 2
supersymmetry; in N = 1 language this means that the Lagrangian should take the form

L= /d“eK(a,a‘) — 16;2 /dzet(a)W"‘Wa. (15.41)

The N = 2 supersymmetry implies a relation between K and 7; without it these would
be independent quantities. Both quantities can be obtained from a holomorphic function
called the prepotential, F(a):

&PF 1 dF |,

K= ——a" (15.42)

T = s, =
da? 41 da
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219 154 Seiberg—Witten theory

From
dap d (dF
-2 _ (L 15.43
¢ da da < da > ( )
we have
dF
— = iap, (15.44)
da
so that
1
K = — Imapa®. (15.45)
4r

Our goal will be to obtain a non-perturbative description of F. At weak coupling the
beta function of this theory is obtained from bp = 3N — N = 2N =4, so

r = %m%. (15.46)

As a check on this formula note that, under u — €2®u, 6 — 6 — 4a, we have

0 2i
T = tdmig? - (15.47)
2 T

and this is precisely the behavior of the formula Eq. (15.46).

This is similar to phenomena we have seen in N = 1 theories. But, when we consider
the monopoles of the theory, the situation becomes more interesting. First note that, using
the leading-order result for t,

2 ( In & ) (15.48)
ap=— (aln — —a). )
D T A

So, under the transformation u — €’®* of u,

ap — &/ (aD - ia). (15.49)
2w
Our BPS mass formula transforms to
4a

m— \2|a (Qe - EQm> + aDQM‘. (15.50)

This is the Witten effect, which we discussed earlier: in the presence of 6, the coefficient
of FF, of (7.39), a magnetic monopole acquires an electric charge. More generally, the
spectrum of dyons is altered.

Consider now what happens when we do a full 2w change of 6 (u — —u); it should be
a symmetry. It is in this case, but in a subtle way: the spectrum of the dyonic excitations
of the theory is unchanged but the charges of the dyons have shifted by one fundamental
unit. This, in turn, is related to the branched structure of 7.

At the non-perturbative level the structure is even richer. We might expect that

i

u 87‘[2 87'[2
f(u):glnﬁ—i—aexp —g—2 + Bexp —g—2 +ee (15.51)
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220 Theories with more than four conserved supercharges

Note that, interpreting exp(—872/g?) as exp(27it), each term in this series has the correct
periodicity in 6. Moreover,
A2
exp(2mit) = T (15.52)
These corrections have precisely the structure required for them to be instanton
corrections, and these instanton corrections have been computed. But, following Seiberg
and Witten, we can be bolder and consider what happens when g becomes large. Naively,
we might expect that some monopoles become light. Associated with this, T may have a
singularity at some point ug = y A2, where A is the renormalization-group-invariant mass
of the theory. In light of the Z, symmetry there must also be a singularity at —ug. Such
a singularity arises because a particle is becoming massless. If we think of 7p as the dual
of 7 then there is an electrically charged light field of unit charge; more precisely, there
must be two particles of opposite charge in order that they can gain mass. So 7p has the
following structure:

2i

D = —— Inmyy. (15.53)
2
Assuming that ap has a simple zero,
ap ~ b(u —ug), my =~ 2ap, (15.54)
then
i 1
mp=——In—u)=——-—-". (15.55)
T T(u)
Starting with the relation
d .
X = —Linap, (15.56)
dap T
we have
a=L(aplnap — ap). (15.57)
g

Similarly, we can consider the behavior at the point —ug. This is the mirror image of the
previous case, but we must be careful about the relation of @ and ap. They are connected
by the symmetry transformation

a=ia, ap =1ilap — a). (15.58)
Now,
| .
D = ——— = — = In(u + up) (15.59)
7(u) T
and
.1 - -
a = —(apInap — ap). (15.60)
T

Going around the singularities, at #p we have

a— a—2ap, ap — ap, (15.61)
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221 Exercises

while at —ug
a — 3a—2ap, ap — 2a— ap. (15.62)

This should be compared with the effect of going around 27 at large u, when a — —a
and ap — —(ap — @). Assuming that these are the only singularities, we can, from this
information, reconstruct T. We will not give the full solution of Seiberg and Witten here,
but the basic idea is to note that 7 () is the modular parameter of a two-dimensional torus
and to reconstruct the torus.

This analysis has allowed us to study the theory deep in the non-perturbative region.
Seiberg and Witten uncovered a non-trivial duality, a limit in which monopoles become
massless, and they provided insight into confinement. These sorts of ideas have been
extended to other theories and to theories in higher dimensions and have provided insight
into many phenomena in string theory, quantum gravity and pure mathematics.

Suggested reading

The lectures by Lykken (1996) provide a brief introduction to aspects of N > 1
supersymmetry. Olive and Witten (1978) first clarified the connection between the BPS
condition and extended supersymmetry, in a short and quite readable paper. Harvey (1996)
provides a more extensive introduction to monopoles and the BPS condition. The original
paper of Seiberg and Witten (1994) is quite clear; Peskin’s lectures, from which we have
borrowed extensively here, provide a brief and very clear introduction to the subject.

Exercises
. ]

(1) Check the supersymmetry commutators in extended supersymmetry, Eq. (15.16).

(2) Rewrite these supersymmetry commutators in a real basis for the Dirac matrices. Using
this, verify the BPS inequality.

(3) Check that the spectrum of monopoles and dyons in Eq. (15.23) is invariant under
SL(2,Z) transformations.
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More supersymmetric dynamics

While motivated in part by the hopes of building phenomenologically successful models of
particle physics, we have uncovered in our study of supersymmetric theories a rich treasure
trove of field theory phenomena. Supersymmetry provides powerful constraints on the
dynamics. In this chapter we will discover more remarkable features of supersymmetric
field theories. We will first study classes of (super)conformally invariant field theories.
Then we will turn to the dynamics of supersymmetric QCD with Ny > N, where we will
encounter new, and rather unfamiliar, types of behavior.

16.1 Conformally invariant field theories
e

In quantum field theory, theories which are classically scale invariant are typically not
scale invariant at the quantum level. Quantum chromodynamics is a familiar example. In
the absence of quark masses we believe that the theory predicts confinement and has a
mass gap. The CPY models are an example where we were able to show systematically
how a mass gap can arise in a scale-invariant theory. In all these cases the breaking of scale
invariance is associated with the need to impose a cutoff on the high-energy behavior of
the theory. In a more Wilsonian language one needs to specify a scale where the theory is
defined, and this requirement breaks the scale invariance.

There is, however, a subset of field theories which are indeed scale invariant. We have
seen this in the case of N = 4 supersymmetric field theories in four dimensions. In this
section we will see that this phenomenon can occur in N = 1 theories and will explore
some of its consequences. In the next section we will discuss a set of dualities among
N = 1 supersymmetric field theories, in which conformal invariance plays a crucial role.

In order that a theory exhibit conformal invariance it is necessary that its beta function
vanish. At first sight it would seem difficult to use perturbation theory to find such theories.
For example, one might try to choose the number of flavors and colors in such a that the
one-loop beta function vanishes. But then the two-loop beta function will generally not
vanish. One could try to balance the first term against the second, but this would generally
require g* ~ g2, and there would not be a good perturbation expansion. Banks and Zaks
pointed out that one can find such theories by adopting a different strategy. By taking the
number of flavors and colors to be large, one can arrange that the coefficient of the one-loop
beta function almost vanishes, and can choose the coupling so that it cancels the two-loop
beta function. In this situation one can arrange a cancelation perturbatively, order by order.
The small parameter is 1/N, where N is the number of colors.

222
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23 16.1 Conformally invariant field theories

We can illustrate this idea in the framework of supersymmetric theories with N colors
and Ny flavors. The beta function, through two loops, is given by

g g

bo — b,
62 0 (l6n2)2 !

B(g) = —7 (16.1)

where

W2 -1
— v
In the limit of very large N and Ny, we write Ny = 3N — €, where € is an integer of order

one. Then, to leading order in 1 /N, the beta function vanishes for a particular coupling, go,
given by

bo=3N—Nj, b =6N* — 2NNr — 4Nr (16.2)

£ ¢
Ton = N2 (16.3)
Perturbative diagrams behave as (g>N)”, and g>N is small. So, at each order, one can make
small adjustments in g so as to make the beta function vanish.

A theory in which the beta function vanishes is genuinely conformally invariant. We will
not give a detailed discussion of the conformal group here. The exercises at the end of this
chapter guide the reader through some features of the conformal group; good reviews are
described in the suggested reading. Here we will just mention a few general features and
then perform some computations for our Banks—Zaks fixed point theories to verify these.

Without supersymmetry the generators of the conformal group include the Lorentz
generators and the translations,

M,y = —i(x, 0y —x,0y,), Py = —idy,, (16.4)
and the generators of “special conformal transformations” and dilatations,
K, = —i(x*3, — 2x,%49%), D = ixgd%. (16.5)

In the presence of supersymmetry the group is enlarged. In addition to the bosonic
generators above and the supersymmetry generators, there is a group of superconformal
generators

Su = X0l 0% (16.6)

We encountered these in our analysis of the zero modes of the Yang—Mills instanton. The
superconformal algebra also includes an R symmetry current.

Conformal invariance implies the vanishing of 7},. In the superconformal case the
superconformal generators and the divergence of the R current also vanish. One can prove
a relation between the dimension and the R charge:

3
d= IRl (16.7)

States for which the inequality is satisfied are known as chiral primaries. An interesting
case is provided by the fixed point theories introduced above. For these, the charge of the
chiral fields, Q and Q, under the non-anomalous symmetry is
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224 More supersymmetric dynamics

Ne— N

Rpo = N (16.8)

Assuming that these fields are chiral primaries, it follows that their dimension d satisfies

3N — N
d—1=-2""__ € (16.9)
2Ny 6N
At weak coupling, however, the anomalous dimensions of these fields are known:

y:—iNz—i. (16.10)

In this chapter we will see that supersymmetric QCD, for a range of Nf and N, exhibits
conformal fixed points for which the coupling is not small.

16.2 More supersymmetric QCD

We have studied the dynamics of supersymmetric QCD with Ny < N and observed a range
of phenomena: non-perturbative effects which lift the degeneracy among different vacua
and non-perturbative supersymmetry breaking. In the case Ny > N, there are exact moduli,
even non-perturbatively. In the context of phenomenology such theories are probably of
no relevance, but Seiberg realized that, from a theoretical point of view, these theories
are a bonanza. The existence of moduli implies a great deal of control over the dynamics.
One can understand much about the strongly coupled regimes of these theories, allowing
insights into non-perturbative dynamics unavailable in theories without supersymmetry.
We will be able to answer questions such as: are there unbroken global symmetries in some
region of the moduli space? In regions of strong coupling, are there massless composite
particles?

163 N = N

The case Ny = N, already raises issues beyond those of Ny < N.. First, we have seen
that there is no invariant superpotential that one can write down. As a result, there is an
exact moduli space, perturbatively and non-perturbatively. Yet there is still an interesting
quantum modification of the theory, first discussed by Seiberg.

Consider, first, the classical moduli space. Now, in addition to the vacua with Q = Q
(up-to-flavor transformations) which we found previously, we can also have

O=vl, 0=0 or QO < Q. (16.11)
This is referred to as the “baryonic branch”, since now the operator
B = Eil...iNejlijQ]l:; .. Q;x (16.12)

is non-vanishing (similarly for the corresponding antibaryon branch).
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25 163 Ny = N

Classically these two sets of possibilities can be summarized in the condition
det 00 = BB. (16.13)

Now, this condition is subject to quantum modifications. Both sides are completely neutral
under the various flavor symmetries; in principle any function of BB or the determinant
would be permitted as a modification. But we can use anomalous symmetries (with the
anomalies canceled by shifts in S) to constrain any possible corrections. Consider, in
particular, possible instanton corrections. These are proportional to

VPN 872/ 0) L AN (16.14)
and transform just like the left-hand side under the anomalous R symmetry for which
0 — &9 (16.15)
So, at the quantum level the moduli space satisfies the condition
det 00 — BB = cA?V. (16.16)

This is of just the right form to be generated by a one-instanton correction. We will not do
the calculation here; it shows that the right-hand side is indeed generated. We can outline
the main features. There are now two superconformal zero modes, two supersymmetry
zero modes, 4N — 4 zero modes associated with the gluinos in the (2, N — 2) representation
of the SU(2) x SU(N — 2) subgroup of SU(N) distinguished by the instanton and 2N matter
zero modes. We want to compute the expectation value of an operator involving N scalars.
To obtain a non-vanishing result it is necessary to replace some fields with their classical
values. Others must be contracted with Yukawa terms. The scalar field propagators in the
instanton background are known, and the full calculation is reasonably straightforward.
Because the classical condition which defines the moduli space is modified, the moduli
space of the Nr = N, theory is referred to as the quantum moduli space. This phenomenon
appears for other choices of gauge group as well.

16.3.1 Supersymmetry breaking in quantum moduli spaces

We have mentioned that, in the (3, 2) model, in the limit where the SU(2) gauge group is the
strong group, supersymmetry breaking can be understood as resulting from an expectation
value for QL. The QL vev is non-zero since N = Ny = 2. The introduction of a larger class
of models, in which a quantum moduli space is responsible for dynamical supersymmetry,
is due to Intriligator and Thomas.

Consider a model with gauge group SU(2) and four doublets Q;,] = 1 — 4 (two
“flavors™). Classically, this model has a moduli space labeled by the expectation values
of the fields, My = Q;Q,. These satisfy Pf(M;;) = 0! but, as have have just seen, the
quantum moduli space is different and satisfies

Pf(My) = A*. (16.17)

! In this expression, Pf denotes the Pfaffian. The Pfaffian is defined for 2N x 2N antisymmetric matrices; it is
essentially the square root of the determinant of the matrix.
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226 More supersymmetric dynamics

Now add a set of singlets S7; to the model, with superpotential couplings

W= ASyQi0y. (16.18)
Unbroken supersymmetry now requires
ow
— = =0. 16.19
35, 010y ( )

However, this is incompatible with the quantum constraint. So on the one head the
supersymmetry is broken.

On the other hand the model, classically, has flat directions in which S;; = s;;7 and
all the other fields vanish. So one might worry that there is runaway behavior in these
directions, similar to that we saw in supersymmetric QCD. However, for large s it turns
out that the energy is growing at infinity. This can be established as follows. Suppose all
the components of S are large, S ~ s 3> A». In this limit the low-energy theory is a pure
SU(2) gauge theory. In this theory gluinos condense,

(A1) = A = AsAd. (16.20)

Here, A1E is the A parameter of the low-energy theory.
At this level, then, the superpotential of the model behaves as

Wer ~ ASA3, (16.21)
and the potential is a constant,
V=822 (16.22)

The natural scale for the coupling, A, which appears here is A(s). This is the correct answer
in this case and implies that for large s the potential is growing, since A is not asymptotically
free. So the potential has a minimum in a region of small s.

1632 Np = N+ 1

For N > N, the classical moduli space is exact. But again Seiberg has, pointed out a
rich set of phenomena and given a classification of the different theories. As in the case
N¢ < N, different phenomena occur for different values of Ny.

First, we need to introduce a new tool: the ’t Hooft anomaly-matching conditions.
’t Hooft was motivated by the following question. When one looks at the repetitive
structure of the quark and lepton generations, it is natural to wonder whether the quarks and
leptons themselves are bound states of some simpler constituents. ’t Hooft pointed out that
if this idea were correct then the masses of the quarks and leptons would be far smaller than
the scale of the underlying interactions; even at that time it was known that if these particles
have any structure then it is on scales shorter than 100 GeV~'. ’t Hooft argued that this
could only be understood if the underlying interactions left an unbroken chiral symmetry.

One could go on and simply postulate that the symmetry is unbroken, but ’t Hooft
realized that there are strong — and simple — constraints on such a possibility. Assuming that
the mechanism is some strongly interacting non-Abelian gauge theory, "t Hooft imagined
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27 163 Ny = N

gauging the global symmetries of the theory. In general the resulting theory would be
anomalous, but one could always cancel the anomalies by adding some “spectator” fields,
fields transforming under the gauged flavor symmetries but not the underlying strong
interactions. Below the confinement scale of the strong interactions the flavor symmetries
might be spontaneously broken, giving rise to Goldstone bosons, or there might be massless
fermions. In either case the low-energy theory must be anomaly-free, so the anomalies of
either the Goldstone bosons or the massless fermions must be the same as in the original
theory. ’t Hooft added another condition, which he called the “decoupling” condition: he
asked what happened if one added mass terms for some of the constituent fermions. He
went on to show that these conditions are quite powerful and that it is difficult to obtain a
theory with unbroken chiral symmetries.

As we will see, Seiberg conjectured various patterns of unbroken symmetries for susy
QCD. For these the 't Hooft anomaly conditions provide a strong self-consistency check.
In the case N = N, there is no point in the moduli space at which the chiral symmetries
are all unbroken. So we will move on to the case Ny = N, + 1. The global symmetry of the
model is

SU(Ny)L, x SUWNpRr x U()g x U(D)g (16.23)
where, under U(1)g, the quarks and antiquarks transform as

05, 0 — */VD o, 0. (16.24)
In this theory there two sorts of gauge-invariant objects, the mesons, My = 0 70, and the

baryons, By = ef"-‘""“’\’ €5 iy f)}l ffz e Z\,’V From these we can build a superpotential that

is invariant under all the symmetries:
1
W= (detM — BfMﬁ”Bf)E' (16.25)

As in all our earlier cases, the power of A is determined by dimensional arguments but can
also be verified by demanding holomorphy in the gauge coupling.

This superpotential has several interesting features. First, it has flat directions, as we
would expect, corresponding to the flat directions of the underlying theory. But also, for
the first time, there is a vacuum at the point where all the fields vanish, B = B=M=0.
At this point all the symmetries are unbroken. The ’t Hooft anomaly conditions provide an
important consistency check on this whole picture. There are several anomalies to check:
(SUNp3, SUNp3, SUNp? U(1)g, Tr U(1)g, U(1)3U(1)g, U(1)3 etc.). The cancelations
are quite non-trivial. In the exercises, the reader will have the opportunity to check these.

Another test comes from considering decoupling. If we add a mass for one set of fields,
the theory should reduce to the Ny = N case. As in examples with smaller numbers of fields
we take advantage of holomorphy, writing down expressions for small values of the mass
and continuing to large values. So we add to the superpotential a term

MON41ON41 = MMy 1 N41- (16.26)

We want to integrate out the massive fields. Because of the global symmetry, it is consistent
to set My 1 to zero, where f < N. Similarly, it is consistent to set By = 0, f < N. So we
take the M and B fields to have the form
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228 More supersymmetric dynamics

0 0
M= (1\04 Z) Br=|:|, B=]|:] (16.27)
B B
Consider the equation d W/dm = 0. This yields
(detM — BB) = mA™ (16.28)
or
(detM — BB) = mA™ = A} (16.29)

In the last line we have used the relation between the A parameter of the theory with Ny
quarks and that with Ny 4+ 1 flavors. This is precisely the expression for the quantum-
modified moduli space of the N-flavor theory. Decoupling works perfectly here.

164 Ne> N+ 1

The case Nr > N + 1 poses new challenges. We might try to generalize our analysis of the
previous section. Take, for example, Ny = N + 2. Then the baryons are in the second-rank
antisymmetric tensor representations of the SU(Ny) gauge groups, By, and Efg. For a term
in the superpotential

W~ BpBM/ Me, (16.30)

this does not respect the non-anomalous R symmetry.

Seiberg suggested a different equivalence. The baryons, in general, have N = Ny — N
indices. So baryons in the same representation of the flavor group can be constructed in a
theory with gauge group SU(N) and quarks gs, qr in the fundamental representation. Seiberg
postulated that, in the infrared, this theory is dual to the original theory. This is not quite
enough. One needs to add a set of gauge-singlet meson fields Mg, with superpotential

W=q'Mjq. (16.31)

To check this picture we can first check that the symmetries match. There is an obvious
SUWNf)L x SUWNg)r x U(1)p. There is also a non-anomalous U(1)r symmetry. It is
important that the dual theory is not asymptotically free, i.e. that it is weakly coupled
in the infrared. This is the case for N > 3Ng/2. Again, this duality can only apply for a
range of Nrand V.

There are a number of checks on the consistency of this picture. Holomorphic decou-
pling is again one of the most persuasive. Take the case Ny = N+ 2, so that the dual gauge
group is SU(2). In this case, working in the flat directions of the SU(2) theory, one can do
an instanton computation. One finds a contribution to the superpotential

Winst = det M. (16.32)
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This is consistent with all the symmetries; it is not difficult to see that one can close up all
the fermion zero modes with elements of M and ¢g. So one has a superpotential

f d?0 (gM§ — detM). (16.33)

16.5 Ny > 3N/2

We have noted that Seiberg’s duality cannot persist beyond Ny = 3/N/2. Seiberg also made
a proposal for the behavior of the theory in this regime: for 3/2N < N¢ < 3N the theories
are conformally invariant. Our Banks—Zaks fixed point lies in one corner of this range. As
a further piece of evidence, consider the dimension of the operator Q. Under the non-
anomalous R symmetry, we have

0 LIkl P (16.34)
— exp | ia . .
P\ 2o

If the theory is superconformal, the dimension of this chiral operator satisfies d = 3R/2.
As explained in Appendix D, the exact beta function of the theory is given by

g 3N—Nr+Ney(g?)

F="16m2 1 — N(g2/872)

(16.35)

By assumption this is zero, so

3N — Nr¢
Ny

y = (16.36)

The dimension of QQ is 2 + y, which is precisely 3R/2.
We will not pursue this subject further, but there is further evidence that one can provide
for all these dualities. They can also be extended to other gauge groups.

Suggested reading

The original papers of Seiberg (1994a,b, 1995a,b; see also Seiberg and Witten 1994)
are quite accessible and constitute essential reading on these topics, as the review by
Intriligator and Seiberg (1996). Good introductions are provided by the lecture notes
of Peskin (1997) and Terning (2003). The use of quantum moduli spaces to break
supersymmetry was introduced in Intriligator and Thomas (1996).
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230 More supersymmetric dynamics

Exercises
. |

(1) Discuss the renormalization of the composite operator OQ, and verify that the relation
d = 3R/2 is again satisfied.

(2) Check the anomaly cancelation for the case Ny = N + 1. You may want to use an
algebraic manipulation program, such as MAPLE or Mathematica, to expedite the
algebra.
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An introduction to general relativity

Even as the evidence for the Standard Model became stronger and stronger in the 1970s
and beyond, so the evidence for general relativity grew in the latter half of the twentieth
century. Any discussion of the Standard Model and physics beyond it must confront
Einstein’s theory at two levels. First, general relativity and the Standard Model are very
successful at describing the history of the universe and its present behavior on large scales.
General relativity gives rise to the big bang theory of cosmology, which, coupled with
our understanding of atomic and nuclear physics, explains — indeed predicted — features
of the observed universe. But there are features of the observed universe which cannot
be accounted for within the Standard Model and general relativity. These include dark
matter and dark energy, the origin of the asymmetry between matter and antimatter, the
origin of the seeds of cosmic structure (inflation) and more. Apart from these observational
difficulties, there are also serious questions of principle. We cannot simply add Einstein’s
theory onto the Standard Model. The resulting structure is not renormalizable and cannot
represent in any sense a complete theory. Black holes, when combined with quantum
mechanics, raise further puzzles. In this book we will encounter both these aspects of
Einstein’s theory. Within extensions of the Standard Model, in the next few chapters
we will attempt to explain some features of the observed universe. The second, more
theoretical, level is addressed in the third part of this book. String theory, our most
promising framework for a comprehensive theory of all interactions, encompasses general
relativity in an essential way; some would even argue that what we mean by string theory
is the quantum theory of general relativity.

The purpose of this chapter is to introduce some concepts and formulas that are essential
to the applications of general relativity in this text. No previous knowledge of general
relativity is assumed. We will approach the subject from the perspective of field theory,
focusing on the dynamical degrees of freedom and the equations of motion. We will not
give as much attention to the beautiful — and conceptually critical — geometric aspects of
the subject, though we will return to some of these in the chapters on string theory. Those
interested in a more in-depth treatment of general relativity will eventually want to study
some of the excellent texts listed in the suggested reading at the end of the chapter.

Einstein put forward his principle of relativity in 1905. At that time, one might quip, half
the known laws, those of electricity and magnetism, already satisfied this principle with
no modification. The other half, Newton’s laws, did not. In considering how one might
reconcile gravitation and special relativity, Einstein was guided by the observed equality
of gravitational and inertial mass. Inertia has to do with how objects move in space—time
in response to forces. Operationally, the way we define space—time, our measurements of
length, time, energy and momentum, depends crucially on this notion. The fact that gravity

231
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3 An introduction to general relativity

couples to precisely this mass suggests that gravity has a deep connection to the nature
of space—time. Considering this equivalence, Einstein noted that an observer in a freely
falling elevator (in a uniform gravitational field) would write down the same laws of nature
as an observer in an inertial frame without gravity. Consider, for example, an elevator full
of particles interacting through a potential V'(X; — X;). In the inertial frame,

d’%;

m—s =mg — ViV(E — ). (17.1)
The coordinates of the accelerated observer are related to those of the inertial observer by
- S 1,
Xi =X+ Egtz; (17.2)
so, substituting with the equations of motion (17.1), we obtain
dz}:‘ < A
m Yl —-ViV(x; — xj). (17.3)

Einstein abstracted from this thought experiment a strong version of the equivalence
principle: the equations of motion should have the same form in any frame, inertial or not.
In other words, it should be possible to write down the laws so that in any two coordinate
systems, x* and x'#(x), they take the same form. This is a strong requirement. We will see
that it is similar to gauge invariance, where the requirement that the laws take the same
form after gauge transformations determines the dynamics.

17.1 Tensors in general relativity
|

To implement the equivalence principle, we begin by thinking about the invariant element
dg of distance. In an inertial frame, in special relativity,

ds? = dx* — di* = n,detdx’. (17.4)

Note here that we have changed the sign of the metric, as we said we would do, from
that used earlier in this text. This is the convention of most workers and texts in general
relativity and string theory. The above coordinate transformation for the accelerated
observer alters the line element. This suggests we consider the generalization

ds? = gy, (X)dx*dx”. (17.5)

The metric tensor g, encodes the physical effects of gravitation. We will see that there is
a non-trivial gravitational field when we cannot find coordinates which make g, = 1y
everywhere.

To develop a dynamical theory, we would like to write down invariant actions (which
will yield covariant equations). This problem has two parts. We need to couple the fields
that we already have to the metric in an invariant way. We also require an analog of the
field strength for gravity, which will determine the dynamics of g;,,, in much the same way
as the field strength F,, determines the dynamics of the gauge field 4,,. This object is the
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233 17.1 Tensors in general relativity

Riemann tensor, Rffpg. We will see later that the formal analogy can be made very precise:
An object, the spin connection w,,, constructed out of the metric tensor plays the role of
A*. The close analogy will also be seen when we discuss Kaluza—Klein theories, where
higher-dimensional general coordinate transformations become lower-dimensional gauge

transformations.
We first describe how derivatives and g, transform under coordinate transformations.
Writing
x* = x*(xX) (17.6)
we have
, , ox” o
9,p(x) = Wapqﬁ(x) = A (0)0pp(x). (17.7)

An object which transforms like d,¢ is said to be a covariant vector. An object which
transforms like 9,,¢0,,¢ - - 9,,¢ is said to be an nth rank covariant tensor; g, is an
important example of such a tensor. We can obtain the transformation law for g,,,, from the
invariance of the line element:

’ ’ ax* oxY
g;wdx“ dxv = gﬂvmmdxp/dxal, (178)
o)
oxP ox°
/
guu zng' axu,w- (179)
Now, dx* transforms according to the inverse of A:
X'+
't =g, (17.10)
dxP

where dx* is said to be a contravariant vector. Indices can be raised and lowered with g,,;
if /¥ is a contravariant vector then g, /¥ transforms as a covariant vector, for example.
Another important object is the volume element, @*x. Under a coordinate transformation,

9
dy = | |ty (17.11)
ox’

The object in between the vertical lines is the Jacobian of the coordinate transformation,
|det A|. The quantity ,/—detg transforms in exactly the opposite fashion. So the four-
volume, is invariant.

fd“x,/—detg. (17.12)
We will consider a real scalar field ¢. The action, before the inclusion of gravity, is
1
S = /d“xz(—auqﬁ e N’ — m>¢). (17.13)

To make this invariant we can replace n”*" by g"¥ and include a factor ,/det(—g) along
with d*x. Then

S = / d“x‘/det(—g)%(—am Ap g’ — m?p?). (17.14)
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234 An introduction to general relativity

The equations of motion should be covariant. They must generalize the equation
g = —V'(¢). (17.15)

The first derivative of ¢, we have seen, transforms as a vector, V), under coordinate
transformations, but the second derivative does not transform simply:

axP’
E)M Vv == aM (w V;)

axP ax° 92xr’

-2 2Ty
axv axt ° P gxnaxy P

(17.16)

To compensate for the extra, inhomogeneous, term we need a covariant derivative, as in
gauge theories. Rather than look at the equations of motion directly, however, we can
integrate the scalar field Lagrangian by parts to obtain second derivatives. This yields

V=@ 8,000 + 8,2 0vp) + " 0y/— 2 Duh. (17.17)

To bring this into a convenient form, we need a formula for the derivative of a
determinant. We can work this out using a trick we have used repeatedly in the case of
the path integral. Write

det M = exp(Trln M) (17.18)
so that

det(M + 8M) =~ exp[Trin M + In(1 + M~ '5M)]

= (det MY(1 + M~ 'sM). (17.19)
Thus, for example,
ddet M 1
= M7 " det M. (17.20)

Putting all this together, we have the quadratic term in the action for a scalar field:

1
¢ (g’”E)MBv(P + 8ﬂguvau¢ +gMU§ pgaugpaau(z’) . (1721)
Writing this as

#g"" D, 0,9, (17.22)

we have for the covariant derivative
DuVy =0,V =T}, Vi (17.23)

Here

1
F;};v = Eg/\p(augpv + 0vgpp — pguv)- (17.24)
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235 17.1 Tensors in general relativity

Note that T’ fw is symmetric in wu,v. The covariant derivative is often denoted by a
semicolon and a Greek letter in the subscript or superscript:

DV = V. (17.25)
The reader can check that
82x
A N
P =T = o225 (17.26)

which just compensates the extra term in the transformation law (17.16). Here I" is known
as the affine connection (the components of I' are also sometimes referred to as the

Christoffel symbols and I itself as the Christoffel connection; it is sometimes written as
{ P }). With this definition,

DyVy =8, V, — T

AV (17.27)

transforms like a tensor with two indices, V,,. Similarly, acting on contravariant vectors:
A
DV’ =9,V +FZAV (17.28)

transforms correctly. You can also check that V.., transforms as a third-rank covariant
tensor, and so on.

To get some practice, and to see how the metric tensor can encode gravity, let us use the
covariant derivative to describe the motion of a free particle. In an inertial frame, without

gravity,
d?xt
— =0, 17.29
dr? ( )
where T = g,,,dx"dx" is the proper time is made covariant by first rewriting it as
dx? 9 [dx*
———|—)=0. 17.30
dt oxP < dt ) ( )

We need to replace the derivative d/dx” by a covariant derivative. The covariant version
of the left-hand side of Eq. (17.29) is then

dx? axt
—D,| — |- 17.31
dr " ( at ) ( )
This becomes, using Eq. (17.28),
axP 92xH 9x° dxP
— e 17.32
dt dxPOT o dt 9t ( )
So the equation of motion is
Pt W, (17.33)
dr? Po 9T dt '

This is known as the geodesic equation. Viewed as Euclidean equations, the solutions
are geodesics. For a sphere embedded in flat three-dimensional space, for example, the
solutions of this equation are easily seen to be great circles. We should be able to recover
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236 An introduction to general relativity

Newton’s equation for a weak gravitational field. For a weak static gravitational field we
might expect that

guv = Ny + Ry, (17.34)

with £, small. Since the gravitational potential in Newton’s theory is a scalar, we might
further guess that

goo = —(1+2¢), g;=24y. (17.35)

Then the non-vanishing components of the affine connection are

. 1 .
Too = Eglf (Bogio + dogoi — igoo)
= 0;i¢ (17.36)
and, similarly,
Ty = —d:. (17.37)
In the non-relativistic limit we can replace t by ¢, and we have the equation of motion

&*x

—5 = 9. (17.38)

17.2 Curvature
|

Using the covariant derivative we can construct actions for scalars and gauge fields.
Fermions require some additional machinery; we will discuss this towards the end of the
chapter. Instead, we turn to the problem of finding an action for the gravitational field
itself. In the case of gauge fields the crucial object was the field strength, ., = [Dy, Dy].
For the gravitational field we will also work with the commutator of covariant derivatives
operators. We write

[Du.DulVy =Ry, Vs (17.39)

[
puv
where R is known as the Riemann tensor or curvature tensor. For a Euclidean space it
measures what we would naturally call the curvature of the space. It is straightforward to
work out an expression for R in terms of the affine connection:

Rlﬁw = axr}w - avr}w + FZUF,’},? - rgmrﬁn. (17.40)

Unlike F, which is first order in derivatives of 4, the Riemann tensor R is second order in
derivatives of g. As a result the gravitational action will be first order in R.

Note that R transforms as a tensor under coordinate transformations. It has important
symmetry and cyclicity properties. These are most conveniently described by lowering the
first index on R:
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237 17.3 The gravitational action

RM/,W( = Rvkkua (17-41)
R}\,/,H)K = _/R/u}»vx = - Rk;u(v = R/,L)\.Kl)s (17-42)
Rkuwc + RAK;/,U + Rkvxu =0. (1743)

Starting with R we can define other tensors. The most important is the Ricci tensor. This
has only two indices:

Rue = & Rauve- (17.44)
The Ricci tensor is symmetric:
R = Ry (17.45)
Also very important is the Ricci scalar:
Rs = g™ Ryu. (17.406)

Note that the Riemann tensor R also satisfies an important identity, similar to the Bianchi
identity for F*V (which gives the homogeneous Maxwell equations):

R)»pwt(;n + Rk;uyv;l( + R)\./,LKU;U = 0. (1747)

17.3 The gravitational action
|

Having introduced, through the Riemann tensor R, a description of curvature, we are in a
position to write down a generally covariant action for the gravitational field. Terms linear
in R, as we noted, will be second order in the derivatives of the metric, so they can provide
a suitable action. The action must be a scalar, so we take

1
Seav = 35 / d'x,/—gR. (17.48)

To obtain the equations of motion we need to vary the complete action, including the
parts involving matter fields, with respect to g,,,. We first consider the variation of the
terms involving matter fields. The variation of the matter action with respect to g, turns
out to be nothing other than the stress—energy tensor, 7*". Once one knows this fact, this
gives what is often the easiest way to find the stress—energy tensor for a system. To see that
this identification is correct, we first show that T}, is covariantly conserved, i.e.

D,T"* =T", =0. (17.49)

By assumption the fields solve the equations of motion in the gravitational background,
so the variation of the action, for any variation of the fields, is zero. Consider, then, a
space—time translation:

X = x4 et (17.50)
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238 An introduction to general relativity

Starting with
ox” ox’
g;,“)(x/) = nga W, (1751)
we have
g;w(x +€) = guv(x) — 3,€”gpy — 9v€° gopu- (17.52)
Thus
8guv(¥) = —guadve® — guvdue” — guve’. (17.53)
Defining
35,
omatt (17.54)
3guv
under this particular variation of the metric we have
8Smatt = — / d4x,/—gT’“’ (gmave)‘ +gx,,8ue)‘ + Bkg,wel) . (17.55)

Integrating the first two terms by parts and using the symmetry of the metric (and
consequently the symmetry of 7#"), we obtain

8 Smatt = / d*x |:8M(T’U‘\/:g) — %axguku\/—_gf} e (17.56)

The coefficient of €* vanishes for fields which obey the equations of motion; this object is
™ U - The reader can verify this last identification painstakingly or by noting that

1
Tl = T e (17.57)

so, for a general vector, for example, we have
1
o= 9 (,/—g W) (17.58)
g \/_—g 3

and similarly for higher-rank tensors.
As a check, consider the stress tensor for a free massive scalar field. Once more, the

action is
S = f d*x/—g (—% o, d,p — %m2¢2). (17.59)
So, recalling our formula for the variation of the determinant,
Ty = %am p — L—I‘gmgp"aw I p — m*¢?). (17.60)

To find the full gravitational equation — Einstein s equation — we need to vary also the
gravitational term in the action. This is best done by explicitly constructing the variation
of the curvature tensor under a small variation of the field. We leave the details for the
exercises, and merely quote the final result:

1
Ruv = 58uRs = KTy, (17.61)
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239 17.4 The Schwarzschild solution

We will consider many features of this equation, but it is instructive to see how we obtain
Newton’s expression for the gravitational field, in the limit where gravity is not too strong.
We have already argued that in this case we can write

g0 = —(1+2¢), g’ =3¢ (17.62)

As we have seen, the non-vanishing components of the connection are

Thy = dip, T =—dip. (17.63)
Correspondingly, the non-zero components of the Riemann curvature tensor are
00 = 000 = —Riyo = Ry (17.64)

where the relations between the various components follow from the symmetries of the
curvature tensor. From these we can construct the Ricci tensor and the Ricci scalar:

Roo = V2p, Rs=—V3¢. (17.65)
So, we obtain
—V2¢ = 2 Too. (17.66)
Note that from this we can identify Newton’s gravitational constant in terms of «,
2
GNn = —. (17.67)
8w

17.4 The Schwarzschild solution

Not long after Einstein wrote down his equations for general relativity, Schwarzschild
constructed the solution of the equations for a static isotropic metric. Such a metric can
be taken to have the form

ds* = —B(r)df* + A(r)dr* + 17 (d6? + sin’ 0 dgp?). (17.68)

Actually, rotational invariance would allow other terms. In terms of vectors dx the most
general metric has the form

—B(r)df + D)% - dXdt + C(r)d% - d% + D(r) (% - d¥)2. (17.69)

By a sequence of coordinate transformations, however, one can bring the metric to the form
(17.68).

We will solve Einstein’s equations with 7}, = 0. Corresponding to ds?, we have the
non-vanishing metric components

g = A(r), gpp =1 sin’0, gy =—B(), g =1 (17.70)

Our goal is to determine 4 and B. The equations for them follow from Einstein’s equations.
We first need to evaluate the non-vanishing Christoffel symbols. This is done in the
exercises. While straightforward, the calculation of the connection and the curvature
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