Appendix F Simple model of Pauli principle corrections

The induced interaction shown in Fig. F.1(a) leads to the contribution

$$
v_{k k^{\prime}}=\sum_{\alpha} \frac{V^{2}\left(k, k^{\prime} \alpha\right)}{\varepsilon_{k}-\left(\varepsilon_{k^{\prime}}+\hbar \omega_{\alpha}\right)}
$$

while that shown in Fig. F.1(c) leads to

$$
\begin{align*}
\left(v_{k k^{\prime}}\right)_{\text {Pauli }}=- & \sum_{\alpha \alpha^{\prime}} \sum_{i k^{\prime \prime}} \frac{V\left(k, k^{\prime} \alpha^{\prime}\right) V\left(k, k^{\prime \prime} \alpha\right)}{\left(\varepsilon_{k}-\left(\varepsilon_{k^{\prime}}+\hbar \omega_{\alpha^{\prime}}\right)\right)} \\
& \times \frac{V\left(k^{\prime}, i \alpha\right) V\left(k^{\prime \prime}, i \alpha^{\prime}\right)}{\left(\varepsilon_{k}-\left(\varepsilon_{k^{\prime}}+\varepsilon_{k^{\prime \prime}}-\varepsilon_{i}\right)\right)\left(\varepsilon_{k}-\left(\varepsilon_{k^{\prime \prime}}+\hbar \omega_{\alpha}\right)\right.} \tag{F.1}
\end{align*}
$$

In what follows we shall carry out an order of magnitude estimate of the ratio of $\left(v_{k k^{\prime}}\right)_{\text {Pauli }} / v_{k k^{\prime}}$ making use of the schematic two-level model (see Fig. F.2) and nuclear field theory rules.

The Hamiltonian describing the system

$$
\begin{equation*}
H=H_{\mathrm{sp}}+H_{\mathrm{TB}} \tag{F.2}
\end{equation*}
$$

is composed of a single-particle Hamiltonian and a two-body interaction. The particlevibration coupling matrix element is

$$
\begin{equation*}
V\left(k, k^{\prime} \alpha\right)=-K_{0} \sqrt{\Omega} \tag{F.3}
\end{equation*}
$$

and the collective RPA solution of (F.2) has an energy

$$
\begin{equation*}
\hbar \omega=\varepsilon-K_{0} \Omega \tag{F.4}
\end{equation*}
$$

Let us assume $\hbar \omega \approx \frac{1}{2} \varepsilon$. Thus $K_{0}=\frac{\varepsilon}{2 \Omega}$ and

$$
\begin{equation*}
\left(v_{k k^{\prime}}\right)_{\text {Pauli }} \approx-v_{k k^{\prime}} \frac{V^{2}\left(k, k^{\prime} \alpha\right)}{\hbar \omega \times \varepsilon} \approx-\frac{v_{k k^{\prime}}}{2 \Omega} \tag{F.5}
\end{equation*}
$$

Figure F.1. (a) Induced interaction. (b) Schematic representation of the induced interaction showing one of the possible bubble contributions to the collective state (RPA). (c) Pauli principle contribution to the induced interaction arising from the exchange of the particle moving in the state k^{\prime} in the bubble of graph (b) and in the final state. Note that graph (b) has been drawn only for the purpose of illustration as this process is forbidden by the rules of nuclear field theory (Bes et al. (1976a, 1976b)).

Figure F.2. Schematic model used in the estimates. The two orbitals have the same pair degeneracy $\Omega=(2 \gamma+1) / 2$. The lowest level is assumed to be filled.

For ${ }^{11} \mathrm{Li}$, where $\Omega=(2 j+1) / 2 \approx 1\left(s_{1 / 2} p_{1 / 2}\right.$ single-particle space $)$ one thus obtains

$$
\begin{equation*}
\left(v_{k k^{\prime}}\right)_{\text {Pauli }} \approx-0.5 v_{k k^{\prime}} . \tag{F.6}
\end{equation*}
$$

On the other hand, for nuclei lying along the stability valley, where

$$
\begin{equation*}
\Omega \approx A^{2 / 3} \tag{F.7}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
\left(v_{k k^{\prime}}\right)_{\mathrm{Pauli}} \approx \frac{v_{k k^{\prime}}}{2 A^{2 / 3}} . \tag{F.8}
\end{equation*}
$$

For medium/heavy nuclei $\left(A^{1 / 3} \approx 5\right)$ this expansion leads to the ratio

$$
\begin{equation*}
\frac{\left(v_{k k^{\prime}}\right)_{\text {Pauli }}}{v_{k k^{\prime}}} \approx-2 \times 10^{-2} . \tag{F.9}
\end{equation*}
$$

