Let (m, n) be a pair of positive integers satisfying (*). If $m=n$, then $m=n=1$. Suppose $m>$ n and let $t=m-n$. Then $t \geqslant 1$ and $m=t+n$. Substituting in (*) gives:

$$
\begin{aligned}
& m^{2}-n^{2} & =m n \pm 1 \\
\Leftrightarrow & (t+n)^{2}-n^{2} & =(t+n) n \pm 1 \\
\Leftrightarrow & n^{2}-t^{2} & =t n-(\pm 1) \\
\Leftrightarrow & n^{2}-t^{2} & =n t \pm 1 .
\end{aligned}
$$

So if (m, n) satisfy $(*)$, then so do (n, t). Furthermore (n, t) is a lower pair than (m, n). (For if $m^{2}-n^{2}=m n \pm 1$ as above, then $m=\frac{1}{2}\left(n+\sqrt{ }\left(5 n^{2} \pm 4\right)\right)$ and so $m \leqslant 2 n$ and $t=m-n \leqslant n$.)

By replacing (m, n) by (n, t), this process can be repeated producing smaller pairs of integers satisfying (*) until the pair (1,1) is reached. Reversing the process, the pair (m, n) must be one of the sequence $(1,1),(2,1),(3,2),(5,3),(8,5),(13,8), \ldots$. Hence the original pair of integers satisfying (*) must be two consecutive terms from the Fibonacci sequence $1,1,2,3,5,8,13,21,34,55,89,144, \ldots$. ."

Correspondence

Looking for patterns

Dear Editor,

Recent Gazette articles refer to the problem of how to avoid producing the result

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

like a rabbit from a conjuror's hat. Having always tried to encourage my students to look for patterns, I have found the following method simple but effective:

n	1	2	3	4	5	6	7	\ldots
$\sum_{r=1}^{n} r$	1	3	6	10	15	21	28	\ldots
$\sum r^{2}$	1	5	14	30	55	91	140	\ldots
$\sum r^{2} / \sum r$	1	$\frac{5}{3}$	$\frac{7}{3}$	3	$\frac{4}{3}$	$\frac{13}{3}$	5	\ldots,
i.e.	$\frac{3}{3}$	$\frac{5}{3}$	$\frac{7}{3}$	$\frac{2}{3}$	4	$\frac{43}{3}$	$\frac{15}{3}$	\ldots

This suggests that

$$
\sum r^{2} / \sum r=\frac{2 n+1}{3} \quad \text { or } \quad \sum r^{2}=\frac{n(n+1)}{2} \cdot \frac{2 n+1}{3}
$$

and it then seems quite natural to attempt to prove the result by induction.
Yours sincerely,
G. S. BARNARD

Brown Owl Cottage, Colley Way, Reigate, Surrey RH2 9JH

A counter-example

Dear Editor,

In answer to Robert Eastaway's question at the end of note 65.26, Lander and Parkin discovered in 1966 that

$$
27^{5}+84^{5}+110^{5}+133^{5}=144^{5}
$$

