The Riemann surfaces of a function and its fractional integral.

By William Fabian.

1. Introduction. For a many-valued function $f(z)$ of the complex variable z, a Riemann surface can be constructed such that, at any point z on the surface, the function has only one value; a function normally multiform, is therefore uniform on a certain Riemann surface.

The operator $D^{-\lambda}$ represents a $\lambda^{\text {th }}$ integral of a function and is defined by ${ }^{1}$

$$
D^{-\lambda}\left(l_{a}\right) f(z)=\frac{1}{\Gamma(\lambda+\gamma)}\left(\frac{d}{d z}\right)^{\gamma} \int_{a}^{z}(z-t)^{\lambda+\gamma-1} f(t) d t
$$

where l is a simple curve in the plane of the complex variable, along which the integration is carried out. λ may be real or complex, and γ is the least integer greater than or equal to zero such that $R(\lambda)+\gamma>0, R(\lambda)$ being the real part of λ.

In this note we are concerned with relations between the Riemann surfaces of a function and its fractional integral.
2. Transformation of Riemann surfaces.

Theorem 1. Let $f(z)$ be analytic within a circle with centre at a, and which contains lin its interior. Then a is a branch-point of $D^{-\lambda}\left(l_{a}\right) f(z)$ for non-integral values of λ.

If λ is a rational fraction $r_{/ s}$ expressed in its lowest terms, then a is the vertex of a cycle of s roots.

If λ is irrational or complex, then a is the vertex of an infinite number of roots.

Proof. The Taylor series for $f(z)$ at a within the given circle is

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(z-a)^{n} .
$$

Then applying the operator $D^{-\lambda}$ to each term of this series, we easily find that, within the given circle,

$$
D^{-\lambda}\left(l_{a}\right) f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{\Gamma(\lambda+n+1)}(z-a)^{\lambda+n} .
$$

The conclusion follows immediately.

[^0]Theorem 2. Let $f(z)$ be analytic in a bounded region E,. except for an isolated singularity within E at a point p different from a, at which $f(z)$ can be expanded in a Laurent series.

Then, for non-integral values of λ, p is a branch-point of $D^{-\lambda}\left(l_{a}\right) f(z)$, with cycles of an infinite number of roots.

Proof. In the t-plane, where l joins the points $t=a$ and $t=z$, let C be a closed contour through the point $t=z$, which lies wholly in E, encloses p, and excludes l. Denote by S_{m} the curve traced out by a point t which passes along l from a to z and then describes $C m$ times. Then

$$
\begin{align*}
& D^{-\lambda}\left(S_{m}\right) f(z)=D^{\gamma} D^{-\lambda-\gamma}\left(S_{m}\right) f(z) \\
= & D^{\gamma}\left\{D^{-\lambda-\gamma}\left(l_{a}\right) f(z)+m D^{-\lambda-\gamma}(C) f(z)\right\} \\
= & D^{-\lambda}\left(l_{a}\right) f(z)+m D^{\gamma} D^{-\lambda-\gamma}(C) f(z) \\
= & D^{-\lambda}\left(l_{a}\right) f(z)+m D^{-\lambda-\gamma}(C) f^{(\gamma)}(z), \tag{1}
\end{align*}
$$

on integrating $D^{-\lambda-v}(C) f(z)$ by parts γ times.
By a previous theorem ${ }^{1}$

$$
D^{-\lambda-\gamma}(C) f^{(\gamma)}(z)=2 \pi i \sum_{\sigma=1}^{\infty}(-1)^{\sigma-1} A_{\sigma} \frac{(z-p)^{\lambda-\sigma}}{\Gamma(\lambda-\sigma+1) \cdot(\sigma-1)!}
$$

where $\sum_{\sigma=-\infty}^{\infty} \boldsymbol{A}_{\sigma}(z-p)^{-\sigma}$ is the Laurent series for $f(z)$ at p.
The conclusion now follows from (1).
Theorem 3. Let $f(z)$ be analytic in a bounded region E on the Riemann surface associated with $f(z)$, except for a branch-point within E at a point p different from a, at which $f(z)$ can be expanded in a Puiseux series. Let the number of roots of $f(z)$ in the cycle ${ }^{2}$ at p be r.

If the Puiseux series for $f(z)$ at p does not contain negative integral powers of $(z-p)$, the number of roots of $D^{-\lambda}\left(l_{a}\right) f(z)$, where λ is non integral, in the corresponding cycle at p does not exceed r. If the series contains negative integral powers of $(z-p)$, the number of roots of $D^{-\lambda}\left(l_{a}\right) f(z)$, where λ is non-integral, in the corresponding cycle at p is infinite.

[^1]Proof. On the Riemann surface associated with $f(t)$, let C be a closed contour through the point $t=z$, which lies wholly in E, encloses p and excludes l, where l joins a and z. Denote by S_{m} the curve traced out by a point t which passes along l from a to z and then describes $C m$ times.

As in the proof of Theorem 2, we have

$$
\begin{equation*}
D^{-\lambda}\left(S_{m}\right) f(z)=D^{-\lambda}\left(l_{a}\right) f(z)+m D^{-\lambda-\gamma}(C) f^{(\gamma)}(z) \tag{1}
\end{equation*}
$$

By a previous theorem, ${ }^{1}$ from which the value of $D^{-\lambda-\gamma}(C) f^{(\gamma)}(z)$ can be immediately deduced, it follows that $D^{-\lambda-\gamma}(C) f^{(\gamma)}(z)$, for nonintegral values of λ, is or is not zero, according as the Puiseux series for $f(z)$ at p does not or does contain negative integral powers of $(z-p)$. The result then follows from (1).
${ }^{1}$ Fabian : Phil. Mag., 21, 276 (1936).

14 Grosvenor Avende,

 Canonbury, London, N.5.
[^0]: ${ }^{1}$ Fabian, Hhil Mug., 20, 783 (1930).

[^1]: ${ }^{1}$ Fabian : Phil. Mag., 21, 277 (1936).
 2 If $f(i)$ has M cycles at $p, f(z)$ is to be regarded as having M branch-points at p, and the theorem applies to each of these branch-points separately.

