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In this paper we re-examine the flow produced by the normal impact of a laminar
liquid jet onto an infinite plane when the flow is dominated by surface tension. Over
the range of parameters we consider, which are typical of water from a tap over a
kitchen sink, it is observed experimentally that after impact the liquid spreads radially
over the plane away from the point of impact in a thin film. It is also observed
that, at a finite radius, there is an abrupt increase in thickness of the film which has
been identified as a hydraulic jump. Once the jump is formed this radius remains
constant in time and, further, is independent of the orientation of the surface showing
that gravity is unimportant (Bhagat et al., J. Fluid Mech., vol. 851, 2018, R5). We
show that the application of conservation of momentum in the film, subject only to
viscosity and surface tension and ignoring gravity completely, predicts a singularity in
the curvature of the liquid film and consequently a jump in the depth of the film at
a finite radius. This location is almost identical to the radius of the jump predicted
by conservation of energy and agrees with experimental observations. We also provide
the correct boundary condition to be applied at an interface, where there is a change
in interfacial area as a result of the fluid flow, that accounts for the energy change
associated with fluid molecules’ exchange between the interface and the bulk.

Key words: thin films, capillary waves, interfacial flows (free surface)

1. Introduction
In a recent paper Bhagat et al. (2018) conducted experiments that showed that in

a thin liquid film, on scales typical of those found in a kitchen sink, the circular
jump produced by the normal impact of a round laminar jet onto an infinite plane is
independent of the orientation of the surface. These experiments conclusively showed
that gravity does not play a significant role in the origin/formation of these jumps
– in sharp contrast with previous theoretical analyses. They also used conservation of
energy, including both surface tension and gravity, to determine the radius of the jump.
As we discuss below, on the scale of a kitchen sink the predicted radius is found to be
almost independent of gravity, and is in excellent agreement with experiments, which
cover fluids with a range of surface tension values.

† Email address for correspondence: rkb29@cam.ac.uk
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Since the conclusions of Bhagat et al. (2018) are markedly different from the
accepted view of the role of gravity in these thin-film jumps the paper has attracted
criticism, most particularly in a recent paper by Duchesne, Andersen & Bohr (2019)
who, despite the experimental evidence, continue to question the role of surface
tension in these flows. The underlying issue appears to be the current understanding
of the interfacial flow which is that, in both in hydrostatics and in hydrodynamics,
the influence of surface tension (when surface tension is uniform) is fully expressed
as a pressure, commonly known as the Laplace pressure. The argument is that the
force due to surface tension, which acts a tensile force at the line boundary of the
interfacial surface, is mathematically equivalent to a pressure normal to the interface
and, since the liquid velocity is tangential to the interface, this force can do no work.
For hydrostatics, we have no argument with this viewpoint, but in hydrodynamics,
we will show that the interfacial surface energy is not conserved, except when the
liquid film is completely flat and surface tension force is trivially balanced.

Before proceeding further with this discussion we note that the importance of
surface tension had previously been noted by Mohajer & Li (2015) who measured
the jump radius and the height of the liquid downstream of the jump for water and
a water–surfactant solution (see their figures 4 and 13). They observed a significant
increase in the jump radius when the surface tension was reduced by the addition
of the surfactant. They also reported that for a range of flow rates the jump height
remained constant and depended only on the surface tension of the liquid.

Despite this experimental evidence several other recent papers (Fernandez-Feria,
Sanmiguel-Rojas & Benilov 2019; Scheichl 2019; Sen et al. 2019; Wang &
Khayat 2019) continue to support the previous gravity-based theory. For example,
Fernandez-Feria et al. (2019) performed numerical simulations of the downward
vertical impingement of a liquid jet onto a horizontal plate and compared their results
with the experimental data from Button et al. (2010), which were obtained for an
upward directed jet onto a ceiling. Despite the opposite vertical orientations the
authors concluded gravity is the dominant force.

The role of surface tension is subtle, and one objective of this paper is to clarify the
contribution of surface tension to the dynamics. The other objective is to show that
the jump radius can be predicted using momentum conservation and show that this is
consistent with the energy-based approach used by Bhagat et al. (2018). In order to
focus on the role of surface tension we predict the jump location using conservation
of momentum, ignoring gravity completely.

Conventionally, the circular jump has been studied in an experimental arrangement
where a vertical jet impinges onto a horizontal plate and either flows over a weir or
off the edge of the plate. In this paper we are concerned with the situation in which
the plate is effectively an infinite plane and we consider the jump before the spreading
liquid film encounters either the weir or the edge. The observations of Bhagat et al.
(2018) show (for sufficiently high Reynolds numbers) that the jump, once formed, has
a constant radius until the spreading film reaches the edge of the plate. In practice,
once the film reaches the edge of the plate a different boundary condition is imposed
that changes the depth of the downstream subcritical film, which, in turn, changes the
position of the previously formed jump. Usually, in this later adjustment, since the
subcritical region is significantly deeper than the supercritical region upstream of the
jump, gravity can play a significant role. However, we will show that until the further
downstream condition influences the jump, the initial jump location is determined by
surface tension alone.

The paper is organised as follows. We begin in § 2 by a consideration of dimen-
sional analysis which will set the parameter ranges that are appropriate for our
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theoretical analysis. The role of surface tension at the liquid–gas interface in a flowing,
as distinct from stationary, liquid is derived and applied to a radially spreading thin
film in § 3. A prediction for the jump radius is then obtained from application of
conservation of momentum in both the radial and film-normal directions in § 4. The
energy-based approach presented in Bhagat et al. (2018) is revisited and compared
with the momentum based approach in § 5. In § 6, we discuss the relative importance
of surface tension and re-visit the analysis of Duchesne et al. (2019) and discuss the
flaw in their theory. Finally, our conclusions are given in § 7.

2. Dimensional analysis
We begin by considering the implications of dimensional analysis. The relative

importance of gravity g and surface tension depends on the fluid properties, the
value of the surface tension γ , the density ρ and kinematic viscosity ν and the flow
characterised by the jet flow rate Q. Dimensional analysis shows that when either
gravity or surface tension is ignored the jump radius scales, respectively, as

RST ∼
Q3/4ρ1/4

ν1/4γ 1/4
or RG ∼

Q5/8

ν3/8g1/8
. (2.1a,b)

In a particular flow the jump will either be caused by surface tension if RST <RG and
gravity if RST > RG. This criterion leads to a critical flow rate QC given by

QC =
γ 2

νρ2g
, (2.2)

below which surface tension is the dominant force and above which gravity is
important. For water QC ≈ 500 cm3 s−1 (i.e. ≈30 l min−1), which is significantly
larger than the flow in the standard kitchen sink.

In appendix A (see (A 2)) we further show that including gravity provides a
correction to the radius predicted by surface tension. This correction to the pure
surface tension radius RST takes the values 0.95 and 0.77, for Q = 2QC and 10QC,
respectively, which shows that even for Q ∼ 10QC, the jump is dominated by
the surface tension of the liquid. Table 1 gives values of QC for liquids used in
experiments (Bohr, Dimon & Putkaradze 1993; Bhagat et al. 2018; Duchesne et al.
2019) and we see that Q�QC in the experiments in water, and that the flow rates are
only close to Qc in the experiments with ethylene glycol and silicone oil. However,
as we note from (A 2), even in these latter cases this scaling analysis implies that
surface tension is still dominant. Consequently, we conclude that all the experiments
listed in table 1 are expected to fall within the range of parameters to which the
theory developed below that ignores gravity is expected to apply.

It is also worth noting that apart from surface tension the only parameters that have
been varied in experiments are the viscosity and jet flow rate. The scaling relations
(2.1) have very similar dependences on these two parameters, which makes it very
hard to distinguish between them on experimental grounds alone. This is possibly why
some controversy persists about the interpretation of the experimental observations.

3. Theory
3.1. Surface forces and energy in hydrodynamics

Surface forces at a liquid interface arise from short range intermolecular interactions
and the total short range force acting on a fluid element is determined by the surface
area of the element, while the volume of the element is not relevant for such forces
(Batchelor 2000). The molecular origin of surface tension and surface energy is
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Liquid Reference Q Qc γ × 10−3 ν × 10−6 ρ

(cm3 s−1) (cm3 s−1) (kg s−2) (m s−2) (kg m−3)

Water Mohajer & Li (2015) 2.5–8.33 518 72 1.002 1000
Ethylene glycol Rojas et al. (2010) 20 22 45 7.6 1100
Silicon oil – 1 Duchesne, Lebon &

Limat (2014)
4.3–60 2.3 20 20 950–965

Silicon oil – 2 Duchesne et al. (2014) — 0.45 20 98 950–965
WP95/5 Bhagat et al. (2018) 83–200 82 42.5 1.274 989
WP80/20 Bhagat et al. (2018) 83–200 58 26 2.30 968
SDBS Bhagat et al. (2018) 83–200 147 38 1 1000

TABLE 1. Parameters used in published experiments. The jet flow rate Q, the critical
flow rate QC at which gravity begins to play a role, the surface tension γ , the kinematic
viscosity ν and the density ρ of the fluid.

associated with intermolecular cohesive forces. The average free energy associated
with a fluid molecule in the liquid bulk, where it is surrounded by similar molecules
is independent of its position. However, within a distance less than the range of the
cohesive forces (10−9 m) from the interface, the liquid molecules have an additional
free energy which is proportional to the interfacial surface area. A net exchange of
liquid molecules between the interface and the bulk that necessarily accompanies a
change in surface area will be associated with a net energy exchange.

Now consider the case of an impacting liquid jet and follow the small material
volume of fluid, πa2l in the jet (indicated as 0 in figure 1), where a is the radius
of the jet and l is the length of the cylindrical fluid element. The surface area of a
liquid interface changes as it spreads on the plane as a thin film of thickness h, and
it is straightforward to show that the ratio of the final to initial surface area is a/2h.
In the spreading film when h decreases with radius and a/2h� 1, implying that there
is an energy penalty as liquid molecules leave the bulk to increase the surface area of
the spreading film. Whereas, at the hydraulic jump, an abrupt increase of liquid film
thickness implies a release of the surface energy. This clearly demonstrates that even
in a steady flow a spatial variation of liquid film thickness implies an active exchange
of mechanical and surface energy. We now discuss the way in which this exchange
of energy is accounted for.

3.2. Surface tension and the interfacial boundary condition
Fluid motion is governed by the Navier–Stokes equations which express conservation
of momentum in a fluid continuum. For flows with an interface between two fluids,
the Navier–Stokes equations do not express the surface tension force acting on the
interface. This force is introduced as a normal stress boundary condition at the
interface.

Consider a fixed surface S, with unit normal n, bounded by a closed contour C with
the line element dl around the contour in the interface between two immiscible fluids,
taken here for simplicity to be the common case of a liquid and a gas denoted by
the subscripts L and G, respectively, with constant surface tension γ (see figure 2).
Since the surface tension force acts in a direction perpendicular to n and the contour
C, continuity of the normal stress is expressed as∫

S
(TG − TL) ·n dS+ γ

∫
C

dl× n= 0, (3.1)
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3
0

2

1

FIGURE 1. An illustrative sketch of a circular hydraulic jump on an infinite plate that was
reported experimentally by Bhagat et al. (2018), along with a history of the interfacial
surface area of a material fluid volume, V =πa2l (indicated as 0), where a is the radius
of the jet. The annular surfaces are the top views of the surface of the material volume at
different instances when it passes through locations 1 and 2 in the supercritical region and
3 in subcritical region. The surface area of the material volume is inversely proportional
to the liquid film thickness h, which in the supercritical region where h decreases implies
an increase in surface area. At the location of hydraulic jump an abrupt change of liquid
film thickness implies a release of the surface energy.

dœ

dr

dS
Contour, Cn

rdœ

h + dh

å + då

r + dr

r

hå

FIGURE 2. A schematic of the differential control volume showing the slope of the thin
liquid film, and a contour, C enclosing an interfacial surface, S.

where T =−pI + µ[∇u+ (∇u)T] is the total stress, with pressure p and velocity u,
and µ is the dynamic viscosity of the fluid. Using the vector identity and

∫
C dl× n≡

−
∫

S(∇s ·n)n dS,

∫
S
(TG − TL) ·n dS= γ

∫
S
(∇s ·n)n dS. (3.2)
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Since the surface S is arbitrary, we then obtain the conventional form of the dynamic
boundary condition

(TG − TL) ·n= γ (∇s ·n)n, (3.3)

where ∇s= [I− nn] · ∇ is the surface gradient, relating the jump in the normal stress
to the curvature of the surface in agreement with Bush & Aristoff (2003) and valid
pointwise in space. However, it is important to note that the surface tension forces
act along the local tangents at different points of the closed contour C, and it is the
net resultant of these tensile forces that acts along the normal to the interface. In the
case of a stationary liquid and gas, the viscous term is zero, and this equation gives
the usual Laplace pressure in the liquid associated with the curvature of the surface.
In the case of a flowing liquid, (3.3) will give the correct net resultant force on an
interfacial surface S, but does not give a detailed account of the tensile forces along
the contour C. The velocity of the liquid may vary around the contour C implying
that liquid molecules crossing the boundary may not be conserved and need to be
accounted for in the surface energy exchange. We consider this effect in the next
section.

3.3. Interfacial surface energy conservation

Assuming the dynamic viscosity of the gas (for air and water the ratio µa/µw∼ 10−2)
is negligible compared to that of the liquid and that the velocities in the liquid and
gas are comparable, and denoting pressure in the gas as pG and in the liquid as pL,
(3.1) can be written as∫

S
(−pG + pL)n dS−µ

∫
S

n · [∇u+ (∇u)T] dS+ γ
∫

C
dl× n= 0, (3.4)

where u is the velocity in the liquid at the interface. The surface energy flux can be
calculated by taking a dot product between the interfacial velocity at the contour C
and the forces to obtain (since u ·n= 0 on the interface)

µ

∫
S

u · (n · [∇u+ (∇u)T]) dS= γ
∫

C
u · (dl× n), (3.5)

which can be re-expressed as

µ

∫
S
{u · [(n · ∇)u] + n · [(u · ∇)u]} dS = γ

∫
S
{(∇I · u)− [(n · ∇I)u] · n} dS,

= γ
DS
Dt
, (3.6)

the rate of change of the material surface area S (see (3.1.5) of Batchelor (2000)),
where the subscript I of the operator ∇I is to emphasise that the operator is applied
at the interface only.

Thus the increase in surface energy is supplied by the kinetic energy of the flow,
which, of course, is zero in the case of stationary liquid. We also emphasise that the
velocity field here is the surface velocity field, for which (∇I · u) may or may not be
equal to zero due to the addition (or loss) of fluid elements to the liquid interface as
discussed above. The surface energy will only be conserved when the velocity field
at the interface satisfies the condition {(∇I · u)− [(n · ∇I)u] · n}= 0 (which is satisfied
for a flat surface for which net force due to surface tension is zero), otherwise there
will be an active energy exchange with the bulk.
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The circular capillary jump 896 A25-7

It is important to re-emphasise that the pointwise dynamic boundary condition in its
conventional form (3.3), which if used to calculate the surface energy over a surface S
does not account for the variation in velocity along the contour C, will give a flawed
result implying that the net surface energy exchange is zero. We emphasise that (3.6)
is the correct interfacial boundary condition to be applied at the liquid interface and
will be used in the analysis below.

4. Momentum conservation

We now apply conservation of momentum to the axisymmetric flow spreading
radially from the point of impact of the jet on the plane, ignoring gravity. In
cylindrical coordinates (r, θ) with the origin at the point of jet impact, let u, w be
the radial and vertical velocity components, respectively.

First we determine the surface boundary condition. Following Bush & Aristoff
(2003), we write the equation of the axisymmetric surface in implicit form

J(r, z)= z− h(r)= 0, (4.1)

which yields the vector normal to the film surface

n=
∇J
|∇J|
=

ẑ− h′r̂
(1+ h′2)1/2

, (4.2)

where r̂ and ẑ are unit vectors in the radial and wall-normal directions, respectively,
and h′ = dh/dr. We define the angle α as the tangent to the surface defined by h′ =
tan α. Then cos α = 1/(1 + h′2)1/2 and sin α = h′/(1+ h′2)1/2, and (4.2) can also be
written as

n= ẑ cos α − r̂ sin α. (4.3)

We denote the radial velocity component at the surface z = h as us(r). From the
kinematic boundary condition the vector surface velocity can be written as

u= us(r)r̂+ us(r)h′(r)ẑ, (4.4)

which implies that, at the interface,

{(∇I · u)− [(n · ∇I)u] · n} =
1
r

d(usr)
dr
+

ush′h′′

(1+ h′2)
=

1
r(1+ h′2)(1/2)

d{usr(1+ h′2)(1/2)}
dr

.

(4.5)
Substituting (4.5) in (3.6) and recognising dS= r(1+ h′2)(1/2) dθ dr yields

µ

∫
S
{u · [(n · ∇)u] + n · [(u · ∇)u]} dS= γ

∫
S

d{usr(1+ h′2)(1/2)}
dr

dr dθ. (4.6)

Note that these results depend only on the surface velocity and hold independent
of the wall-normal velocity profile. However, in order to obtain an explicit momentum
equation, we need to calculate the shape factors arising due to the velocity profile. We
recognise that a similarity velocity profile in wall-normal direction will not satisfy the
zero interfacial stress condition (n ·∇)u 6= 0 (see appendix B). Nevertheless, the liquid
film upstream of the hydraulic jump remains almost flat, and the shape factor is not
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896 A25-8 R. K. Bhagat and P. F. Linden

expected to change much in the radial direction. Therefore, we use the Watson (1964)
velocity in similarity form to calculate the shape factor

u(r, z)= us(r)f (η), η≡
z

h(r)
, 0 6 η6 1, (4.7a,b)

where us as above is the surface velocity and f (0)= 0, f (1)= 1. Conservation of mass
implies ∫ h

0
ur dz= rush

∫ 1

0
f (η) dη≡C1usrh=Q/2π, (4.8)

and C1 ≡
∫ 1

0 f (η) dη is an integration constant arising from the velocity profile.
Incompressibility gives

w=−
∫ η

0

1
r
∂ru
∂r

dz=−
1
r

d
dr

[
(rush)

∫ η

0
f (η) dη

]
.

Then, using (4.8),

w=−ush
d
dr

∫ η

0
f (η) dη= uh′η= ush′ηf (η), (4.9)

which automatically satisfies the kinematic boundary conditions at the wall and
interface. We now use these expressions for the velocity in equations expressing
momentum conservation in the radial and wall-normal directions.

4.1. Force on an axisymmetric thin film
For the control volume shown in figure 2, with the interface bounded by the closed
contour C, the differential arc length dl = (r dθ)θ̂ |r+dr

r − (dr)r̂|θ+dθ
θ − (dh)ẑ|θ+dθ

θ .
Consequently, the force due to surface tension on this interface is

dFγ = γ (dl×n)= γ (dθr cosαr̂)|r+dr
r + γ (dθr sinαẑ)|r+dr

r + γ

(
dr

cos α
θ̂

)∣∣∣∣θ+dθ

θ

. (4.10)

Considering the circular symmetry, in the limit of dr and dθ→ 0

dFγ =
(
γ d(r cos α)− γ

dr
cos α

)
dθ r̂+ γ d(r sin α) dθ ẑ. (4.11)

Therefore, from (3.5) and (4.11), the radial and vertical components of the normal
stress at the free surface can be written as

Fγ ,r ≡
∫ r+dr

r
µ(n · [∇u+ (∇u)T]) · r̂

(
r dθ

dr
cos α

)∣∣∣∣
h

=

∫ r+dr

r
P sin αr dθ

dr
cos α

+ γ r dθ cos α|r+dr
r − γ

dr
cos α

dθ, (4.12)

and

Fγ ,z ≡
∫ r+dr

r
µ(n · [∇u+ (∇u)T]) · ẑ

(
r dθ

dr
cos α

)∣∣∣∣
h

=

∫ r+dr

r
Pr dθ dr+ r dθγ sin α

∣∣∣∣r+dr

r

, (4.13)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.303


The circular capillary jump 896 A25-9

where P = pL − pG. As we will see below, application of momentum conservation
requires expressions for the radial gradients of these forces, and as axisymmetry
implies we can drop dθ , these are given by

dFγ ,r
dr
=

d
dr

(∫ r+dr

r
µ(n · [∇u+ (∇u)T]) · r̂

(
r dr

cos α

)∣∣∣∣
h

)
= rP tan α −

γ

cos α
+ γ

d(r cos α)
dr

(4.14)

and

dFγ ,z
dr
=

d
dr

(∫ r+dr

r
µ(n · [∇u+ (∇u)T]) · ẑ

(
r dr

cos α

)∣∣∣∣
h

)
= rP+ γ

d(r sin α)
dr

. (4.15)

4.2. Momentum balance in the radial direction
In the absence of gravity, the momentum equation in the radial direction is

ρ

(
u
∂u
∂r
+w

∂u
∂z

)
=

1
r
∂(rτrr)

∂r
+
∂τrz

∂z
, (4.16)

where τ =T + pI is the total stress consisting of the deviator stress T and the pressure
p (in cylindrical coordinates). Since the pressure in the gas at the surface is constant
(atmospheric) and the film is thin, the radial pressure gradient in the liquid is only a
function of radius caused by the curvature of the surface.

We use incompressibility (∇ ·u = 0 in the bulk fluid), integrate (4.16) across the
film from the wall to the interface, use axisymmetry to eliminate dθ , substitute for
the velocity from (4.7) and (4.9) and apply the surface tension boundary condition
(4.5), to obtain

d
dr

∫ h

0
ρru2 dz=−

∫ h

0

dp
dr

r dz+ rp tanα−
γ

cos α
+γ

d(r cos α)
dr

−µr
(
∂u
∂z
+
∂w
∂r

)∣∣∣∣
0

.

(4.17)
Noting that conservation of mass (4.8) implies usrh= const., we obtain

C2

[
ρusrh

dus

dr

]
=−

dp
dr

rh+ rp tan α −
γ

cos α
+ γ

d(r cos α)
dr

−µr
(
∂u
∂z
+
∂w
∂r

)∣∣∣∣
0

,

(4.18)
where C2=

∫ 1
0 f 2(η) dη is a second integration constant. Equation (4.18) can be written

in terms of the interface slope

C2

[
ρusrh

dus

dr

]
= −

dp
dr

rh+ rph′ − γ (1+ h′2)1/2 + γ
1

(1+ h′2)1/2

− γ
rh′h′′

(1+ h′2)3/2
− τwr, (4.19)

where τw =−µ(∂u/∂z+ ∂w/∂r)|0 is the wall shear stress.
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4.3. Momentum balance in the wall-normal direction
We now apply conservation of momentum in the wall-normal z direction in the
differential control volume shown in figure 2. Since the film is thin, the pressure is
independent of z and for an axisymmetric flow

ρur
∂w
∂r
+ ρwr

∂w
∂z
=
∂(rτrz)

∂r
+ r

∂τzz

∂z
. (4.20)

As before, we integrate across the film to obtain∫ h

0
ρur

∂w
∂r

dz+
∫ h

0
ρwr

∂w
∂z

dz=
∫ h

0

∂(rτrz)

∂r
dz−2µr

∂w
∂z

∣∣∣∣
h

. (4.21)

Substituting for the velocity from (4.7) and (4.9) gives

ρusrh
d(ush′)

dr

∫ 1

0
ηf 2(η) dη− ρh′2u2

s r
∫ 1

0
ηf 2(η) dη− ρ

u2
s rh′2η2f 2(η)

2

∣∣∣∣1
0

+ ρh′2u2
s r
∫ 1

0
ηf 2(η) dη+ r

ρw2

2

∣∣∣∣h
0

=
dFγ ,z

dr
−

∫
∂(rτrz)

∂r
dz
∣∣∣∣

0

−2µr
∂w
∂z
|h. (4.22)

Substituting (4.15) into (4.22) yields

ρusrh
d(ush′)

dr

∫ 1

0
ηf 2(η) dη

= rP+ γ
d(r sin α)

dr
−

∫
∂(rτrz)

∂r
dz
∣∣∣∣

0

−2µr
∂w
∂z

∣∣∣∣
h

,

= rP+ γ sin α + γ r cos α
dα
dr
−

∫
∂(rτrz)

∂r
dz
∣∣∣∣

0

−2µr
∂w
∂z

∣∣∣∣
h

,

= rP+
γ h′

(1+ h′2)1/2
+

γ rh′′

(1+ h′3/2)
−

∫
∂(rτrz)

∂r
dz
∣∣∣∣

0

−2µr
∂w
∂z

∣∣∣∣
h

. (4.23)

In the thin liquid film upstream of the hydraulic jump, the interface slope
remains small and we will ignore the higher-order terms in dh/dr. Applying this
approximation and re-arranging (4.23) gives an expression for the curvature of the
film

h′′(ρu2
s rh
∫ 1

0
ηf 2(η) dη− γ r)+ h′

(
ρusrh

dus

dr

∫ 1

0
ηf 2(η) dη− γ

)
= rP−

∫
∂(rτrz)

∂r
dz
∣∣∣∣

0

−2µr
∂w
∂z

∣∣∣∣
h

. (4.24)

Finally, substituting ρusrh(dus/dr) from the radial momentum balance (4.19) gives

[C3ρu2
s rh− γ r]h′′ +

C3

C2
h′
(
−

dP
dr

rh+ rPh′ − γ (1+ h′2)1/2 + γ
1

(1+ h′2)1/2

− γ
h′h′′

(1+ h′2)3/2
− τwr−

C2

C3
γ

)
= rP−

∫
∂(rτrz)

∂r
dz
∣∣∣∣

0

−2µr
∂w
∂z

∣∣∣∣
h

, (4.25)

where C3 =
∫ 1

0 ηf 2(η) dη is a third integration constant.
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Ignoring higher-order terms in h′ and re-arranging gives an expression for the
curvature of the film

h′′ =
−h′

C3

C2

[
−

dP
dr

rh+ rτw −
C2

C3
γ

]
+ rP+

∫
∂(rτrz)

∂r
dz
∣∣∣∣

0

−2µr
∂w
∂z

∣∣∣∣
h

C3ρu2
s rh(1−We−1)

, (4.26)

where the Weber number We is defined by

We≡
C3ρu2

s h
γ

. (4.27)

Consequently, we predict a singularity in the curvature of the film at a critical radius
where the film thickness is such that We= 1. This criterion gives the location of the
hydraulic jump.

4.4. Revisiting the radial momentum balance
We now revisit the radial momentum balance (4.19), which can also be written as

C2[ρusrh dus] = −rh dp+ rp dh− γ (1+ h′2)1/2 dr+ γ
dr

(1+ h′2)1/2

− γ
rh′h′′ dr
(1+ h′2)3/2

− τwr dr, (4.28)

and apply it at the jump radius. We note that the jump is a singularity (see figure 3b),
where dh/dr= tan α→∞, dr→ 0, dh=H, a finite quantity, and α changes from 0
to π/2, and the radial velocity changes from us to 0. Substituting the trigonometric
forms of the functions and integrating (4.28) at the jump location r= R gives∫

C2ρusRh dus = −

∫
Rh dp+

∫
Rp dh−

∫
γ sin α dh+ γR cos α

∣∣∣∣π/2
0

+

∫
γ cos α dr−

∫
τwR dr. (4.29)

Then in scaled terms (4.29) can be written

−C2ρus
2Rh≈ RH

(
p−

γ

R

)
− γR. (4.30)

Since, at the jump, the pressure p scales as γ /R (see Bush & Aristoff 2003), the first
term on the right-hand side of (4.29) is zero, which gives We= 1 as the condition for
the hydraulic jump. Thus conservation of radial momentum gives a similar result for
the jump condition.

5. Relation to energy conservation
For a better physical understanding we can also get the interfacial energy from a

consideration of the interfacial force. From (4.11), the energy flux associated with
surface tension force on the control volume (figure 2) is

dFγ · (ur̂+wẑ)= γ (dθur cos α)|r+dr
r + γ (dθwr sin α)|r+dr

r . (5.1)
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Flat free surface

Curver free surface

Velocity profile An idealised jump

Idealised setup changing hydraulic jump

å → 0

Îh  = Hå 
→

 π
/2

(a) (b)

FIGURE 3. (a) Schematic velocity profiles in a flow with conventional flat surface
assumption with zero radial viscous stress (black) and liquid interface with zero tangential
stress but non-zero radial stress (red). The surface tension force retards the flow in the
radial direction and accelerates it in the wall-normal direction, giving non-zero radial and
wall-normal viscous stresses at the surface (3.1). (b) An idealised hydraulic jump.

Circular symmetry implies that there is no net flux of fluid in the azimuthal
direction and so substituting (4.4) into (5.1) yields

dFγ · (ur̂+wẑ)= γ (dθusr(1+ h′2)1/2)|r+dr
r , (5.2)

which is the equivalent result to (4.6) derived by considering the rate of change of
interfacial surface area and work done by the surface tension force. Consequently, in
a control volume approach, the force due to surface tension, which appears through
the normal stress boundary condition, can be incorporated as a surface force on the
circumference of the control volume consistent with the analysis in Bhagat et al.
(2018).

6. Relative importance of surface tension

We now return to the question of the relative importance of gravity and surface
tension in these flows. Duchesne et al. (2019) argued that the analysis of Bhagat
et al. (2018) is wrong and that surface tension does not play a significant role in the
formation of these thin-film jumps. Duchesne et al. (2019) wrote the energy equation
over a volume V bounded by a closed surface A (their equation (13)) as

−

∫
A

[
vj
(

1
2ρvivi + p

)
−µvivi,j

]
nj dA− 1

2µ

∫
V
v2

i,j dV = 0, (6.1)

where the pressure p is taken to be sum of a Laplace term and a hydrostatic pressure
term. Duchesne et al. (2019) initially ignore all the viscous terms in (6.1) and
integrated the first term over a cylindrical surface spanning the film to obtain (in our
notation)

χ(r)=
∫ h

0
u
(

1
2ρ(u

2
+w2)+ p

)
r dz≈ 1

2 C3ρru3
s h+C1usrhp. (6.2)
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The circular capillary jump 896 A25-13

They then differentiate this expression with respect to r, and set the derivative χ ′

equal to the viscous terms which they denote as ξ . This leads to their equation (20),
where the viscous terms remain unspecified as ξ . However, the surface energy term∫
µvivi,jnj dS evaluated at the free surface S is, from (3.6),∫

S
µvivi,jnj dS≡µ

∫
S
{u · [(n · ∇)u]+n · [(u · ∇)u]} dS=γ

∫
S
{(∇I ·u)−[(n · ∇I)u] ·n} dS,

(6.3)
and includes the effect of surface tension and depends on the surface velocity. In their
analysis, Duchesne et al. (2019) did not include the surface energy term.

Duchesne et al. (2019) integrated (6.1) over the inner cylinder of the control volume.
Instead, in our analysis we integrate (6.1) for the complete closed annular control
volume from 0 to 2π, which yields

−
1
2 C3ρru3

s h|r+dr
r −C1usrhp|r+dr

r + γ d{usr(1+ h′2)(1/2)} − τwr dr= 0. (6.4)

Recognising that usrh= constant, τw is the wall friction and dividing (6.4) by dr, the
limit of h′→ 0 gives

−C3ρru2
s h

dus

dr
+ γ r

dus

dr
+ γ us −C1usrh

dp
dr
+ τwr dr= 0. (6.5)

This equation is equivalent to (in the absence of gravity) (5.4) in Bhagat et al. (2018)
which was obtained from a control volume approach and leads to a critical Weber
number of order one at the jump (and not O(α) as Duchesne et al. (2019) claim).

Including this surface term (6.3) explicitly in ξ , since it involves us and γ , will
change the result in Duchesne et al. (2019) and leads to the conclusion that surface
tension is the dominant force, consistent with the increase in surface area documented
in § 3.3.

7. Conclusions
Applying conservation of radial and wall-normal momentum to the flow in an

expanding axisymmetric thin film shows that the curvature of the film is singular at
a finite radius determined by a critical value of the Weber number. This singularity
arises from the wall-normal momentum conservation which implies that d2h/dr2

→∞

whereas (dh/dr)2→ 0 at a finite radius. In § 3.1, we presented a physical mechanism
to demonstrate the mechanical and surface energy exchange in steady flow. Physically,
in the thin-film limit, h′′ = (1+ h′2)(dα/dr)≈ dα/dr, and the singularity implies that
this change in interface slope dα/dr coincides with the hydraulic jump. Therefore,
the mathematical expression in tandem with the physical interpretation indicates a
jump. We also show that a similar jump condition can be obtained by applying
conservation of radial momentum.

Using conservation of energy Bhagat et al. (2018) showed that the radial velocity
gradient is also singular, in this case dh/dr→∞, at a critical Weber number which
is numerically slightly different. This radius was identified in experiments as a jump
in the flow depth to a thicker and slower flow downstream, and excellent quantitative
agreement was found in the predicted and observed values of the jump radius.

There is a small numerical difference between the two predictions of the jump
radius R given by conservation of energy and momentum, respectively, namely

R
RST
=

(
1

f ′(0)(2π)3

C2

C3
1

)1/4

= 0.2705 and
(

1
f ′(0)(2π)3

C3

C3
1

)1/4

= 0.2481.
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These numerical values are obtained from Watson’s similarity profile which, as
acknowledged, is only an approximation to the flow in the film, and the predictions
are both smaller than the experimentally measured values of 0.289 ± 0.015. Since
C1 is the area under the curve f (η) then this will be smaller for the real profile
(figure 3), leading to a larger prediction. Also, since 0 6 η 6 1, C2 > C3, the jump
radius estimate from momentum conservation is always smaller than that obtained
from energy conservation, suggesting that energy is dissipated in the jump.
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Appendix A. Scaling relation including gravity and surface tension
Bhagat et al. (2018) provided a scaling relationship for the jump radius RST

from the following three conditions: (i) that the radial flow velocity u and depth
h is balanced by viscous drag, u/R ∼ ν/h2, (ii) continuity uRh ∼ Q and (iii) the
jump is surface tension dominated, which implies at the jump, the Weber number
We = ρu2h/γ ≈ 1. Further, their theoretical analysis including gravity gave the
condition of hydraulic jump to be

1
We
+

1
Fr2
= 1, (A 1)

where the Froude number Fr= u/
√

gh. Incorporating both gravity and surface tension
through the use of (A 1) modifies the scaling relation (2.1) in the form

R∼ RST

√(QC

Q

)2

+ 2
(

QC

Q

)
−

(
QC

Q

)1/4

. (A 2)

As discussed in § 2, this gravitational correction to the radius RST determined by
surface tension alone is 5 % for Q= 2QC and 23 % for Q= 10QC.

Appendix B. Self-similar velocity profile
Following Watson’s (1964) analysis, the conventional literature on the hydraulic

jump (e.g. Bohr et al. 1993; Bush & Aristoff 2003; Kasimov 2008) assumes a
self-similar velocity profile of the form

u(r, z)= us(r)f (η), η≡
z

h(r)
, 0 6 η6 1,

where us is the surface velocity and f (0)= 0, f (1)= 1, f ′(1)= 0. which further implies
(see Watson 1964) that

u= us(r)f (η)r̂+ us(r)h′(r)ηf (η)ẑ. (B 1)
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The circular capillary jump 896 A25-15

Here, we will show that the conventional self-similar velocity profiles do not satisfy
the zero interfacial shear-stress condition or (n · ∇)u 6= 0. We write

(n · ∇)u=
(
−sinα

∂

∂r
+ cos α

∂

∂z

)
(us(r)f (η)r̂+ us(r)h′(r)ηf (η)ẑ) (B 2)

or [
−sinα

dus

dr
f (η)− sin αus

h′

h
ηf ′(η)+

1
h

cos αus f ′(η)
]

r̂

+

[
−sinαh′

dus

dr
ηf (η)− sin αh′′usηf (η)+ sin αh′usηf (η)

h′

h

+ sin αh′us
h′

h
η2f ′(η)+ cos αus

h′

h
f (η)+ cos αus

h′

h
ηf ′(η)

]
ẑ. (B 3)

Evaluating (n · ∇)u, equation (B 3) at the free surface with boundary conditions,
f (1)= 1 and f ′(1)= 0 yields[

−sinα
dus

dr

]
r̂+
(
−sinαh′

dus

dr
− sin αh′′us + sin αh′us

h′

h
+ cos αus

h′

h

)
ẑ (B 4)

or

−
h′

(1+ h′2)1/2
dus

dr
r̂+
(
−

h′2

(1+ h′2)1/2
dus

dr
−

h′h′′us

(1+ h′2)1/2
+

1
h

h′3us

(1+ h′2)1/2

+
1
h

h′

(1+ h′2)1/2
us

)
ẑ. (B 5)

The analysis implies that only for a completely flat film for which h′ = 0 and
n= ẑ, (n · ∇)u= 0 can be trivially satisfied. In all other cases the tangential stress is
non-zero.
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