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ELEMENTS OF ORDER COXETER NUMBER +1 
IN CHEVALLEY GROUPS 

BOMSHIK CHANG 

1. Introduction. Following the notation and the definitions in [1], let 
L(K) be the Chevalley group of type L over a field K, W the Weyl 
group of L and ft the Coxeter number, i.e., the order of Coxeter elements 
of W. In a letter to the author, John McKay asked the following question: 
If ft + 1 is a prime, is there an element of order ft + 1 in L{C)1 In this 
note we give an affirmative answer to this question by constructing an 
element of order ft + 1 (prime or otherwise) in the subgroup Lz — 
{xr(l)\r e $> of L(K), for any K. 

Our problem has an immediate solution when L — An. In this case 
ft = n + 1 and the ( n + l ) X ( w + l ) matrix 

1 1 1 . 1 1 
- 1 0 0 . 0 0 

0 - 1 0 . 0 0 

0 0 0 . • _1 °_ 
has order 2 (ft + 1) in SLn+1(K). This seemingly trivial solution turns 
out to be a prototype of general solutions in the following sense. Using 
the usual identification (see, for example, [1], p. 185), one may write 

a) j* -« . . ( j j)**(_; i ) . . .K(_ | j) 
where «i, a2, . . . , an are the fundamental roots of An (in the usual order). 
We shall see that if the a / s in (1) are replaced by fundamental roots of 
any L (of rank n) then we again have M2{h+l) = I in L(K). A rather 
amazing fact is that our proof is valid for all types but An {n even). 

Let us state our theorem. 

THEOREM. Let II = {ai, a2, . . . , an\ be a fundamental system of roots of 
L and let 

(2) M=*ai(_\ j)^(_j j). . .*.(_; j). 
Then M2ih+1) = 1, where ft is the Coxeter member of L. 

The proof will be given in Section 4. 
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2. Orderings of the a /s . We first note that the order of the a/s ap
pearing in (1) is inessential because of 

LEMMA 2.1. If M' is obtained from M by permuting a\, a2, . . . , an in (2), 
then M and M' are conjugate in Lz. 

Proof. We recall the well known argument used in the proof (for 
example, [1], p. 157) of the conjugacy of the Coxeter elements. A virtually 
identical argument will yield the lemma. 

We find it convenient (and essential in the proof when L = Ani Dn, 
n odd or E$) to choose a particular order of the a / s in (2). 

Let II = A U B be the partition of II into two subsets each of which 
contains mutually orthogonal roots. Then, for any 5, T and r, s G A or B, 
r 7e s, we have 

(4) <t>r(S)4>s(T) = <t>s(T)<t>r(S). 

The right element to deal with will be 

(5) * = fl*.(_; J)n*.(_; J). 
3. Coxeter elements and the involution w0. Let 3>+ (or 3>_) be the 

set of positive (or negative) roots of L. Let w0 be the element of W such 
that ^o(^+) = $"", or equivalently, 1(WQ) = |<ï>+|, where / is the minimal 
length function. We recall that 

3.1. (1) If L = Bn} Cn, Dn (n even), Fiy E7, E8 or G2, then w0 = —I, 
i.e., 

Wo(at) = —at 

for all <*i Ç II. 

(2) If L = Anj Dn (n odd) or E6, then 

w0(ai) = —p(ai) 

where p is the symmetry of the Dynkin diagram ([1], p. 200). 

Let w be a. Coxeter element of W. The order h of w is even except for 
the case when L = An, n even. We put h = 2k. Then simple computa
tions show that 

3.2 (1) If wo = — / then wk — Wo for any Coxeter element w. 

(2) If L = An (n odd), Dn (n odd) or E& then (wk = WQ is no longer 
true for an arbitrary Coxeter element w and) 

(wAWB)k = WQ 
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where 

wAwB = n wa n wb 
aÇA Ô6B 

with II = A VJ B as in Section 2. 

We need the following lemma on the orbits of Coxeter elements w. 

LEMMA 3.3. Suppose that h is even (i.e., L 9e An, n even) and 

w = walwa2 . . .wan 

is a Coxeter element enjoying the property wk = WQ. Let 

0i = «i, 

pj = waiwa2 . . . waj_l(aj), 2 S j ^ n. 

Then 

w'^j) > 0 

for all 0 S i S k — 1 and 1 ^ j ^ n. 

Proof. Since wk = w0 and l(w0) = \$+\ = kl(w) ([1], p. 165), l(wl) = 
il(w) for all 0 ^ i ^ k. Suppose that i is the smallest nonnegative 
integer such that 

Wf(/3j) < 0 

for some 0j. Then 

wHv^Wai . . .waj_1(aj) < 0 

and for the smallest j satisfying this relation, we have (cf [1], p. 18), 

l(wlWal . . . Waj_xWai) = / ( V ^ a i . . . %.,_!) ~ 1-

Then l(wi+1) < (i + l)l(w), and hence i > k — 1. 

COROLLARY 3.4. If w = wAwB (and h is even) then 

wl(a) > 0 

wlwA(b) > 0 

for all a £ A, b £ B and 0 ^ i ^ k — 1. 

4. Proof of theorem. In this section, we assume that L ^ An, n = 1 
or n even, and by M and w we shall mean 

"-£!*•(-! J)s*(-î J)' 
w = wAwB. 
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For any T 6 SLt(K), let 

4>A(T) = IT MT), <pB(T) = J ! MT). 

Then by vir tue of (4), we have 

* * ( S ) * * ( r ) = 4>R(ST) 

for any S, T Ç 5 L 2 ( X ) and R = A or 5 . Let 

XR = <t>Ry0 XJ = Tlxri-l), 

X-R = </>«(j j ) = n ^ - r ( l ) » 

w« = < M _ j Q ) ' R = A,B. 

Then, from 

\-i 0/ = \o l / l - i o/ \ - i i /\o i 
we obtain 

(6) M = xAuAxBœB 

and 

M — X—A XA X—B XB 

Since xai(s) and X-aj(t) commute , for any fundamental roots au ajy 

at 9^ oij, we have 

XA x—» == x—» XA and 
(7) 

/I// -v —l/v* —l'V —1-V —1 

iU — X—A X—B XA XB 

Note also tha t , for R = A or B and r £ $, 

T h u s if we let co = COAUB and a>o = ^/c, then 

co0Xr(Ocoo_1 = XM ,o ( r )(±0 

by v i r tue of 3.2. 
Now take the &th power of M wri t ten as (6) . If we pu t xA (uAxBwA~l) — 

y then M = yco and 

M* = yiœyu-1) . . . ( ^ - ^ c o - ^ ^ c o o . 
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Since 

ulyu~l = Ylxwi(a)(±l) n*w»'tt>A<«(=*=!)> 

Corollary 3.4 shows tha t 

œiyœ-i G U 

for all 0 ^ i ^ k — 1, where Uis the unipotent subgroup (xr(t)\r £ <ï>+), 
as usual. Hence 

M* = yu* 

with y (z U. Then 

(8) M* = M2k = ^ W o " 1 ) ^ 2 

with y (z U, COO^OJO-1 G £7~, co0
2 G i7 where 

£/- = (xr(t)\r G $~> 

and i7 the Car tan subgroup, again, as usual. On the other hand the 
second expression (7) of M gives us 

(9) M-1 = (xBxA)(x„Bx-A) 

with X BX A 
e U and X—2jX—A 

6 U~. Since such a decomposition of an 
element of L(K) is unique, (8) and (9) give us a clear indication of the 
next steps. 

Let 
y = = XA(A)AXB0)A , y ~ X—A00AX—BiOA , X = X # X ^ , X = X—B%—AI 

so tha t M~l = xxf. First we verify 
(10) x = ^(coxar"1)^' -1 

(11) xf = / (wx 'co- 1 )? - 1 . 

Proof. Simple substi tutions give us 

^ ( c o x c o - 1 ) / - 1 = XA<ÛAXB(<*BXBXA*B~1<*B~~1)XA~1UA~~1. 

Then from a simple calculation of 2 X 2 matrices we obtain 

g s /V* 'V* 1/V* 1 

WfiXfl — Xf i X_# 

Consequently, 

C O ^ X J J X ^ X ^ U)# — %B X—B X AX—BXB — XB XAXB-

Hence 

3/(uxor- 1 ) / - 1 = XAUAXB(XB~1XAXB)XA-1O>A~1 

= XA(O)AXAXBXA~ O)A~ ) 

/V* 1 'V* ~" — l^v* -V* 1 /V 'V* 

— A ^ \ X ^ X B^ A ) — XjjvV^. 
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Similarly we can verify (11). 

By subst i tut ing the right hand side of (10) into x, we obtain 

x = y(œyo)~1)(o)2xo)~2)(œy/o:~1)~ly,~1 

and repeating this subst i tut ion further we obtain 

x = y(oôQXo}{Tl)y'~l 

where 

y = yfayo)-1) . . . (oùk~lyw~k+l), (as above) 

f = / ( « / o r 1 ) . . . (co*-yor* + 1 ) . 

Since x, y Ç U and cooxwo-1, y' G U~ we have 

(12) x = y, 

(13) cooxcoo-1 = ;y'. 

Similarly, we can obtain, from (11) 

(14) x' = y', 

(15) coox'coo-1 = y. 

Hence 

(16) x' = cooXcoo-1 = coo^wo-1. 

Then (8), (9), (12) and (16) give us 

M W = M-K 

Since co0
2xr(0coo~2 = xr(±t) for all r G $, co0

2 is (loosely speaking) a 
diagonal element with entries 1 or — 1 , and hence co0

4 = 1. However, in 
our case we can say a little more about co0

2. From (12), (13), (14), and 
(15), we obtain t ha t 

coo2xa>o-2 = oc. 

Hence we have 

Uo2Xa(— 1)C00~
2 = Xa(—l) 

for all a: G n , which in turn, implies t ha t 

coo2xr(/)coo-2 = xr(t) 

for all r G $. Hence co0
2 is an element in the center of L(K). 

This completes the proof of our theorem for L ^ An, n = 1 or n even. 
For the cases when L = A\, or Anj n even, we have to be content with the 
matr ix M in Section 1. 
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5. Some remarks, (i) The identity (12) may be regarded as an 
identity for the commutator XA~1XBXAXB~1 written as the product of 
xr(t) with t ?£ 0 for all r with h(r) ^ 2, because (16) shows that 

^oXa( —l)coo_1 = o)axa( — l)o)a~
l (a G II) 

and hence the last factor u>k-~lyurk+l of y is equal to (uB~1xAa)B)xB. 

(ii) If L = G2 then G2(K) may be regarded as the automorphism group 
of the octanion algebra over K. Then the cyclic permutation of the seven 
basis elements ( ^ 1 ) is an element of order h + 1 = 7. 

(iii) For the case when L = £ 7 or Eg, all the prime torsions of L(Z) 
are given in [2], hence the existence of elements of order h + 1. I wish 
to thank Professor Eckmann for bringing this paper to my attention. 
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