THE SATURATION OF A PRODUCT OF IDEALS

STANLEY WAGON

In this note we discuss how the saturation of $I \times J$, where I, J are κ -complete ideals on a regular uncountable cardinal κ , depends on the saturation of I and J. We show that if $2^{\kappa} = \kappa^+$ then the saturation of $I \times J$ is completely determined by the saturation of I and J. A consequence of a negative saturation result is that $NS_{\kappa} \times NS_{\kappa}$ is not κ^+ -saturated, where NS_{κ} is the non-stationary ideal on κ (even though it is still open whether NS_{κ} can be κ^+ -saturated). We also discuss the preservation of precipitousness under certain products, obtaining a simple example of an ideal on κ that is precipitous but not κ^+ -saturated.

1. Preliminaries. Let κ denote a regular uncountable cardinal. By an *ideal on* κ we mean a κ -complete, non-principal, proper ideal on κ , i.e., a collection $I \subseteq \mathfrak{P}(\kappa)$ such that $\{\alpha\} \in I$ for $\alpha < \kappa$, $\kappa \notin I$, if $A \subseteq B \in I$ then $A \in I$, and if $\beta < \kappa$ and $A_{\alpha} \in I$ for $\alpha < \beta$ then $\bigcup \{A_{\alpha} : \alpha < \beta\} \in I$. I^* denotes $\{\kappa - A : A \in I\}$ and I^+ denotes $\{A \subseteq \kappa : A \notin I\}$.

If $A \subseteq \kappa$ then $[A] = \{B \subseteq \kappa\}$ the symmetric difference of A and B is in $I\}$; $\mathfrak{P}(\kappa)/I$ denotes $\{[A]: A \subseteq \kappa\}$. A collection \mathfrak{N} of sets in I^+ is called an *almost disjoint family for* I (adf for I) if $A \cap B \in I$ whenever $A, B \in \mathfrak{N}$ and $A \neq B$. An ideal I is called λ -saturated, λ a cardinal, if whenever \mathfrak{N} is an adf for I then $|\mathfrak{N}| < \lambda$. We let sat I denote the least λ such that I is λ -saturated.

Note that sat $I \leq (2^*)^+$ if I is an ideal on κ . The saturation of an ideal was first defined by Tarski [**6**], who proved that sat I is always a regular cardinal. The saturation of an ideal I provides a measure of how close I^* is to being an ultrafilter.

If I, J are ideals on κ , we may define the product ideal $I \times J$ on $\kappa \times \kappa$ by setting $A \in I \times J$ if $\{\alpha < \kappa : A_{(\alpha)} \in J^+\} \in I$ where $A_{(\alpha)} = \{\beta < \kappa : (\alpha, \beta) \in A\}$. It is well-known that if I, J are 2-saturated i.e., *prime* (an ideal I is prime if and only if I^* is a measure ultrafilter) then so is $I \times J$. Theorem 1 generalizes this by showing that sat $I \times J = \max \{ \text{sat } I, \text{ sat } J \}$ whenever sat $I \leq \kappa^+$ and sat $J < \kappa$. In the other direction, Theorem 2 shows that sat $I \times J > \kappa^+$ whenever sat $J > \kappa$. These results are motivated, in part, by a paper of Kakuda [3], where the preservation of saturation under certain forcing extensions is studied.

2. Products which are saturated. In this section we describe a situation where the saturation of a product is as small as it can be. The following theorem

Received January 20, 1978.

is well-known when sat $I < \kappa$, in which case it follows easily from a result of Silver (see [4, Theorem 1.45]).

THEOREM 1. If I, J are ideals on κ , sat $I = \mu \leq \kappa^+$, and sat $J = \lambda < \kappa$, then sat $I \times J = \nu = \max{\{\mu, \lambda\}}$.

Proof. It is easy to see that sat $I \times J \ge \nu$. For the reverse inequality we shall use the method of generic ultrapowers introduced by Solovay [5] (see also [2]). If G is $\mathfrak{P}(\kappa)/I$ -generic over the universe V then, in V[G], we may use G to form an ultrapower, Ult (V, G), of V which we denote by V'. (Strictly speaking, such G does not exist. However, for ease of exposition, we use this approach to generic sets rather than considering a Boolean-valued universe, which would be more precise.) V' consists of Scott equivalence classes (induced by G) of functions f in V such that $f: \kappa \to V$; let [f] denote the equivalence class of f. That V' is well-founded follows from the κ^+ -saturation of I. As in the usual ultrapower construction, there is, in V[G], an elementary embedding $i: V \to V'$ such that κ is the first ordinal moved by i.

Now, suppose, to get a contradiction, that $\{A_{\alpha}: \alpha < \nu\}$ is an adf for $I \times J$. Define $f_{\alpha}: \kappa \to \mathfrak{P}(\kappa)$, for $\alpha < \nu$, by $f_{\alpha}(\gamma) = A_{\alpha(\gamma)}$. Then $| \vdash_P [f_{\alpha}] \subseteq i(\kappa)$, where $P = \mathfrak{P}(\kappa)/I$. We claim that $| \vdash_P V' \vDash \exists \beta < \nu \forall \alpha > \beta [f_{\alpha}] \in i(J)$. For if not then, since ν is regular, there is some p in $P, p \neq 0$, such that

 $p \mid \mid V' \vDash$ there is a ν -sized adf for i(J).

Since $\lambda \leq \nu$, this contradicts the fact that $| \vdash_P V' \vDash i(J)$ is $i(\lambda) = \lambda$ -saturated.

Now, use the claim to choose $\{Y_{\delta}: \delta < \mu'\}$, $\{\beta_{\delta}: \delta < \mu'\}$ such that $\{Y_{\delta}: \delta < \mu'\}$ is a maximal add for I and $[Y_{\delta}] \models \beta_{\delta}$ is the least $\beta < \nu$ such that $[f_{\alpha}] \in i(J)$ for all $\beta \leq \alpha < \nu$. Then $\mu' < \mu$ and so, since ν is regular and $\nu \geq \mu$, $\beta =$ $\sup \{\beta_{\delta}: \delta < \mu'\} < \nu$. But then $\mid \models_{P} [f_{\beta}] \in i(J)$, which implies (by the fundamental theorem on ultrapowers in this context) that $\{\gamma < \kappa: f_{\beta}(\gamma) \in J\} \in I^{*}$. Since this means that $\{\gamma < \kappa: A_{\beta(\gamma)} \in J^{+}\} \in I$, we have that $A_{\beta} \in I \times J$, a contradiction.

In the case sat $I = \kappa$, the following version of Silver's lemma referred to earlier is true (proved independently by A. Taylor and the referee), and this gives a simpler proof of the theorem above. Namely, if I is a κ -saturated ideal on κ , $\lambda < \kappa$, and $\{A_{\alpha}: \alpha < \kappa\} \subseteq I^+$ then there is some $Y \subseteq \kappa$ with $|Y| = \lambda$ and $\bigcap \{A_{\alpha}: \alpha \in Y\} \neq 0$. It is not as clear how to proceed in case sat $I = \kappa^+$, but one can obtain a combinatorial proof based on the above metamathematical proof.

It is easy to see that if J is prime then sat $I \times J = \text{sat } I$, with no restriction on I. However, it will follow from Theorem 2 that it is not necessarily true that sat $I \times J = \text{sat } J$ when I is prime.

3. Products which are not saturated. We now show that if J is mildly unsaturated then $I \times J$ is badly unsaturated. We need the following lemma, most of which is well-known.

LEMMA. (a) If κ is regular there are $g_{\alpha}: \kappa \to \kappa$ for $\alpha < \kappa^+$ such that if $\alpha < \beta < \kappa^+$ then $|\{\xi < \kappa: g_{\alpha}(\xi) = g_{\beta}(\xi)\}| < \kappa$.

(b) If κ is a regular limit (i.e., weakly inaccessible) cardinal then there are g_{α} as in (a) such that, in addition, $g_{\alpha}(\xi) < |\xi|^{+}$.

(c) If κ is strongly inaccessible there are $g_{\alpha}: \kappa \to \kappa$ for $\alpha < 2^{\kappa}$ such that if $\alpha < \beta < \kappa^+$ then $|\{\xi < \kappa: g_{\alpha}(\xi) = g_{\beta}(\xi)\}| < \kappa$ and $g_{\alpha}(\xi) < 2^{|\xi|}$.

Proof. We first prove (b); the proof of (a) is similar. Define g_{α} by induction on α , letting g_0 be identically 0. Suppose g_{α} has been defined for $\alpha < \beta$, and $g_{\alpha}(\xi) < |\xi|^+$. Let $h:\beta \to \kappa$ be one-one and, for $\xi < \kappa$, let $g_{\beta}(\xi)$ be such that $g_{\beta}(\xi) < |\xi|^+$ and $g_{\beta}(\xi) > g_{\alpha}(\xi)$ for each α such that $h(\alpha) < \xi$. This is possible since $\{g_{\alpha}(\xi):h(\alpha) < \xi\}$ has size at most $|\xi|$ and so is not cofinal in $|\xi|^+$. It is easy to see that this construction produces the sequence of functions as required.

The proof of (c) is essentially the standard proof that, for a strongly inaccessible κ , there are $2^{\kappa} \kappa$ -sized subsets of κ with pairwise intersections having size less than κ . Let T be the full binary tree with κ many levels. Since κ is strongly inaccessible this tree has κ nodes and, in fact, one can label these nodes with ordinals less than κ so that if a node has level γ , then its label is less than $2^{|\gamma|}$. Now, each of the 2^{κ} paths through T of length κ induces a function from κ to κ and the collection of such functions satisfies the conditions of the lemma.

THEOREM 2. If I, J are ideals on κ such that sat $J \ge \kappa$ then sat $I \times J > \kappa^+$. If, in addition, κ is strongly inaccessible, then sat $I \times J = (2^{\kappa})^+$.

Proof. First, suppose κ is a successor cardinal. Then, by a theorem of Ulam [8], sat $J > \kappa$ and so there is $\{B(\gamma): \gamma < \kappa\}$ which is an adf for J. Now, for $\alpha < \kappa^+$ let

 $A_{\alpha} = \{(\xi, \delta) : \delta \in B(g_{\alpha}(\xi))\},\$

where the g_{α} are as in (a) of the lemma. Then $\{A_{\alpha}: \alpha < \kappa^+\}$ is an adf for $I \times J$. If κ is a limit cardinal then let $\{g_{\alpha}: \alpha < \kappa^+\}$ be as in (b) of the lemma. For each $\beta < \kappa$, let $\{B(\beta, \delta): \delta < |\beta|^+\}$ be an adf for J; such exists because J is not $|\beta|^+$ -saturated. Define A_{α} for $\alpha < \kappa^+$ by

 $A_{\alpha} = \{ (\xi, \delta) : \delta \in B(\xi, g_{\alpha}(\xi)) \}.$

Then $\{A_{\alpha}: \alpha < \kappa^+\}$ is an adf for $I \times J$. The strongly inaccessible case is similar to the previous case, using the functions $\{g_{\alpha}: \alpha < 2^{\kappa}\}$ of part (c) of the lemma.

It is easy to modify this proof slightly and obtain that if J is nowhere λ -saturated for any $\lambda < \kappa$ then $I \times J$ is nowhere κ^+ -saturated. (I is nowhere λ -saturated if sat $I|A > \lambda$ for each $A \in I^*$, where $I|A = \{X \subseteq \kappa : X \cap A \in I\}$.) If NS_{κ} denotes the ideal of nonstationary subsets of κ then NS_{κ} is nowhere κ -saturated (Solovay [5]) but it is not known whether NS_{κ} can be κ^+ -saturated (although recent results of van Wesep show, under some very strong assump-

https://doi.org/10.4153/CJM-1980-007-9 Published online by Cambridge University Press

tions, that NS_{ω_1} can be ω_2 -saturated). Theorem 2 yields some information about the saturation of $NS_{\kappa} \times NS_{\kappa}$.

COROLLARY. $NS_{\kappa} \times NS_{\kappa}$ is nowhere κ^+ -saturated.

If $2^{\kappa} = \kappa^+$ then Theorems 1 and 2 handle all possible cases and the saturation of $I \times J$ is completely determined by the saturation of I and J.

COROLLARY. If $2^{\kappa} = \kappa^+$ then sat $I \times J = \max \{ \text{sat } I, \text{ sat } J \}$ unless sat $J \ge \kappa$ in which case sat $I \times J = \kappa^{++}$.

Proof. If sat $J \ge \kappa$ then Theorem 2 implies that sat $I \times J = \kappa^{++}$. If sat $J < \kappa$ and sat $I \le \kappa^{+}$ then Theorem 1 implies that sat $I \times J$ equals max (sat I, sat J). Lastly, if sat $I > \kappa^{+}$ then sat $I = \kappa^{++}$ so sat $I \times J = \kappa^{++}$.

Suppose *I* is a prime ideal on a measurable cardinal and *J* is defined as follows. Choose $\{A_{\alpha}: \alpha < \kappa\}$, a partition of κ into sets of size κ , and $\{f_{\alpha}: \alpha < \kappa\}$ such that $f_{\alpha}: \kappa \to A_{\alpha}$ is a bijection, and then let $X \in J$ if $f_{\alpha}^{-1}(X) \in I$ for each $\alpha < \kappa$. Then sat $J = \kappa^+$ and so, by Theorem 2, sat $I \times J > \kappa^+$. Thus a product with a prime left factor need not preserve saturation, while a product with a prime right factor does (see remark at end of Section 2). Note that, by Theorem 3 below, it follows that this ideal, $I \times J$, is a precipitous ideal on κ which is not κ^+ -saturated.

4. Products which are precipitous. In the proof of Theorem 1 we made use of the fact that if I is a κ^+ -saturated ideal on κ then, for any $\mathfrak{P}(\kappa)/I$ -generic set G, the ultrapower Ult (V, G) is well-founded. An ideal satisfying this latter property is called *precipitous;* this is a weaker condition than being a κ^+ saturated ideal on κ (see [1]). In this section we show that in some ways this notion is more well-behaved under products than saturation is. The following theorem should be compared with the result of the previous section which showed that saturation need not be preserved under formation of a product with a prime ideal.

THEOREM 3. If I is a prime ideal on the measurable cardinal κ and J is a precipitous ideal on κ then $I \times J$ and $J \times I$ are both precipitous.

Proof. We first consider $I \times J$. Suppose G is $\mathfrak{P}(\kappa \times \kappa)/I \times J$ -generic over V. Let V' = Ult(V, I), the standard ultrapower with respect to a measure ultrafilter (prime ideal), and let $i: V \to V'$ be the canonical elementary embedding. Then, in V', i(J) is a precipitous ideal on $i(\kappa)$. We shall show that Ult (V, G) is well-founded by defining a set G' which is $\mathfrak{P}(i\kappa) \cap V'/i(J)$ -generic over V' such that Ult $(V, G) \cong \text{Ult}(V', G')$; since i(J) is precipitous, this suffices.

Define G' as follows. If $[f]_I \in \mathfrak{P}(i\kappa) \cap V'$, put $[[f]_I]_{iJ}$ in G' if and only if $[A]_{I \times J} \in G$ where $A = \{(\alpha, \beta) : \beta \in f(\alpha)\}$. It is easy to check that G' is well-defined. To prove that G' is appropriately generic it suffices to show that if,

in V', $\{[g_{\alpha}]_{I}: \alpha < \theta\}$ is a maximal add for i(J), then for some α , $[[g_{\alpha}]] \in G'$. Let A_{α} be defined from g_{α} as in the definition of G'. Then $\{A_{\alpha}: \alpha < \theta\}$ is in V and is an add for $I \times J$. In fact, it is a maximal add for suppose $A \in (I \times J)^+$. Define $h: \kappa \to \mathfrak{P}(\kappa)$ by $h(\gamma) = A_{(\gamma)}$. Then $[h]_{I} \in (iJ)^+$ since $\{\gamma < \kappa: A_{(\gamma)} \in J^+\} \in I^+ = I^*$. So for some $\alpha < \theta$, $[h]_{I} \cap [g_{\alpha}]_{I} \in (iJ)^+$ which implies that $A \cap A_{\alpha} \in (I \times J)^+$. So, since G is generic, some $[A_{\alpha}]_{I \times J} \in G$ and so some $[[g_{\alpha}]] \in G'$.

Form Ult (V', G') and define Ψ : Ult $(V, G) \to$ Ult (V', G') by letting $\Psi([f]_G) = [[h]_I]_{G'}$ where $h: \kappa \to V^{\kappa} \cap V$ is in V and is defined by setting $h(\gamma)(\delta) = f(\gamma, \delta)$. To see that Ψ is well-defined, suppose that

 $[\{(\boldsymbol{\gamma},\boldsymbol{\delta}):f_1(\boldsymbol{\gamma},\boldsymbol{\delta})=f_2(\boldsymbol{\gamma},\boldsymbol{\delta})\}]\in G.$

Then $[[H]_I]_{IJ} \in G'$ where $H(\gamma) = \{\delta < \kappa: h_1(\gamma)(\delta) = h_2(\gamma)(\delta)\}$. But $[H]_I = \{\zeta < i(\kappa): [h_1]_I(\zeta) = [h_2]_I(\zeta)\}$ and so $[[h_1]_I]_{G'} = [[h_2]_I]_{G'}$. This same proof, with = replaced by \neq or \in , shows that Ψ is one-one and preserves \in . While not strictly necessary for the present theorem, it is worth noting that Ψ is onto, and hence an isomorphism. For if $[[h_I]]_{G'} \in \text{Ult}(V', G')$ then, in V', $[h]_I: i(\kappa) \to V'$, and so, for each $\gamma < \kappa$, $h(\gamma): \kappa \to V$. Let $f(\gamma, \delta) = h(\gamma)(\delta)$. Then $\Psi([f]_G) = [[h]_I]_G$.

The proof that $J \times I$ is precipitous is similar. Suppose G is $\mathfrak{P}(\kappa \times \kappa)/J \times I$ -generic over V. We shall show that Ult (V, G) is well-founded by defining a set G' which is $\mathfrak{P}(\kappa)/J$ -generic over V such that

Ult $(V, G) \cong$ Ult (Ult (V, G'), i(I))

where $i: V \to \text{Ult}(V, G')$. Since i(I) is a prime ideal on $i(\kappa)$ in the well-founded model Ult (V, G'), this shows that Ult (V, G) is well-founded.

Define G' by setting $[A]_J \in G'$ if and only if $[A \times \kappa]_{J \times I} \in G$. It is easy to check that G' is well-defined and $\mathfrak{P}(\kappa)/J$ -generic over V. Thus we may form Ult (V, G') and then Ult (Ult (V, G'), i(I)).

Suppose $[f]_G \in \text{Ult}(V, G)$. Let $\Psi([f]_G) = [[h]_{G'}]_{i(I)}$ where $h: \kappa \to V^{\kappa} \cap V$ is defined by letting $h(\gamma)(\delta) = f(\gamma, \delta)$. Then, using the fact that I is prime, one may check that Ψ is well-defined and an isomorphism. This concludes the proof.

The converse to this theorem is valid too (this was pointed out by A. Taylor), in the sense that if $I \times J$ is precipitous then so are I and J.

SATURATION

Mitchell ([1]) has shown that if I is a prime ideal on a measurable cardinal κ , P is the Lévy collapse of κ to ω_1 , and G is P-generic over V, then, in V[G], $\kappa = \omega_1$ and \overline{I} is a precipitous ideal on ω_1 , where \overline{I} is the ideal on κ in V[G] generated by I, i.e., $x \in \overline{I}$ if and only if $x \subseteq y$ for some $y \in I$. This result can be used to point out another difference between precipitous and saturated ideals. By Theorem 2 and the fact that ω_1 bears no ω_1 -saturated ideal, if I is an ideal on ω_1 then $I \times I$ is not ω_2 -saturated. However, a product can be precipitous. For suppose I, P, G, \overline{I} are as in Mitchell's result. Then $I \times I$ is a prime ideal on κ in V and so, in V[G], $\overline{I \times I}$ is a precipitous ideal on ω_1 . It is not difficult to see that $\overline{I \times I} = \overline{I} \times \overline{I}$ (see [9, p. 79]).

A. Taylor [7] has proved that a κ^+ -saturated ideal on a successor cardinal κ is a *P*-point. The result of the previous paragraph shows that this theorem cannot be improved to hold for precipitous ideals because $\overline{I \times I}$ is precipitous and, since it is a product, it fails to be a *P*-point.

Remark. Mitchell's result that precipitousness is preserved by a Lévy collapse has been improved recently by Kakuda, who showed that the Lévy collapse could be replaced by any partial ordering with the κ -chain condition.

References

- 1. T. Jech, M. Magidor, W. Mitchell and K. Prikry, *Precipitous ideals*, J. Sym. Logic (to appear).
- 2. T. Jech and K. Prikry, Ideals over uncountable sets: application of almost disjoint functions and generic ultrapowers, Memoirs A.M.S. 214 (1979).
- 3. Y. Kakuda, Saturated ideals in Boolean extensions, Nagoya Math. J. 48 (1972), 159-168.
- 4. K. L. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. 68 (1970).
- R. M. Solovay, Real-valued measurable cardinals, in Axiomatic Set Theory, Proc. Symp. Pure Math. 13 (1) (1971), 397-428.
- 6. A. Tarski, Ideale in vollständigen Mengenkörpern II, Fund. Math. 33 (1945), 51-65.
- 7. A. Taylor, Regularity properties of ideals and ultrafilters, Ann. Math. Logic 16 (1979), 33-55.
- 8. S. Ulam, Zur Masstheorie in der Allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.
- 9. S. Wagon, Decompositions of saturated ideals, Ph.D. Thesis, Dartmouth College (1975).

Smith College, Northampton, Massachussets