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Abstract

The Rapp formula of teletraffic dimensioning is generalized to admit an arbitrary
renewal stream of offered traffic. The derivation proceeds from a heavy traffic ap-
proximation and provides also an estimate of the order of error involved in the Rapp
formula. In principle, the method could be used to seek convenient higher order
approximations.
Our equations give an incidental theoretical substantiation of an empirical result relating
to marginal occupancy found recently by Potter.

1. Introduction

Suppose a stream of calls has mean M and variance V, that is, M and V are the
mean and variance of the steady-state distribution of the number of occupied
trunks induced by the stream in an infinite full-availability trunk group. The
standard dimensioning problem in teletraffic utilizing the Wilkinson Equivalent
Random Method [6] seeks to make the subsequent routing of the stream
amenable to mathematical analysis by representing it as the overflow traffic
resulting from a Poisson traffic of mean A being offered to a full-availability
group of N trunks possessing negative exponential holding times. The formulae
giving the values MN and VN resulting from offering a Poisson traffic of mean A
to N negative exponential trunks do not lend themselves to exact analytical
inversion and practical calculation usually proceeds via the approximate for-
mulae

A ^ V + 3Z(Z - 1) (1)
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and

N = A(M + Z)/ (M + Z - 1) - M - 1, (2)

where Z = V/M.
Formula (1), to which Rapp's name is attached, was found by him from

numerical calculations. Relation (2) is exact if A assumes its exact value (see [4]).
When V is less than M, the Wilkinson Equivalent Random Method produces a
negative value for the number N of trunks. Recently Potter [3] has proposed the
use of an Equivalent Non-random Method in which a general renewal stream of
calls is offered to a primary trunk group. This method may be implemented
graphically in a fashion analogous to the traditional use of the Equivalent
Random Method. The model is particularly appropriate in situations in which it
is known that the observed traffic results from the overflow from the trunk
group of some non-Poisson stream. The exact formulae expressing VN and MN

in terms of the mean offered traffic A and trunk group size N (noted in the
following section) in this general case are rather complicated and only numerical
methods exist for the inversion problem.

Here we derive a simple and accurate generalization of Rapp's formula
assuming heavy traffic, which usually obtains in practice. Our results subsume
Rapp's formula for Poisson offered traffic, for which no analytical derivation
appears to have been presented hitherto in the literature.

2. The heavy traffic approximation

Suppose inter-arrival times in the offered renewal stream have common
distribution function F(x) with

f °° e~sx dF(x), where Re. s > 0,

and the holding times in the trunk group have mean /x '. Since the equilibrium
distribution of trunk occupancy is independent of time scale, we may regard F
and <j> as fixed and represent variation in offered traffic intensity by changes in
fi. Conditions of heavy traffic then correspond to small /x. In terms of <j>, MN, VN

and A are prescribed by

(3)

(4)
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and

vN = MN\-MN + 2O(?)*;(M)/( i ^ r / ) ^ / * ) ) ] , (5)
where

*„(*) = 2 [ 1 - +(* + 0" - !)*»)]/*(* + 7M), » > 1, Re. J > 0, (6)
7 = 1

and A:0(J) is taken as unity. These formulae result from combining results on the
G/M/N/N loss and G/M/oo systems due to Takacs [5] and Cohen [1], and
are given in the review paper [2].

From an elementary mean value theorem we have, for j = 1 , 2 and 3, that

* 0 » = i + M+I + 0V/2)</>2,, 00
where *, = </>'(0) and <j>2j- = <j>"(Vj) for some i), where 0 < ry <jn. Under condi-
tions of heavy traffic when /x is small, substitution for * in (6) yields

- <J>21/2) + M3*i(2*22 + +2i - 4+i)

O(n5),

+21 - 6*22 - 9*23 + 54*2)

A:4(M) = 2 4 A ? +
and

f o r « > 4 ,
provided *"(0) exists.

These values may now be substituted in equations (4), (5) and (6) to provide

2 - *22) + O( / ) ] , (8)

a i / (2+f) + ^{27v*r'(+2I - +22) - +2
2i/ (4+?)}

2 - (iV/2)*2,/*2 + *21(5iV2/2 - N)

-<t>22(7N2 - 5N) + *2 3(9^2 - 9iV)/2} + O(M
3)] (9)

and

ZN = +21/ (2+f) + ^[(3JV/2)*2I/*1 - 27V*,,/*, - * | , / (4*?)]

9*23/2} + AT*2i+22/+
2

-iV*2
2,/(2*2) + *| , /(8*J)] + O(n3). (10)
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3. Generalization of Rapp's formula

Equations (8), (9) and (10) above hold for renewal offered traffic with
<j>"(0) < oo. We now suppose that F has its first five moments finite, so that
<>, = 4>(l)(0) exists for 1 < / < 5. Then

*y = $2 + O /3 )«h + 0V/12)</>4 + O(n3), fory = 1, 2, 3,

and we may deduce from (8), (9),.(10) and (3) that

MN = A - N + A~lNa2 + O(A~2), (11)

VN = Aa2 + a\ - a3 + A~x[a\ + a4 - 2a2a3 - N(a2 + 4a3 - 2af)]

+ O(A~2) (12)

and

ZN = a2 + i4-!(iVa2 + of - a3) + O(v4"2), (13)

where a, = <^,/(/!^() for / = 2, 3, 4.
The a, are linear invariants of the distribution given by F, that is, they are

characteristics of <j> which are independent of the choice of time scale. It follows
in particular that, under heavy traffic conditions, the peakedness factor ZN =
VN/ MN is, to first order, an invariant of the overflow traffic, which goes some
way to explaining the practical relevance of this quantity as opposed to the
apparently more natural VN/ M%.

Equations (12) and (13) may be combined to yield

VN + a3- a\ + (a j 1 - 2 + 4a3/a\)ZN{ZN - a2)

= Aa2 + A~l[aj - a2
3 + 4a2a3 - a3 - 4a | / a 2 + a4] + O{A~2). (14)

Equation (14) provides the desired generalization of Rapp's formula. For a
known form of input stream distribution function and empirical values for VN

and ZN, equation (14) gives, on disregarding the O(A~2) term, a quadratic
equation from which A may be obtained as the larger root. In the special case of
a Poisson stream, a2 = a3 = a4 = 1, so that (14) reduces to the linear equation

VN + 3ZN(ZN -\) = A + O(A~2). (15)

It is clear from (15) that Rapp's formula can be expected to be very accurate
indeed in a heavy traffic regime.

An accompanying generalization of (2) may also be derived. Equations (11)
and (13) lead at once to

a2N = a2[A(M + Z)/ (M + Z - 1) - 1 - M] + (l - cql)Z(Z - a2)

+ (a2 - l ) / r ' ( a 2 - af + a3) + O(A'2). (16)

For a Poisson stream this reduces to equation (2) up to a second order term.
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which

+ «3 ~

= Aa

reduces

aj +

2 + A

to

(1 - 2a2

- ' (2«| -

vN +

+ 4«3

2a£ +

3(Z W

/ «

4c

—

2)(z*
«3«22 -

1) = A

- « 2 )

4a| /a2

! + O(A

~ «3

- 2 )
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Equations (14) and (16) provide a generalization of (1) and (2) for general
renewal offered traffic under conditions of heavy traffic. Other approximations
also exist which are accurate to O(A ~2). Thus we have trivially

a4)

for Poisson offered traffic.

4. Potter's linear relation

The following empirical observation has been made by Potter [3]. Let us make
explicit the dependence of M and V on the intensity of the offered traffic by
expressing them as MN(A) and VN(A). Then, for a variety of forms of renewal
input, we have approximately

M,+M + k ) - MX{A) = sA[ Vl+k(A + k ) - VX{A)}, (17)

where sA does not depend on k. This relation is manifested as a collinearity of
the points {(Ml+k(A + k), Vl+k(A + k)); k > 0} for each A when MN is
graphed against VN. Potter's graphs indicate that deviations from linearity are
exhibited at low intensities for the offered traffic, suggesting the applicability of
our heavy traffic estimates of Section 2. We shall find that there are, in fact,
separate linearities in M and V, that is, the distances between consecutive pairs
of collinear points are approximately equal. We also obtain an estimate for the
value of the coefficient sA.

For the evaluation of Mi+k(A + k), we note that the change in mean offered
traffic from A to A + k can be represented by a change of the holding time
parameter from n to nk, where A + k = -[ j ^ i ] " 1 , so that by (3) we have
Hk = n/{\ — &/x<J>,). We then obtain Ml+k(A + k) from (8) by replacing N by
1 + k and ju by /x/(l — A:^,), which results in

Mx+k(A + k) = - ( ^ , ) - ' [ l + ,*</>, + ^ 2 1 ( 1 + k)/2

Subtraction of the corresponding result for k = 0 yields

Ml+k(A + k)- Mt(A) = *M*2i/(-2*,) + k(k + l)A<t>22

displaying a linear dependence on k to first order in /i. If <j>3 exists, then

<t>22- <t>2i = O(/ i)sothat

Mi + k(A + k)- MX{A) = ferW (2*?) + O(A'3) (18)

and we have linearity to second order.
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Similarly we have

y^M +k)- VX(A) = A:(2</>22 - 3^2 I

and, if <f>3 exists,

Vx+M + * ) - VX{A)

= * [ * , , / (24»f) + ^ - ' { 2 o | - a2 + (2/3)^3, - 2 ^ / * ? } ] + O(A~2), (19)

where <£3, is defined analogously to </>2l-. Equations (18) and (19) yield

sA = A-1 - A~2[2a2 - 1 + (2/3)^3, - 2*32)/ («,*?)] + O(A~3)

and, if <j>4 exists,

sA = A'1 + A~\l - 2a2 + 4a3/a2) + O(^-3). (20)

It can be seen from Table 2 of Potter that the agreement of 5̂  and A "' can be
quite good even for conditions of moderate traffic.
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