A GENERALIZATION OF CLIFFORD ALGEBRAS

by EIFION THOMAS

(Received 26 December, 1972)
Let K be a field which contains a primitive nth root of unity ω if n is odd and a primitive $2 n$th root of unity ζ such that $\zeta^{2}=\omega$ if n is even.

Define $C_{p, q}^{(n)}$ to be the polynomial algebra generated over \mathbf{K} by the set $\left\{e_{1}, \ldots, e_{p}, e_{p+1}, \ldots\right.$, $\left.e_{p+q}\right\}$ subject to the relations

$$
\begin{aligned}
e_{i}^{n} & =+1 \quad \text { for } i=1, \ldots, p ; \\
e_{i}^{n} & =-1 \text { for } i=p+1, \ldots, p+q ; \\
\text { and } e_{i} e_{j} & =\omega e_{j} e_{i} \text { for } 1 \leqq i<j \leqq p+q .
\end{aligned}
$$

$C_{p, q}^{(n)}$ is called a generalized Clifford algebra. Our aim in this paper is to find the structure of $C_{p, q}^{(n)}$ for all values of p, q and n. This has already been accomplished for the special cases $p>0, q=0$ and $p=0, q>0$ by A. O. Morris in [1] and [2].

Let $\mathbf{K}(n)$ denote the full matrix algebra of $n \times n$ matrices over K. We first prove
Lemma 1. There exists an algebra isomorphism

$$
C_{1,1}^{(n)} \cong \mathbf{K}(n)
$$

Proof. Define, for $i, j=1, \ldots, n$,

$$
E_{i j}=\frac{1}{n}\left\{\sum_{p=0}^{n-1} \omega^{(i-1) p} e_{1}^{p}\right\}\left(-e_{2}\right)^{j-i} .
$$

As in [1], it can be easily proved that

$$
E_{i j} E_{k l}=\delta_{j k} E_{i l} .
$$

Let $S=\left\{E_{i j} \mid i, j=1, \ldots, n\right\}$ and put $S_{x}=\left\{E_{i j} \mid j-i \equiv x(\bmod n)\right\}$; then we have $S=\bigcup_{x=0}^{n-1} S_{x}$, $S_{x} \cap S_{y}=\emptyset$ if $x \neq y$.

Since ω is a primitive nth root of unity, we have

$$
\operatorname{det}\left[\omega^{(i-1)(j-1)}\right]=\prod_{0 \leqq i<j \leqq n-1}\left(\omega^{i}-\omega^{j}\right) \neq 0
$$

Thus each $S_{x}(x=0, \ldots, n-1)$ is a linearly independent set over \mathbf{K}, and therefore so is S.
Also $\left(C_{1,1}^{(n)}: K\right)=n^{2}=(K(n): K)$ and so the set S is a K-basis for $C_{1,1}^{(n)}$, giving us the required isomorphism.

The next result will enable us to compute inductively the algebras $C_{p, q}^{(n)}$ for any p, q and n.
Lemma 2. There exist algebra isomorphisms
(i) $C_{p, q}^{(n)} \cong C_{1,1}^{(n)} \otimes_{K} C_{p-1, q-1}^{(n)}$,
(ii) $C_{p, 0}^{(n)} \otimes_{\mathbf{K}} C_{0,2}^{(n)} \cong C_{0, p+2}^{(n)}$,
(iii) $C_{0, q}^{(n)} \otimes_{\mathrm{K}} C_{2,0}^{(n)} \cong C_{q+2,0}^{(n)}$.

Proof. (ii) and (iii) have been proved in [2, Theorem 4]. For the proof of (i), define

$$
f=e_{1}^{n-1} e_{p+1}^{1-n}
$$

We have

$$
\begin{aligned}
f^{n} & =\left(e_{1}^{n-1} e_{p+1}^{1-n}\right)^{n} \\
& =\omega^{-\frac{1}{2} n(n-1)^{2}(1-n)} e_{1}^{n(n-1)} e_{p+1}^{n(1-n)} \\
& =\omega^{\frac{1}{1 n(n-1)^{3}} 1} 1 .(-1)^{1-n} .
\end{aligned}
$$

If $n=2 d$ is even, then

$$
\begin{aligned}
f^{n} & =\omega^{d(n-1)^{3}}(-1) \\
& =-\omega^{d\left(n^{3}-3 n^{2}+3 n-1\right)} \\
& =-\omega^{-d} \\
& =-\omega^{d} .
\end{aligned}
$$

But $\omega^{2 d}=1, \omega^{d} \neq 1$ by the definition of the primitive nth root of unity ω, and so

$$
0=\frac{\omega^{2 d}-1}{\omega^{d}-1}=\omega^{d}+1
$$

Hence we have $f^{n}=1$ in the case that $n=2 d$ is even.
Similarly, if $n=2 d+1$ is odd

$$
f^{n}=\omega^{n(2 d)^{3} / 2}=\omega^{4 n d^{3}}=1
$$

Hence, in either case, we have $f^{n}=1$. Also, for $i=1$ or $p+1$, we have

$$
e_{i} f=\omega f e_{i} .
$$

Next we define a mapping ϕ from $C_{p, q}^{(n)}$ into $C_{1,1}^{(n)} \otimes_{K} C_{p-1, q-1}^{(n)}$ by

$$
\phi\left(e_{i}\right)= \begin{cases}e_{i} \otimes 1 & \text { if } i=1 \text { or } p+1 \\ f \otimes e_{i} & \text { if } i=2, \ldots, p \text { or } i=p+2, \ldots, p+q\end{cases}
$$

We have $\phi\left(e_{i}\right)^{n}=1$ for $i=1, \ldots, p$ and $\phi\left(e_{i}\right)^{n}=-1$ for $i=p+1, \ldots, p+q$. Therefore ϕ maps identity onto identity. Since $e_{i} f=\omega f e_{i}$ for $i=1$ or $p+1$ and using the defining relations of $C_{p, q}^{(n)}$, we can easily verify that

$$
\phi\left(e_{i}\right) \phi\left(e_{j}\right)=\omega \phi\left(e_{j}\right) \phi\left(e_{i}\right)
$$

for $1 \leqq i<j \leqq p+q$.
Thus, since ϕ maps basis elements of $C_{p, q}^{(n)}$ onto basis elements of $C_{1,1}^{(n)} \otimes_{K} C_{p-1, q-1}^{(n)}$ and

$$
\begin{aligned}
\left(C_{p, q}^{(n)}: \mathbf{K}\right) & =n^{p+q} \\
& =\left(C_{1,1}^{(n)} \otimes_{\mathbf{K}} C_{p-1, q-1}^{(n)}: \mathbf{K}\right)
\end{aligned}
$$

we see that ϕ is an isomorphism, as required.
If A is an algebra over K, denote a direct sum of n copies of A by ${ }^{n} A$, i.e.

$$
{ }^{n} A=A \oplus A \oplus \ldots \oplus A \quad(n \text { copies })
$$

The following lemma is [2, Theorem 2].
Lemma 3. Let \mathbf{K} be a field which contains a primitive nth root of unity ω if n is odd and a primitive 2 nth root of unity ζ, such that $\zeta^{2}=\omega$, if n is even. Then
(i) $C_{1,0}^{(n)} \cong C_{0,1}^{(n)} \cong{ }^{n} K$,
(ii) $C_{2,0}^{(n)} \cong C_{0,2}^{(n)} \cong K(n)$.

Thus we have the following theorem.
Theorem 4. If K is a field containing a primitive nth root of unity ω if n is odd and a primitive 2 nth root of unity ζ, such that $\zeta^{2}=\omega$, if n is even, then
(i) $C_{p, q}^{(n)} \cong K\left(n^{\lambda}\right) \quad$ if $p+q=2 \lambda$ is even and
(ii) $C_{p, q}^{(n)} \cong{ }^{n} \mathrm{~K}\left(n^{\lambda}\right)$ if $p+q=2 \lambda+1$ is odd.

Proof. The proof of both parts of the theorem is carried out by a simple inductive argument using Lemmas 1, 2 and 3.

From now on we shall assume that K does not contain a primitive $2 n$th root of unity ζ such that $\zeta^{2}=\omega$.

We now define, as in [2], \mathbf{C} to be the quadratic field $\mathbf{K}(\sqrt{ } \omega)$, and \mathbf{H} to be the generalized quaternion algebra regarded as the polynomial algebra over \mathbf{K} generated by x, y subject to the relations

$$
x^{2}=y^{2}=\omega^{-1} .1, \quad x y=-y x .
$$

For completeness, we now state two lemmas which are proved in [2].
Lemma 5. Let \mathbf{C} and \mathbf{H} be defined as above; then there exist isomorphisms
(i) $\mathbf{C} \otimes_{\mathrm{K}} \mathbf{C} \cong \mathbf{C} \oplus \mathbf{C}$,
(ii) $\mathbf{H} \otimes_{\mathbf{K}} \mathbf{C} \cong \mathbf{C}(2)$,
(iii) $\mathbf{H} \otimes_{\mathbf{K}} \mathbf{H} \cong \mathbf{K}(4)$.

Proof. This is proved in [2, Lemma 1].
Lemma 6. Let \mathbf{K} be a field which contains a primitive nth root of unity ω but not a primitive 2 nth root of unity ζ such that $\zeta^{2}=\omega$. Then
(i) $C_{1,0}^{(n)} \cong{ }^{n} K$;
(ii) $C_{0,1}^{(n)} \cong \begin{cases}{ }^{n} \mathrm{~K} & \text { if } n \text { is odd }, \\ { }^{v} \mathbf{C} & \text { if } n=2 v \text { is even; }\end{cases}$
(iii) $C_{2,0}^{(n)} \cong \mathbf{K}(n)$;
(iv) $C_{0,2}^{(n)} \cong \begin{cases}\mathbf{K}(n) & \text { if } n \text { is odd or } n=2 v, \text { where } v \text { is even, } \\ \mathbf{H}(v) & \text { if } n=2 v, \text { where } v \text { is odd; }\end{cases}$
(v) $C_{1,1}^{(n)} \cong \mathbf{K}(n)$.

Proof. (i), (ii), (iii) and (iv) are proved in Theorem 3 of [2].
The proof of (v) is exactly the same as in Lemma 1 since the proof did not depend on the existence of a primitive $2 n$th root of unity ζ such that $\zeta^{2}=\omega$.

We are now in a position to prove
Theorem 7. If \mathbf{K} is a field which contains a primitive nth root of unity ω but not a primitive 2 nth root of unity ζ such that $\zeta^{2}=\omega$, then for n odd we have
(i) $C_{p, q}^{(n)} \cong \mathbf{K}\left(n^{2}\right) \quad$ if $p+q=2 \lambda$ is even,
(ii) $C_{p, q}^{(n)} \cong{ }^{n} K\left(n^{\lambda}\right)$ if $p+q=2 \lambda+1$ is odd.

Proof. The theorem is proved by a simple inductive argument using Lemmas 1, 2 and 6. We give the next two results in tabular form.
Theorem 8. If \mathbf{K} is a field as given in Theorem 7, then, for $n=2 v$, where v is even, $C_{p, q}^{(n)}$ is given by the table

Proof. These results follow from Lemmas 2 and 6. For example,

$$
\begin{aligned}
C_{2,1}^{(n)} & \cong C_{1,1}^{(n)} \otimes_{\mathbf{K}} C_{1,0}^{(n)}, \quad \\
& \cong \text { by Lemma 2(i), } \\
& \cong{ }^{\mathbf{K}}(n) \otimes_{\mathbf{K}}{ }^{n} \mathbf{K}, \quad \text { by Lemma } 6,
\end{aligned}
$$

and

$$
\begin{aligned}
C_{3,1}^{(n)} & \cong C_{1,1}^{(n)} \otimes_{\mathbf{K}} C_{2,0}^{(n)}, \quad \text { by Lemma 2(i), } \\
& \cong \mathbf{K}(n) \otimes_{\mathbf{K}} \mathbf{K}(n), \quad \text { by Lemma } 6, \\
& \cong \mathbf{K}\left(n^{2}\right) ;
\end{aligned}
$$

whereas we have

$$
\begin{array}{rlrl}
C_{1,2}^{(n)} & \cong C_{1,1}^{(n)} \otimes_{\mathbf{K}} C_{0,1}^{(n)}, & & \text { by Lemma 2(i) }, \\
& \cong \mathbf{K}(n) \otimes_{\mathbf{K}} \mathbf{C}, & \text { by Lemma } 6 \\
& \cong{ }^{v} \mathbf{C}(n) &
\end{array}
$$

and

$$
\begin{aligned}
C_{1,3}^{(n)} & \cong C_{1,1}^{(n)} \otimes_{\mathbf{K}} C_{0,2}^{(n)}, \quad \text { by Lemma } 2(\mathrm{i}), \\
& \cong \mathbf{K}(n) \otimes_{\mathbf{K}} \mathbf{K}(n), \quad \text { by Lemma } 6, \\
& \cong \mathbf{K}\left(n^{2}\right) .
\end{aligned}
$$

The remaining entries in the table are obtained in exactly the same way.
Theorem 9. If \mathbf{K} is a field as given in Theorem 7 and $n=2 v$, where v is odd, then $C_{p, q}^{(n)}$ is given by the table


```
    0
    1
    2
    3
    4
    5
    6
    7
    8
\(\begin{array}{lllllllll}\mathbf{K}\left(n^{4}\right) & \mathbf{H}\left(n^{3} v\right) & \mathbf{H}\left(n^{3} v\right) & \mathbf{K}\left(n^{4}\right) & \mathbf{K}\left(n^{4}\right) & \mathbf{H}\left(n^{3} v\right) & \mathbf{H}\left(n^{3} v\right) & \mathbf{K}\left(n^{4}\right) & \mathbf{K}\left(n^{4}\right)\end{array}\)
```

Proof. The theorem follows from Lemmas 2 and 6 . We give a couple of examples; the remaining entries in the table are obtained in the same way. For example,

$$
\begin{aligned}
C_{3,1}^{(n)} & \cong C_{1,1}^{(n)} \otimes_{\mathbf{K}} C_{2,0}^{(n)},
\end{aligned} \quad \begin{aligned}
& \text { by Lemma } 2(\mathrm{i}), \\
& \cong \mathbf{K}(n) \otimes_{\mathbf{K}} \mathbf{K}(n),
\end{aligned} \quad \begin{aligned}
\text { by Lemma } 6
\end{aligned}
$$

and

$$
\begin{aligned}
C_{1,3}^{(n)} & \cong C_{1,1}^{(n)} \otimes_{\mathbf{K}} C_{0,2}^{(n)}, \quad \text { by Lemma } 2(\mathrm{i}), \\
& \cong \mathbf{K}(n) \otimes_{\mathbf{K}} \mathbf{H}(v), \quad \text { by Lemma } 6, \\
& \cong \mathbf{H}(n v) .
\end{aligned}
$$

We note that the table in Theorem 8 is of periodicity 4 and the table in Theorem 9 is of periodicity 8. These tables have been obtained for the special case $n=2$ in Porteous [3].

REFERENCES

1. A. O. Morris, On a generalized Clifford algebra, Quart. J. Math. Oxford Ser. (2) 18 (1967), 7-12.
2. A. O. Morris, On a generalized Clifford algebra (II), Quart. J. Math. Oxford Ser. (2) 19 (1968), 289-299.
3. I. R. Porteous, Topological Geometry (New York, 1969).

University College of Wales
Aberystwyth, Cardiganshire

