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Let K be a field which contains a primitive /ith root of unity co if n is odd and a primitive
2nth root of unity £ such that £2 = co if « is even.

Define Cp"l to be the polynomial algebra generated over K by the set {e ly..., ep, ep+ lt...,
ep+q} subject to the relations

e," = + 1 for i = l , . . . , p ;

e , " = - l for i=p+l,...,p+q;

and et et = coej ex for 1 ̂  i < j: g, p + q.

C*"> is called a generalized Clifford algebra. Our aim in this paper is to find the structure of
C*,"> for all values of p, q and n. This has already been accomplished for the special cases
p > 0, q = 0 and p = 0, ? > 0 by A. O. Morris in [1] and [2].

LetK(n) denote the full matrix algebra of n x n matrices overK. We first prove

LEMMA 1. There exists an algebra isomorphism

Cft = K(n).
Proof. Define, for i,j' = 1 , . . . , n,

As in [1], it can be easily proved that

&IJ Ekl — <>jk Eil-
n l

Let 5 = {Eij | i,j = 1,...,«} and put Sx = {Eu \j-i = x(mod n)}; then we have S = \J Sx,
0

n - l

y

Since co is a primitive nth root of unity, we have
det[o)('-1)°-1>]= [I

Thus each Sx (x = 0 , . . . , n - 1 ) is a linearly independent set over K, and therefore so is S.
Also (Cft:K) = n2 = (K(n):K) and so the set 5 is a K-basis for Cft , giving us the re-

quired isomorphism.
The next result will enable us to compute inductively the algebras C ^ for any p, q and n.

LEMMA 2. There exist algebra isomorphisms
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Proof, (ii) and (iii) have been proved in [2, Theorem 4]. For the proof of (i), define

We have
fn _ (pi>-\ l-nyi

J — \ei ep+l)

= co "" e"" e"p+ j "

If n = 2d is even, then

But a)2d = 1, cod # 1 by the definition of the primitive «th root of unity co, and so

Hence we have/" = 1 in the case that n = 2d is even.
Similarly, if n = 2d+1 is odd

Hence, in either case, we have/" = 1. Also, for i = 1 or p+ 1, we have

e,/=o)/ei.

Next we define a mapping $ from C ^ into C ^ ®K C%lltq_, by

fef® 1 if i = 1 or p + l,
<Ke,-) = i

[/®ef if i = 2,...,p or i = p + 2 , . . . , p + g.
We have 4>(,eiT = 1 f°r ' = !>•••>/' and <f>(ed" = — 1 for/ =/»+ 1,... ,p + q- Therefore <p maps
identity onto identity. Since ej= (ofei for i = 1 or /; +1 and using the defining relations of

^\, we can easily verify that

for 1 ^ i<j
Thus, since 0 maps basis elements of Cp

n\ onto basis elements of C ^ ®KCP"-1,4-1

we see that (j> is an isomorphism, as required.
If A is an algebra over K, denote a direct sum of n copies of A by "A, i.e.

M = A@A@ ... ©A (n copies).
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The following lemma is [2, Theorem 2].

LEMMA 3. Let K be afield which contains a primitive nth root of unity co ifn is odd and a
primitive 2nth root of unity (, such that £2 = co, ifn is even. Then

(i) C<% s Cft £ "K,

(ii) C% s C<0
n,>2 £ K(n).

Thus we have the following theorem.

THEOREM 4. If K « a y?eW containing a primitive nth root of unity co if n is odd and a
primitive 2nth root of unity £, such that C2 = co, ifn is even, then

(i) C j , ^ K ( n J ) ifp + q = 2Xis even and

(ii) C£> £ " K ^ ) »//>+9 = 2X +1 u

Proof. The proof of both parts of the theorem is carried out by a simple inductive
argument using Lemmas 1, 2 and 3.

From now on we shall assume that K does not contain a primitive 2«th root of unity £
such that £2 = co.

We now define, as in [2], C to be the quadratic field KQco), and H to be the generalized
quaternion algebra regarded as the polynomial algebra over K generated by x,y subject to
the relations

x2 = y2 = co" 1 .1 , xy = — yx.

For completeness, we now state two lemmas which are proved in [2].

LEMMA 5. Let C and H be defined as above; then there exist isomorphisms

(i) C® K C^C©C,

(ii) H® K CsC(2) ,

(iii) H® K HsK(4) .

Proof. This is proved in [2, Lemma 1].

LEMMA 6. Let K be afield which contains a primitive nth root of unity co but not a primitive
2nth root of unity C, such that £2 = co. Then

(ii) &
C ifn = 2v is even;

(iii) Cifts K(n);

fK(") ' / " is °dd orn = 2v, where v is even,
v v *-o,2 =

[H(v) ifn = 2v, where v is odd;

(v) Cft s K(«).
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Proof, (i), (ii), (iii) and (iv) are proved in Theorem 3 of [2].
The proof of (v) is exactly the same as in Lemma 1 since the proof did not depend on the

existence of a primitive 2nth root of unity £ such that £2 = co.
We are now in a position to prove

THEOREM 7. IfK is afield which contains a primitive nth root of unity (O but not a primitive
2nth root of unity ( such that £2 = co, then for n odd we have

(i) CW s K(nA) ifp + q = 2X is even,

(ii) CS;\ £ "K(nx) ifp + q = 2X+l is odd.

Proof. The theorem is proved by a simple inductive argument using Lemmas 1, 2 and 6.
We give the next two results in tabular form.

THEOREM 8. IfKis afield as given in Theorem 7, then, for n = 2v, where v is even, Cfy
is given by the table

p + ql-p + q= - 4

0
1
2
3

- 3

VC(«)

- 2

K(«)

- 1

"K

"K(M)

0
K

K(«)

1

VC

VC(«)

2

K(«)

3

»K(n)

4 K(w2) K(/i2) K(«2) K(n2) K(«2)

Proof These results follow from Lemmas 2 and 6. For example,

C(2nA = Cft ®K e f t , by Lemma 2(i),

S K(n) ®K"K» by Lemma 6,

£ nK(n)
and

Cft s Cft ®K Cft , by Lemma 2(i),

S K(n) <g)K K(n), by Lemma 6,

s K ( n 2 ) ;
whereas we have

Cft s Cft ®K Cft, by Lemma 2(i),

S K(n) ®K C, by Lemma 6,

s;c(n)
and

Cft s Cft ®K C&, by Lemma 2(i),

^ K(n) ®K K(n), by Lemma 6,

S K(n2).

https://doi.org/10.1017/S0017089500002160 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002160


78 EIFION THOMAS

The remaining entries in the table are obtained in exactly the same way.

THEOREM 9. IfK is afield as given in Theorem 7 and n = 2v, where v is odd, then C ^ is
given by the table

p+ql-p+q= - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8
0 K
1 "K VC
2 K(«) K(«) H(v)
3 vC(n) nK(n) vC(n) nH(v)
4 H(nv) K(n2) K(n2) H(nv) H(«v)

5 nH(nv) VC(«2) nK(n2) VC(«2) "H(nv) vC(n2)

6 H(«2v) H(«2v) K(«3) K(«3) H(«2v) H(«2v) K(n3)

7 VC(«3) nH(«2v) vC(n3) "K(n3) VC(«3) nH(n2v) VC(«3) nK(n3)
8 K(/i*) H(«3v) H(n3v) K(n4) K(/i*) H(n3v) H(«3v) K(n*) K(«4)

Proof. The theorem follows from Lemmas 2 and 6. We give a couple of examples; the
remaining entries in the table are obtained in the same way. For example,

dft s Cft ®K Cft, by Lemma 2(i),

£ K(«) ®K K(n), by Lemma 6,
and

C[% s Cft, ®K C^2, by Lemma 2(i),

S K(n) ®K H(v), by Lemma 6,

£ H(nv).

We note that the table in Theorem 8 is of periodicity 4 and the table in Theorem 9 is of
periodicity 8. These tables have been obtained for the special case « = 2 in Porteous [3].
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