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Abstract

Let Al be the weighted Bergman space of the unit ball in C", n > 2. Recently, Miao studied products
of two Toeplitz operators defined on A,. He proved a necessary condition and a sufficient condition
for boundedness of such products in terms of the Berezin transform. We modify the Berezin transform

and improve his sufficient condition for products of Toeplitz operators. We also investigate products of

two Hankel operators defined on A, and products of the Hankel operator and the Toeplitz operator. In

particular, in both cases, we prove sufficient conditions for boundedness of the products.
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1. Introduction

Let dv denote the Lebesgue measure in the unit ball 8 in C" (n > 2) normalized so
that the volume of the unit ball is equal to 1, and let @ > —1. We define the weighted
Lebesgue measure in B as follows:

dua(2) = co(l = 121 du(z),

where ¢, =T'(n + 1 + @)/(n!I'(a + 1)). Such measure is also normalized, that is,
v (B) = 1.

For 0 < p < oo, the weighted Bergman space A’ consists of all holomorphic
functions on B for which

I/p
1Al = (L lf@IP dva(z)) < oo,

Clearly, A? is a closed linear subspace of the Lebesgue space L. := LP(8B, dv,).
Let P denote the orthogonal projection from L2 onto A2, given by

pf(w)zLM weB,

(1 _ <w, Z>)n+l+a ’
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where the function z — (1 — (z, w))~"*1*® defined on B is the reproducing kernel
function for A2 and will be denoted by K,,. The above definition of the projection
P can be extended as a bounded linear operator from L’ onto A’ if and only if p is
greater than 1 (see, for example, [17, page 47]).

We now assume that 1 < p < co and we recall some useful facts concerning A”.
First, observe that AZ with 1/p + 1/g = 1 is the dual space of A/, under the pairing

(f,8)a = L f@8@) dua(z), feAl, geAl.

In view of this formula, for any f in L/, we get the representation

P(f)(W) = <fv Ky)as

where K, is the kernel function defined above.
Moreover, the space L’ has a decomposition (see, for example, [9, Theorem 5.16])
+

Ly = AL @ (AD™, =1, (1.1)

SR
| =

where
AD*={f-P(f): fely)

is the annihilator of the space AZ.
Now we recall the definition of the automorphism of the unit ball. Let w € 8 and
sy = (1 = w>)!/2. The automorphism ¢,, of the unit ball is given by the formula

w—P,(2) — 5,0,(2)
1—{z,w)

where P,,(z) = (z, wyw/|w|?> if w #0, Py(z) =0 and Q,, = I — P,, (see, for example,
[10, 17] for the definition and some properties of the automorphism group of the unit
ball).

For a function f € L*(8B), we define the Toeplitz operator Ty on A} by

T(h)(z) = P(fh)(2)
and the Hankel operator Hy on Af, by the formula

Hy(h)(z) = f(2)h(z) = P(fh)(2).

In the case when f belongs to L., we define the above operators densely on the
space AL.

The aim of this paper is to find the conditions for products of Toeplitz operators and
products of Hankel operators to be bounded on the weighted Bergman space A” in the
unit ball. Our study is motivated by the results obtained for the Hardy space H? in the
unit disk O. Treil gave the following necessary condition for boundedness of T/T5
defined on the Hardy space:

SUp(|f 1P kows ko Y182k Koy < 00,
weD

‘PW(Z) =
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where Flzw(z) = (1 = |wP"2/(1 = wz) is the normalized reproducing kernel for H>. Tt
was conjectured by Sarason [11] that this condition is also sufficient. Cruz-Uribe [2]
gave support for Sarason’s conjecture. Cruz-Uribe characterized the outer functions
f and g for which the product T;T; is bounded on H?. Unfortunately, Sarason’s
conjecture turned out to be false in general (see Nazarov’s counterexample [6]). A
slightly stronger sufficient condition was given by Zheng [16].

The studies of boundedness of Toeplitz products seem to be more interesting in
the case of the Bergman spaces, since there exist bounded Toeplitz operators on the
Bergman space A? in the unit disk with unbounded symbols. In [11], Sarason asked
the question: for which functions f and g, analytic in the unit disk, is the product 7T,
a bounded operator on A%2? Although a partial answer to this question is known, the
problem posed by Sarason is still open. Stroethoff and Zheng [12] gave a necessary
condition and a slightly stronger sufficient condition for boundedness of such products.
They also obtained analogous results for the Bergman space in the polydisk [13], for
the weighted Bergman spaces in the unit disk [15] and for the weighted Bergman
spaces in the unit ball [14]. Similar conditions for the weighted Bergman spaces in
the unit ball were obtained by Park [7], while in [8] Pott and Strouse gave the related
results for the space A2 in the unit disk. Recently, Miao [4] generalized the results of
Stroethoff and Zheng to the weighted Bergman spaces A/, for all p > 1.

Stroethoft and Zheng [12] also obtained some conditions for boundedness of the
products of Hankel operators HyH,, f, g € L*(D, dA), densely defined on (A%)*. Lu
and Liu [3] gave analogous results for A2 in the unit ball. In [5], Michalska et al.
obtained slightly weaker sufficient conditions for products of Toeplitz operators and
products of Hankel operators on A2.

In this paper we give sufficient conditions for boundedness of the products of
Toeplitz operators T'sT; and Hankel operators HyH, on the weighted Bergman spaces
AP which are analogous to those obtained in [5]. Moreover, our condition for the
product of two Toeplitz operators is weaker than the one obtained by Miao in [4].

To state our main theorems we use the modified Berezin transform B? defined as
follows. Let € > 0. Foru € L} and 1/p + 1/q = 1, we define

Bl [ul(w) = f (1 0 9,)(2) logP a1 /(1 - lz])) dva(z), weB.
B

We prove the following result.

Tureorem 1.1. Let 1/p + 1/q =1, f € AL and g € AL. If there exists a positive constant
€ such that

sup(BL11 flo 1P 10w} 7Bl gk 111(w)} 4 < oo,
weB

then the operator T Ty is bounded on Al,.
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Tueorem 1.2. Let 1/p+ 1/q =1, f € L\ and g € LY. If there exists a positive constant
€ such that

sup{lll(fha ") 0 @ — P(fhn >'7) 0 0u)11og 974 (1 /(1 — 2))llzr

wesB
X Il(gk ') © @ = P((gha ") 0 @)1 1og"*P(1/(1 = [z))lza} < oo,
then the operator HyH, is bounded on (AL,
We also present a necessary condition for the mixed Hankel and Toeplitz products
H, T to be bounded on the spaces AP,

Tueorem 1.3. Let 1/p +1/q =1 and f € Aj, g € L{. If the operator HyT; is bounded
on A?, then

sup [I(fk)' =4 0 @y llali(gk)' =27 0 @ — P((gk)' ™" 0 @, )l1» < 0.

wesB
Similarly, we give a sufficient condition for the mixed Hankel and Toeplitz products
H, T, analogous to those in Theorems 1.1 and 1.2.

Tueorem 1.4. Suppose that 1/p +1/q=1, feLl, ge L} and f is a holomorphic
function on B. If there exist positive constants €| and €, such that

sup{B2 [|f ks 1D 4N ((gk 7Y © @ = P((ghy ") 0 ) log+ /4 |1, < o0,

weB

then the operator HgT? is bounded on AL

2. Sufficient conditions for boundedness of Toeplitz and Hankel products

We begin by recalling the fractional radial derivative R*' of a holomorphic function
f on B. Suppose that f has the homogeneous expansion

f@ = h.
k=0

If for any real parameters s, ¢ neither n 4+ s nor n + s + ¢ is a negative integer, then

(o]

Fn+1+9I'n+1+s+k+1)
Rs,t —
F@ ZF(n+1+s+t)F(n+l+s+k)

i@

k=0
is called the fractional radial derivative. In the case @ > —1 and ¢ > 0, the derivative
R can be written as

TPV frw) dug(w)
R f(Z) - rll)r}lL (1 -z, W))n+1+a+t'

In particular, if f € A!, then
w) du,(w
Ra,tf(z):f f( ) (1) )
2 (1 — <Z, W))n+ +a+t

The following two results are needed in the proof of Lemma 2.3.
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Lemma 2.1 [17, Example 2.19, page 77]. Suppose that t > 0, b > 0. Then there exists
a function F(z,w), holomorphic in z, conjugate holomorphic in w, and bounded in
B x B, such that for all z,w € B,

a,t[ ! ] ___F&ew
(1= (w)P ] (1= (zwybt”

Lemma 2.2 [4, Lemma 3.1]. Let s >0, t >0 and 1/p+ 1/q = 1. Then, for all f € AL,
and g € Al,

<fa g>oz = <Ra’sf> Ra+s’tg>s+t+oz-

In the next lemma we give the estimates of the fractional radial derivative of the
Toeplitz and the Hankel operators.

Lemmva 2.3. Let 1/p+ 1/q =1 and € > 0. Suppose that 3 > —1 and t > 0. Then:
(i)  for all functions f € AL, he AL and w € B,

t C B
IRAT gh(w)l < o (B 1)

()l o 101 1p

x{ L T o O/ e @D )]
wherel=Q2n+1+a+t)+(q-2)n+1+a)/29);

(i) forge Ll ue (A andw e B,

IRP Hju(w)|
< ———ll(gk™"") © pu—P((gky ") © 9,)1Tog (1 /(1=
(1—wP)
ﬂ —(1+€) _ 1/q
X {\[B |1 — <W, Z)lt lOg (1/(1 |‘10w(z)|)) dva(Z)} N

where l=Q2n+1+a+t)+(p-2)n+1+a)/2p).

Proor. (i) The definition of the Toeplitz operator and Lemma 2.1 give the inequality
lf () ()|
ROT g < o [ O -
(I =P Jg |1 = (w, "1 |1 = (w, )P
Now, applying Holder’s inequality and change-of-variable formula,
IRPT th(w)|
(Bl k41 0m)) { f I log™"9(1/(1 = lpu ()
(1 —wp) 8 [T = (w, )l
where [=Qn+1+a+1)+(g-2)(n+1+a)/2q).

(ii) Let F(w,z) be the function described in Lemma 2.1. Then, for all g € L}, the
function

duy(2).

<C

dva(z)}l/p,

Fw, k"™ @ P((gky ") 0 9u) 0 9u(2)

hy(z) = (1 = (g, w)yrti+a+t
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belongs to A. Thus, for u € (A5)*,

By, = f u@F(w. k" @P((gky ") © ¢u) © 90 2)
wrae (1 = (w, zy)n+l+a+t

Now, by the definition of the Hankel operator and Lemma 2.1,

du,(z) =0.

Bt I+ _ Bt I+
IR™ H,u(w)| = IR ng(W)—<u,hw>a|S—(l_lwlz),/p

x f 8@) ~ K" P8k ") 0 g) © (@)
% 1= <(w, Z>|n+1+a/

IR

1= (w, yltla =
Finally, the same argument as in the proof of (i) implies that
IRP Hyu(w)|

C _ )
< mll[(gki 2Py o @, — P((ghky ") 0 @) 11091 /(1 = 2Dl

@ avaq e - g
8 {L T—ovop 08 /A =lew@D) dua(z)} ,
where [=2n+1+a+t)+(p—-2)n+1+a))/(2p), as desired. O

Proor oF THEorREM 1.1. With no loss of generality, we may assume that 0 < e < 1. We
show that for u € A, v € A the following inequality holds:

KT Taut, V)al < ClullolMlzs-
Using Lemmas 2.2 and 2.3(i), we obtain the estimate
KT Tgu, vl = KR™ Tgu, R T V) si140l
< Csup{BL[If1P1w)} /P (Bl (w)} '/

weB

—(1+e) _ 1/
y f{(1_|w|2)s_n_1_w{ f ) log I = len) g, )|
B B

[T = (w, )l
x{ f @)l log”*(1/(1 ~ (D)
8 [T —(w, I
Putting t = s =n + 1 + @ > 0 and applying Holder’s inequality,

KT Taut, vYal < C suptBLLI f P 1P1ow) P {B2LIgksy > 111 (w)} /4
weB

—(1+e) _ 1/
X{LLW(Z)lplog (170 — lew()D) dva(z)dvc,(w)} r

|1 _ <W, Z>|n+1+a

v(z)|? log’(”f)(l/(l — lew@D) 1/q
8 {LL [T = (w, yr+i+e due(2) dva(W)} :
2.1

dva(z)}l/q} dv,(w).
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Now, to complete the proof, we need to show that the integrals in (2.1) are bounded.
By Fubini’s theorem, change-of-variable formula and integration in polar coordinates,

P
I := ff lu(2)| g—(1+e)(1/(1 _ |‘Pw(Z)|)) duo(2) dug(w)

|1 _ <Z W>|n+1+a/

= f [u(z)|P2nc, f P = ) Tog™ 91 /(1 - 1)
B 0

do({)
s [1=(rg gl

1 C
f ——————do({) £ ————
s |1 =(rg, gl (1= r)t+e
(see, for example, [17, Theorem 1.12]),

1
I<c f ()P dve(2) f !
B o 1-

It is easy to check that the above integral is convergent for O < € < 1. Thus,

dr } du,(2).

Since

- log™M*9(1/(1 = r))dr.

1< Clullf, (2.2)

and, consequently,
KT sTgu, vyl < Cllullzr|VllLe- O

The proof of Theorem 1.2 is analogous.
We should mention that Theorem 1.1 extends the results obtained by Miao [4] and
Stroethoff and Zheng [12]. Namely, we have the following result.

LemMa 2.4. Let 1/p+1/q=1and f € AL, g € AL. Then, for e >0 andw € B,

(BLLIf R 717 Yow)} /P (B gk, 7191 ow)} 4
< C{B[lfkvlv_z/pf“](w)}1/(P+f){B[|gkv1v—2/q|2+s](w)}1/(q+e).

Proor. Let w € B be fixed. Using Holder’s inequality,
{B2[|fhy 2P IPIw)) P
= f [f @k P @I logP (1 /(1 ~ | (2)])
B

(1 _ |W|2)n+1+a 1/p
11— (w, >|2n+2+2a U“(Z)}

{B[|fk1 2/[7|2+6](W)}l/(p+6)

< f log""* 191 /(1 - |2])) dva(2)
B8

}e/((p+f)p)

The convergence of the last integral implies the desired result. O
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3. Conditions for boundedness of mixed Hankel and Toeplitz products

In this section we investigate products of the Hankel operator and the Toeplitz
operator.

First, we introduce the so-called dual Toeplitz operator. Let f € L*(8B). In view of
the decomposition (1.1), the multiplication operator M;g = fg on L!, can be written as

follows:
T, H:
Mf =\ Il.
Hy Sy
The operator Sy : (Al)* — (Al)*, given by the formula
Sr(h)(z) = f(Dh(z) — P(fh)(2),

is called the dual Toeplitz operator. The above representation of M, on L}, is analogous
to the representation of the multiplication operator defined on L(zl (see [3, 12]). In
particular, we have T;‘. = Tf and S;. =S 7 We should mention that in the case when

f € L., the operators introduced above are densely defined on A”. The next lemma
gives some properties of the operator M.

Lemmva 3.1. Let € L™ and ¢ € H®. Then
S¢H¢ = H¢T¢ and H;SaZ TaH:Z,
where S is the dual Toeplitz operator.

Proor. The proof proceeds analogously as for the space A2 (see [12, page 297]). O

Let 1/p+1/g=1. For f € L., g € L}, we define an operator f ® g on L by the
formula

(f®gh=(h.g)af

One can show that ||f ® g|| = || fllzellgllz». If f € A, then (g — P(g)) ® f can be seen as
an operator on A%, which has the following representation.

Lemva 3.2. Let 1/p+1/qg=1and f € AL, ge L},
i) Ifa#0,1,2,...,then

Tk—n-1-
(g-P@N®f= Z kfr( Z = z; Z S He 5T
k=0

(i) Ifa=0,1,2,...,then

n+l+a
D+ 1+ a)! « k!
_P = > S H, T T
E=Perer= 2, K+ Tva— kol 25007
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Proor. For all functions in A?, we have the atomic decomposition

(e8]

f@) = Z cr(1 = w P Fot=Un g (),

k=0

where {wi}7, is a sequence in B, {c};, belongs to /7 and the series converges in
the norm of A%, (see [17, Theorem 2.30]). Thus, in order to show the equality of two
bounded operators on A%, it is enough to show that they are the same on K, for all
w € B. Clearly,

(g = P(®) ® f)(Ky) = f(w)(g - P(g))
On the other hand, for any multi-index s,
SoHyTiT= K,y = W' fW)Sos(HeK,) = W' fw)(2°gK,, — P(°gK.,)).

Using the identity

k!
<Z, W)k — Z _ZXWS,
s!

Isl=k ="

IFk-n-1-a) — —_—
];Fn—a) [fW)E@Kw(2)z, W) = P(fF(W)gKi(z w))(2)]
Lkl (=n—-1-a)
= f(8() - P@)@)).
This completes the proof of (i). The proof of (ii) is analogous. ]

To prove Theorem 1.3 we also need a few technical lemmas. The first one can be
obtained by proceeding analogously to Miao’s proof of [4, Lemma 2.2].
Lemma 3.3. There exists a positive constant C such that for any nonnegative integer k:

G if 1<p<2 then, for all functions u € A, and v e (AL,
l/p+1/g=1,

k1\P/2 e
PSS Wl < €l DD,
[s=k >

kNP2 e 1)(1—
YA IS i < Cler DIy
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(i) if 2<p<oco, then, for all functions u € AL and v e (A
l/p+1/g=1,

ke
Y(5) il < Clal,

Isl=k

k!
Z(;) IS 2, < Clbilr

Isl=k
Now, using Lemma 3.3, we prove the following result.

Levma 3.4. Let1/p+1/g=1and f € AL, g € L. Then there exists a positive constant
C such that

Illallg = P(llzr < ClIH T

Proor. Suppose that u € A and v € (AL)*. Then, by Lemma 3.2 and the triangle
inequality,

K((g = P(8)) ® fHu, v)al

Ik-n-1-a)
‘Z k'r( n-— 1 — CY) e k <SZSHgT?TESI,[’ V)(y

0o

<) A T-a)

k=0

Tk-n—-1-
KT(=n—1-

@)
]Z VT T ull o 12V
Isl=k

Using Holder’s inequality and Lemma 3.3,
Z —||T IS5l < Clk+ DO D full ol vl
stk 5

To complete the proof, we observe that Gauss’s formula (see, for example, [1, page
178]) guarantees the convergence of the series

ATk-n-1-a)

(k+ 1) D72, O
—)

Finally, we describe the commutative property of the Hankel operator. Let w € 8
be fixed, and let the mapping U,, be defined by the formula

Uyh=(hopk, hell 1<p<oo.
Then we have the following result.
Lemma 3.5. For any fixedw € B and g € L™ (B),

UyH, = Hyop, U,,.

https://doi.org/10.1017/51446788715000129 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788715000129

[11] Bounded Toeplitz and Hankel products 247

Proor. For u € AL, v € AL, we have U,, Ty = Tyoy, Uy, (see [14, (2.3)]). Consequently,
UWng = Uy(gu) — U P(gu) = (g © pu)(u © o)k, — Tgmpw Uyu
= (g © SOW)UWI'{ - P((g © ‘pw)UWM) = Hgo‘pw Uwu’

which completes the proof of the lemma. O

Proor oF Tueorem 1.3. For any fixed w € B, we define an operator VY : AP — AP in

the following way:

Veh = PUE"

and an operator V2 : (AP)* — (AP)* as follows:

Vin= Uk

Let u € (A)* and v € (AY)*; then

< UM)V9 u)(l
= & ok, W — (PR, o kT u)a
= (S0 gk, ), )y = (S Vi,

Hence,
U = S Viv.

Moreover, it is clear that P(¢P(g)) = P(¢g) for any holomorphic function ¢. Thus, for
heA?,

—2/p-1
T Vih = ToanP((ho kK, ) = P(ho ¢ )k,) = Uyh.

Now let u € A, and v € (Ah)*. Then, by Lemma 3.5,
<Hg1°‘/7wT

71 OPw
= (Hy, T, Ut, VYo = (T, Ty Vit H;ISF_Z/,,W,V»,.

U, V)o

Next, putting f; = fk2/""" € A? and g, = gk2/*"" € L” and using Lemma 3.1,
(Hgk‘zv/qflww Tﬁj/p—l o o Wa
= (Tﬁz/p—l T%‘IV—Z/[) Viu, H;sz/q,l Sa,—zm Vﬁv}a
= (T;Vlu, Ta_zmp(g_kj/ IV 0 = (H TV, ViV,
Consequently,

P /4
g2y, Tt VYol < WA IVEul ViV
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Since
» —2/p-1
IViullr = IP((u o @y)kwk,,  llr < Cllullz

and
= —2/g-1
IVivlle = lv o @wkuwky, e = [VllLs,

“Hglo‘Pw T+

= ol < CIH,TH.

Thus, by Lemma 3.4,
(P © @ulliall(gh ") 0 @1 = P((gky ") © P)llL» < CIIH, T,

which completes the proof. O
Now we give the proof of our last theorem.

Proor oF THEorREM 1.4. It is enough to show that there exists a positive constant C
such that for any u € A% and v € (A})* the following inequality holds:

KHg T, v)al < Cllullzr[IVI]Ls-
By Lemma 2.2,
KHgT7u, VYol = KRP" T, RF HEVY, 1y

< f RPN Tru(w)l| R Hivl(1 = W)™ dug(w).
B
Moreover, using Lemma 2.3 and putting ), =, =n+ 1 + a,

fB IRPATau(w)IRP 2 Hovl(1 = i) dv ()

< Csup{{B2 [|fky, /4|1y

weB

x[I[(gkiy ") 0 @ — P((gksy ") 0 @)1 1og (1 /(1 = [2))l|o}

[u(z)? —(1+&) _ 1/p
x fg { fB T s 1og /(1 = ) v 2

1/
% {f & log—(1+€2)(1/(1 _ |¢W(Z)|)) dUa(Z)} quQ(W)-
B

|1 _ (W, Z>|n+1+a
(3.1

Now, applying Holder’s inequality and property (2.2) to the integral (3.1), we get the
desired conclusion. ]
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