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1. Introduction. If Si, S2, S3, . . . , Sn are subsets of a set M then it is 
known that a necessary and sufficient condition that it is possible to choose 
representatives at such that at is in St for (i = 1, 2, 3, . . . , n) and such that 
at T* aj for i ^ j , is that for k = 1, 2, 3, . . . , w, the union of any k of the sets 
Si, S2, . . . , Sn, contains at least k elements. The theorem has a number of 
consequences amongst which we list the following. 

(1) If a set M containing rs elements be broken up in two different ways 
into r disjoint subsets each containing 5 elements then it is possible to find 
elements a\, a2, . . . , aT which will serve as representatives of the sets of both 
decompositions (7), (15). 

(2) If A is an r by r matrix whose entries are all either one or zero and if 
each row and each column contains exactly 5 ones then A can be expressed as 
a sum of 5 permutation matrices (15). 

(3) An n by n Latin square can always be completed when m of its rows 
(m < n) are specified (5). 

(4) Any doubly stochastic matrix A lies in the convex closure of the permu
tation matrices. More particularly, any doubly stochastic matrix is a weighted 
average of at most n2 — n + 1 permutation matrices (2). 

Ryser and Mann (15) generalized the representative problem to obtain 
sufficient conditions that specified elements ai, a2, a3, . . . , ar may appear in a 
system of distinct representatives and Hoffman and Kuhn (9) replaced these 
by conditions which are both necessary and sufficient. These generalized 
results can be used to prove a theorem due to Ryser (18) which states necessary 
and sufficient conditions in order that a specified r by 5 subrectangle be com-
pletable to an n by n latin square. 

In this paper we obtain a simple combinatorial proof of a generalization of 
the theorem of Hoffman and Kuhn. We also obtain generalizations in other 
directions which enable us to extend some of the results enumerated above. 

For our purpose it is more convenient to use an alternative equivalent 
formulation of the distinct representative theorem. We first define a few terms. 

Let au a2, . . . , an and 61, b2, . . . , bs (n < s) be two sets of elements. Leti? 
be a dyadic relation connecting an a with a b. A pair (a, b) will be called an 
incidence if the relation R holds for a and b. A set S of incidences 
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will be called regular if no a or b appears more than once amongst the compo
nents of the pairs of S. The distinct representative theorem can now be re
worded as follows: 

A necessary and sufficient condition that a regular set of incidences which 
includes all of the ah a2, . . . , a» exist, is that for each k, (k = 1, 2 , 3 , . . . , n) 
every subset of k of the at are incident with at least k distinct bj. 

In connection with the sets {a*}, {bj} and the incidence relation R, we 
define an incidence matrix A to be an « by 5 matrix whose entry in the ith 
row and jth column is 1 if (aif bj) is an incidence and 0 otherwise. 

An m by p matrix will be called a sub permutation matrix of rank r if it 
satisfies the following conditions: 

(1) Its entries are all 0 or 1. 
(2) Each row and each column contains at most one 1. 
(3) The matrix contains exactly r l 's. 

The set of places at which the l's appear in a sub permutation matrix of rank 
r will be called a sub permutation set of places of rank r. 

With this new notation the distinct representative theorem simply states 
that if the stated conditions on the a's and b's are satisfied the incidence 
matrix will contain l's at a sub permutation set of places of rank'w. 

2. A generalization of the Hoffman-Kuhn Theorem. The following 
theorem generalizes the Hoffman-Kuhn theorem which was given in (9). It has 
the advantage that the result is completely symmetric in the a's and b's. 

THEOREM 1. Let ai, a2} . . . , an and bi, b2j . . . , bm be two sets of elements con
nected by an incidence relation R. A necessary and sufficient condition that a 
regular set S of incidences exist in which a,\, a2, . . . , aT and bi, b2, . . . , bs appear 
is: 

(1) For k = 1, 2, . . . , r, any subset of k of the elements of a\, a2, . . . , ar are 
incident with at least k distinct elements of bi, b2} . . . , bm. 

(2) For p = 1, 2, . . . , 5, any subset of p of the elements bi, b2j . . . , bs are 
incident with at least p distinct elements of ai} a2f . . . , an. 

Proof. Form the incidence matrix A. By condition (1), using the distinct 
representative theorem, the first r rows of A contain at least one sub permuta
tion matrix of rank r. Put the letter R in each of the places occupied by 1 
in any one such sub permutation matrix. Similarly the first s columns of A 
contain at least one sub permutation matrix of rank s. Put the letter C in the 
places occupied by 1 in any such sub permutation matrix. (It is possible for 
the same place to be marked with both R and C.) The matrix A is now said 
to be marked by a set of i£-places and a set of C-places. It will now be shown 
how to choose a subset of the R and C places which will produce the set of 
incidences S required by the theorem. 

(1) If a place is marked by both R and C it is to be included in the subset. 
(2) If a marked element is alone in its row or column it is the beginning of 
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a connected chain which ends with an element which is alone in its row or 
column. A connected chain is defined as a sequence of marked places formed 
as follows. Start with any marked place which is alone in its row or column 
and proceed to a marked place in the same row (column), continue to a further 
marked place in the same column (row) and continue as far as possible. 
The set of marked places visited by this procedure is called a connected chain. 
By our definition a single marked element alone in its row and column is a 
chain. There are four types of connected chain. 

Type 1. The chain begins and ends with an R. (See Figure 1.) 

f .c 

c—K 
A/? 

FIGURE 1 

In this case we must include the i?'s and omit the C's in the required subset. 
Type 2. The chain begins with an R and ends with a C and the first step is 

horizontal. (See Figure 2.) 

R C 

FIGURE 2 

In this case we must include the C s and omit the R$ from the required 
subset. 

Type 3. The chain begins with an R and ends with a C and the first step is 
vertical. (See Figure 3.) 

}R 

FIGURE 3 
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In this case the required subset must include the RJs and omit the Cs . 
Type 4. The chain begins and ends with a C. 

c /? 
1—i/? 
c 

m 
C R 

C 

FIGURE 4 

In this case the required subset must include the C s and omit the R's. 
In view of the fact that the beginning and end of a chain are interchangeable, 

no other types of chain are possible. 
(3) After removing from the set of marked places all doubly marked places 

and all chains, either there are no further marked places or the remaining 
marked places (which we will call the core) have the following property. 
Each marked place in the core has another marked place in its row and another 
marked place in its column. Hence, the marked places in the core all lie in a 
square sub-matrix of the incidence matrix which is included in the r by s 
sub-matrix of A which lies in the upper left corner. The required subset can 
now be completed by choosing from the core either all the places marked R 
or all the places marked C. (There are other ways of making the choice as our 
next theorem will show.) 

*RC • 
- A -

'< 

R • C • • 

• / ? • £ • 

• C % R % 

m m R • C 

FIGURE 5 
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It is clear that the chosen subset of marked places yields a set of incidences 
5 which satisfies the conditions of the theorem. In Figure 5 is shown an R 
and C marking of an incidence matrix. Here m = 12, s = 10, n = 11, r = 10. 
The chains are marked by lines and the core is surrounded by a singly lined 
square. 

A question of some interest is the following. From an incidence matrix A 
marked by a set of i^-places and a set of C-places in how many ways is it 
possible to choose a subset of places which yield a regular set S of incidences? 
From our proof of Theorem 1 it is immediate that the inclusion or exclusion 
of a place which is doubly marked or which belongs to a connected chain is 
uniquely determined. With regard to the core, its places lie in a square. 
By permuting the rows and the columns of this square it is possible to 
arrange that the marked squares can be confined to a set of square blocks 
along the main diagonal of the square as in Figure 6. 

FIGURE 6 

Let k be the maximal number of such blocks. In each such block we can 
choose for our subset either all the R's or all the C's. Hence, the number of 
ways of making a choice is 2*. 

There is another way of determining the number k which does not require 
the rearrangement of the rows and columns of the square containing the core. 
Start with any marked place of the core and proceed to the other marked 
place in its row, continue to the remaining marked place in the column of 
the place last visited and proceed in this way alternately along rows and 
columns. Ultimately the starting point is reached. The marked places visited 
in this manner form a re-entrant cycle and the number k described above is 
precisely the number of re-entrant cycles in the core. In Figure 7 there is a 
diagram of a core which is included in a 7 by 7 square and which decomposes 
into two cycles. 

The theorem just proved can be described as follows. 
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c • 

FIGURE 7 

THEOREM 2. The number of ways of choosing a set of places which yield a regular 
set of incidences from an R and C marking of an incidence matrix is 2k, where k 
is the number of re-entrant cycles in the core of the marking. 

3. Further generalizations. We now consider generalizations of a different 
character. Roughly stated our problem is this. Let A be a matrix with entries 
which are either positive numbers or zero. What conditions can be placed 
on the entries of A in order to assure that A has non-zero entries in a sub 
permutation set of places or rank r? We confine ourselves to the case where A 
is a square matrix, since rectangular matrices may be completed into squares 
by adding rows (or columns) of zero entries. All resulting theorems for matrices 
so augmented will hold for the original matrix. 

Throughout the remainder of this section the following notation will be 
used. A = {ai3) will represent an n by n matrix with entries ai5 > 0. Rt 

will denote the sum of the entries in the ith row, Rt = J^jaij] Cj will denote 
the sum of the entries in the j th column, C0 — ^iai3\ M will denote the 
maximum row or column sum, M = m a x ^ i , Cj); and S will denote the sum 
of all the entries, 

S — 2-j atj = z^ Ri = ZJ CJ-
i,j i j 

We will also use the following consequence of the distinct representative 
theorem: if A is a square matrix with positive or zero entries such that each 
row sum and each column sum has the same non-zero value, then any non
zero entry of A lies in a permutation set of places all of which have non-zero 
entries in A. 

THEOREM 3. If {n — 1) M < S then A has non-zero entries in at least one 
permutation set of places. 

https://doi.org/10.4153/CJM-1958-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-027-8


236 N. S. MENDELSOHN AND A. L. DULMAGE 

Proof. Augment the matrix A by adding an (n + l) th row and an (n + l) th 
column where ait n+i = M — Rt (i — 1, 2, . . . n) 

an+hj = M - Cj(j = 1, 2, . . . n) and an+ï,n+1 = S - (n - 1)M. 

Since all of M — Riy M — C7-, S — (n — 1) M are positive or zero and since 
in the augmented matrix all row and column sums are the same positive 
number, the augmented matrix has non-zero entries in a permutation set 
of places which includes the place occupied by an+it n + i . The remaining places 
are thus a permutation set of places of the matrix A. 

Theorem 3 is the best possible in the following sense: if the condition 
(n — l)M < S is not satisfied there are matrices A which do not have non
zero entries in all the places of any permutation set. Indeed, if A be any sub 
permutation matrix of rank n — 1, then (n — l)M = S and the theorem is 
obviously false for A. Theorem 3 has the following corollary which is an 
improvement of the result due to Hall (7). 

COROLLARY. Let T be a set containing S elements and suppose T is broken up 
into n disjoint subsets in two different ways; 

T = A, + A2 + ...+AH, 
T - Bi + B2+ . . . + 5». 

Let M be the maximum number of elements in any of the sets Ai, A2y . . . , 
An\ Bi, B2, Bz . . . , Bn. If {n — l)M < S then it is possible to choose n ele
ments &i, a2, . . . , an which will represent both the sets Ai, A2, . . . , An and 
Bij B2f Bz, . . . , Bn {each at being a member of the sets which it represents). 

Proof. Form the matrix A whose entry atj is the number of elements in the 
intersection of At and Bj. (i, j — 1, 2, . . . , n) A satisfies the condition of 
Theorem 3 and the corollary follows immediately. 

THEOREM 4. If 

n — 1 S n — 2n 

then the matrix A has non-zero entries in the places of at least one sub permu
tation set of rank (n — 1). 

Proof. Let B2 = n M - S - M and T2 = M + B2 - n B2. The inequality 
S < (n — l)M implies B2 > 0 while the inequality 

O 2 - 2n)M < {n - 1)5 

implies T2 > 0. Augment the matrix A by the addition of two rows and two 
columns as follows. Put ai>n+i = M — R^ ait7l+2 = B2îori = 1, 2, . . . , ?z;put 
<Vfl,n+l ~ #n+l,tt+2 = &n+2,n+l ~ 0 j &n+2,n+2 = T 2 Î #71+1,; ~ M ~ CJf an+1 f ;+1 = B2 

for j = 1, 2, . . . , n. The augmented matrix now consists of non-negative 
entries whose row and column sums are all equal. Hence, since an+2jTl+2 T^ 0, 
there is a permutation set of places which includes the place n + 2, n + 2 
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containing non-zero elements of the augmented matrix. The places of this 
permutation set which are in the matrix A form a sub permutation set of 
rank at least n — 1. 

The conditions of Theorem 4 are sufficient but may not be the best possible. 
Since sub permutation matrices of rank n — 2 satisfy the condition (n — 2) M 
= Sy it is natural to conjecture that the term (n — l)/(n2 — 2n) could be 
replaced by l/(n — 2). For large n the improvement is small. 

A corollary analogous to that of Theorem 3 reads as follows : 
Let T be a set containing 5 elements and suppose T is broken up into n 

disjoint subsets in two different ways; 

T = A, + A2 + . . . + An = B, + B2 + . . . + Bn. 

Let M be the maximum number of elements in any of the sets Ai, A2y . . . , 
An; BlfB2, . . . , Bn. If (3.1) holds then (n — 1) elements may be chosen, 
each of which represents one set of each decomposition, and two elements may 
be chosen to represent the remaining two sets provided they are non-null. 

We now proceed to the general case by induction. We now define numbers 
B2, Bs, BA, . . . ; Ti, T2y T3, r4 , . . . as follows: 

B2 = (» - 1)M - 5, 
Bz = nB2 - B2 - M, 
BA = nBz- B2- Bs- M, 
B5 = nB4- B2- Bz- Bt- M, 
Br = n £ r _! - (J52 + B, + . . . + J3r_x) - M, 

and for i = 1, 2, 3, . . . , Tt — — B*+i. It is clear that if Tr is the first of the 
numbers Tly T2, T3, . . . which is positive, then all the numbers B2,B%, . . . , BT 

are positive. 
The Bt may be expressed in terms of n, 5, M as follows: 

B2 = (n - 1)M - S, 
Bz = (n2 - 2n)M - (» - 1)5, 

where Pi{n) and Qi{n) of polynomials in n with integral coefficients of degree 
i. 

By subtracting two successive £ ' s one obtains B*= n{Bt-i — B^o). This 
in turn yields the following recurrence relationships amongst the Pi and 
the Qt\ 

Pi = «(Pi- i - Pi-2)\Qi = »(0*-i - C w ) . 

Also, since Q0 = 1, Qi = (n - 1), Q2 = n2 - 2n; Px = n - 1, P2 = n2 - 2w, 
it follows that Pi(ri) = Qi(«). Furthermore, the difference equation for Pi 
together with P\ and P2 uniquely determines P\. It is directly verifiable by 
induction that 
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P<(n) = n<- ( j ) „«-1 + (* " X) n^ -... 

=i'<-»<--v-
Before we can proceed to the main theorem we need some further properties 
of the Pi (n). 

THEOREM 5. For r > 2 and n > r, PT(n) > 0. 

Proof. We can bracket the terms of PT(n) as follows: 

+ { ( , - S + 1 ) ^ - ( L T +
Î Î ) »'-"-)+••• 

If each bracketed pair is non-negative for any positive value of n, it remains 
non-negative when n is replaced by a larger value. Hence, it is sufficient to 
prove that each bracketed pair of Pr(r) > 0 (and at least one pair has a value 
> 0). The theorem is trivially verified for r = 3 and r = 4 so we will assume 
r > 5. 

Now 
(r - 2k + l \ r_2* _ ( r - 2k \ r_2,_x 
\ 2k ) \2k-\-\)Y 

The expression 
(r-2k+l\ _ (r - 2k\ 
\ 2k ) r \2k + 1/ 

will be non-negative provided 

(2k - l)r2 - (U2 - 10* + l)r > 4&(4fc - 1). 

Here r is an integer > 5 and k is any integer such that 4& + 1 < r. Again: 

(2k - l)r2 - (4&2 - 10* + l)r 

> r{(2& - 1)(4* + 1) - (4&2 - 10* + 1)} 

= r{4&2 + 8* - 2} > 5{4&2 + 8* - 2} > 4fc(4& - 1) 

for every positive integral k. 

THEOREM 6. For every integral n > 2, 

Po(n) Pi(n) P2(n) Pn.2(n) P^iM 
Px(n) ^ P2(n) ^ ~Pz(n) ' " ^ ~Pn-i(n) ^ P~(n) ' 

Proof. By Theorem 5 all the denominators are positive. Also, since Pf = 
n(Pi-i — P1-2) for every i, it follows that 
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P r
2 - Pr-lPr+1 = Pr ~ P r-l(jl Pr~n PT-l) 

= P r * -tlPrPr^ + nPr-i1 

= (» P r _! - n Pr_2) PT-nPT P r _! + n PrJ 

= n{PrJ - Pr^Pr). 

Also Pi 2 - P 0 P 2 = 1, so that P r
2 - P r_i P r + i = wr-» > 0, for r > 2, n > r. 

THEOREM 7. Le^ 4̂ 6e aw^w by n matrix with non-negative entries. Let S be the 
sum of all entries in A and let M be the maximum sum of any row or column of 
A. For r > 2 and n > r, if 

(3.2) fr-»(») , M Pr-l(n) 
Pr-^n) ** S < Pr(n) ' 

then A has non-negative entries in a subpermutation set of places of rank 
n - r + 1. 

Proof. By (3.2), M PT(n) - S Pr-i(n) is negative. That is, Br+1 is negative 
or Tr is positive. Also, since 

Pi P2" 
Pr-2 <M_ 
Pr-1 ^ S ' 

each of the numbers B2l Bz, BA. . . Br is non-negative. Augment the matrix A 
by the addition of r rows and r columns as follows : put 

ait n+i = M — Ri for i = 1, 2, 3, . . . , n; 
ait n+t = Bt for i = 1, 2, . . . n and / = 2, 3, . . . , r\ 

an+u j = M — Cj for j = 1, 2, 3, . . . , n; 
an+u> j = Bu for u = 2, 3, . . . r and j = 1 , 2 , . . . , w; 

aP5 = 0 for 0 > n} s > n and v 9^ s 
a>n+ki n+k = Bk+2 + Bk+Z + . . . + BT for k = 1, 2, 3, . . . , r - 2; 

#ra+r— 1, n+r— 1 = = U, ^ n + r , n-f.r = i r . 

Figure 8 illustrates the case r = 5. 

-Ru Bt, Bs, Bi, Bf, 

-Ri, B„ Bz, Bit Bi 

M -Rn Bi, Bz, Bt, Bi 

M - Cn, B3 + Bi + B,, 0 , 0 , 0 , 0 
B2 , 0 , Bi + Bt, 0 , 0 , 0 
B2 , 0 , 0 ,2? l( 0 , 0 
£4 , 0 , 0 , 0 , 0 , 0 
Bb , 0 , 0 , 0 , 0 , Ti 

FIGURE 8 
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The augmented matrix has all its entries non-negative with the same non
zero sum for each row and column. Hence, it contains a permutation set of 
places which includes the place occupied by Tr. Those places which lie in A 
form a sub permutation set of places of rank at least n — r + 1. 

4. Concluding Remarks. The condition (3.2) for our main theorem, 7, 
while sufficient to assure the existence of a sub permutation set of places of 
non-zero entries of rank n — r + 1, may not be the best possible. Since a sub 
permutation matrix of rank k satisfies the condition kM = 5, it seems reason
able to conjecture that the above condition may be replaced by the condition 

n — r + 1 ^ S n — r 

If this latter condition is correct the result must be the best possible. For large 
n (that is, large in comparison with r) the difference between the proved 
result and the conjectured one is very small. 

Note added in proof. (Feb. 20, 1958). The expression term rank has been 
used recently to describe the order of the largest minor of A with a non-zero 
term in the expansion of its determinant. In section 3 information concerning 
the term rank of a matrix A was obtained by embedding A in a doubly 
stochastic matrix. The nature and structure of such embedding has since 
been studied by the authors and the concept of stochastic rank of a matrix 
has been introduced as follows. An n by n matrix A with non-negative entries 
has stochastic rank a if A can be embedded in a doubly stochastic matrix 
by the addition of n — a rows and columns but A cannot be embedded in a 
doubly stochastic matrix of smaller size. The following results concerning the 
stochastic rank a and term rank p have been obtained. 

(a) For any matrix A, p > a. 

(b) For a doubly stochastic matrix, or for a sub permutation matrix p = a. 

(c) For any matrix A, a = [S/M]. 

(d) There are n by n matrices A for which p — a ~ n — 1. 

(e) If S/M is not an integer p > a + 1. 

Furthermore, the conjecture stated in the concluding remarks has now 
been proved and extended to non-square and to infinite matrices. 

These and other results will be proved in a sequel to the present paper. 
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