ON EXPONENTIAL DIOPHANTINE EQUATIONS CONTAINING THE EULER QUOTIENT

NOBUHIRO TERAI

(Received 22 February 2014; accepted 24 August 2014; first published online 14 October 2014)

Abstract

Let a and m be relatively prime positive integers with $a>1$ and $m>2$. Let $\phi(m)$ be Euler's totient function. The quotient $E_{m}(a)=\left(a^{\phi(m)}-1\right) / m$ is called the Euler quotient of m with base a. By Euler's theorem, $E_{m}(a)$ is an integer. In this paper, we consider the Diophantine equation $E_{m}(a)=x^{l}$ in integers $x>1, l>1$. We conjecture that this equation has exactly five solutions (a, m, x, l) except for $(l, m)=(2,3),(2,6)$, and show that if the equation has solutions, then $m=p^{s}$ or $m=2 p^{s}$ with p an odd prime and $s \geq 1$.

2010 Mathematics subject classification: primary 11D61.
Keywords and phrases: exponential Diophantine equations, Fermat quotient, Euler quotient, integer solutions.

1. Introduction

Let p be an odd prime and a a positive integer prime to p. The quotient

$$
Q_{p}(a)=\frac{a^{p-1}-1}{p}
$$

is called the Fermat quotient of p with base a. By Fermat's little theorem, $Q_{p}(a)$ is an integer. Lucas [Lu] proved that $Q_{p}(2)$ is a square only for $p=3$ and 7 (see also Dickson [D, Ch. IV, page 106]). To generalise Lucas' theorem, in the previous papers [OT, T], we studied the Diophantine equation

$$
\begin{equation*}
Q_{p}(a)=x^{l} \tag{1.1}
\end{equation*}
$$

in integers $x>1, l>1$. In particular, we completely solved three cases of (1.1):

$$
Q_{p}(a)=x^{2}, \quad Q_{p}(r)=x^{r}, \quad Q_{p}(2)=x^{l}
$$

where r is an odd prime. Le [Le] showed that if $p \equiv 1(\bmod 4)$ and $p>4 \cdot 10^{176}$, then equation (1.1) has no solutions with $l>2$. Cao [Ca] improved Le's result by showing that if $p \equiv 1(\bmod 4)$, then (1.1) has no solutions with $l>2$. Moreover, Cao [Ca] proved that if $p \equiv 1(\bmod 4)$, then the equation

$$
Q_{p}(a)=2^{n} x^{l}
$$

[^0]has only the solution $(a, p, n, x, l)=(3,5,1,2,3)$ with $l>2$ and $n \geq 1$. Kihel and Levesque [KL] also established similar results.

Let a and m be relatively prime positive integers with $a>1$ and $m>2$. Let $\phi(m)$ be Euler's totient function. The quotient

$$
E_{m}(a)=\frac{a^{\phi(m)}-1}{m}
$$

is called the Euler quotient of m with base a. (See Agoh et al. [ADS] for more on Fermat quotients and Euler quotients.) By Euler's theorem, $E_{m}(a)$ is an integer. In the case where $m=p$ is an odd prime, we have $E_{m}(a)=Q_{p}(a)$.

In this paper, we consider the Diophantine equation

$$
\begin{equation*}
E_{m}(a)=x^{l} \tag{1.2}
\end{equation*}
$$

in integers $x>1, l>1$. When $(l, m)=(2,3)$ or $(2,6),(1.2)$ becomes

$$
a^{2}-3 x^{2}=1 \quad \text { or } \quad a^{2}-6 x^{2}=1
$$

respectively. Since the above equations are Pell equations, there are infinitely many positive integer solutions a, x in each case. From now on, the cases

$$
(l, m)=(2,3),(2,6)
$$

are eliminated as 'exceptional cases'. As an analogue to the results for (1.1) containing Fermat quotients, we propose the following conjecture.

Conjecture 1.1. After eliminating 'exceptional cases' with $(l, m)=(2,3)$ and $(2,6)$, (1.2) has only the solutions $(a, m, x, l)=(2,7,3,2),(3,5,4,2),(3,10,2,3)$, $(5,3,2,3),(7,6,2,3)$.

The following theorems are the main results of this paper.
Theorem 1.2. Suppose that a is even. After eliminating 'exceptional cases' with $(l, m)=(2,3)$ and $(2,6),(1.2)$ has only the solution $(a, m, x, l)=(2,7,3,2)$.

Theorem 1.3. After eliminating 'exceptional cases' with $m=3$ and 6 , the Diophantine equation

$$
\begin{equation*}
E_{m}(a)=x^{2} \tag{1.3}
\end{equation*}
$$

has only the solutions $(a, m, x)=(2,7,3),(3,5,4)$.
Theorem 1.4. Suppose that m has at least two odd prime divisors or $m \equiv 0(\bmod 4)$. Then (1.2) has no solutions.

The following corollary is an immediate consequence of Theorems 1.2-1.4.
Corollary 1.5. If (1.2) has solutions, then $m=p^{s}$ or $m=2 p^{s}$ with p an odd prime and $s \geq 1$.

This paper is organised as follows. In Section 2 we state several lemmas concerning exponential Diophantine equations such as

$$
x^{m}-y^{n}=1, \quad x^{l} \pm 1=2 y^{2}, \quad x^{2}+1=2 y^{l},
$$

with $m>1, n>1$ and $l>2$. In Sections 3-5 we give the proofs of Theorems 1.2-1.4, respectively. Our method is to reduce equation (1.2) to deep results concerning the above equations due to Mihailescu [M] and Benett and Skinner [BS], by comparing a certain factorisation of $a^{\phi(m)}-1$ with relatively prime factors and the prime factorisation of m. In Section 6, using the results of Cao [Ca], we show that if m has no prime divisor p of the form $p \equiv 3(\bmod 4)$ and $l>2$, then (1.2) has only the solution $(a, m, x, l)=(3,10,2,3)$.

2. Preliminaries

We use the following lemmas to prove our Theorems 1.2-6.1.
Lemma 2.1 (Cohn [Co]). The Diophantine equation

$$
x^{4}-D y^{2}=1 \quad(D=5,10,15,30)
$$

has only the positive integer solution $(x, y)=(3,4)$ if $D=5,(x, y)=(2,1)$ if $D=15$, and no solutions if $D=10,30$, respectively.

The following result is well known (cf. Nagell [N, Ch. VII, pages 229-230]).
Lemma 2.2 (Nagell [N]). The Diophantine equation

$$
x^{4} \pm 1=2 y^{2}
$$

has no positive integer solutions x, y with $x y>1$.
In Lemma 2.3, the case $l>4$ follows from [BVY, Theorem 1.5]. Note that the cases $l=3,4$ can be easily solved by Magma [BC].

Lemma 2.3 (Bennett et al. [BVY]). Let l be a positive integer with $l \geq 3$. Then the Diophantine equation

$$
\left|x^{l}-3 y^{l}\right|=2
$$

has no integer solutions x, y with $|x y|>1$.
The following result resolves Catalan's conjecture, which is one of the famous classical problems in number theory.

Lemma 2.4 (Mihailescu [M]). Let x, y, m, n be positive integers with $x, y, m, n>1$. Then the Diophantine equation

$$
x^{m}-y^{n}=1
$$

has only the positive integer solution $(x, y, m, n)=(3,2,2,3)$.
Lemma 2.5 (Bennett and Skinner [BS]). Let l be a positive integer with $l \geq 3$.
(i) The Diophantine equation

$$
x^{l}+1=2 y^{2}
$$

has only the positive integer solutions $(x, y, l)=(1,1, l),(23,78,3)$.
(ii) The Diophantine equation

$$
x^{l}-1=2 y^{2}
$$

has only the positive integer solution $(x, y, l)=(3,11,5)$.
Lemma 2.6.
(i) (Störmer [S]) The Diophantine equation

$$
x^{2}+1=2 y^{l}
$$

has no solutions in integers $x>1, y \geq 1$ and l odd ≥ 3.
(ii) (Ljunggren $[\mathrm{Lj}]$) The Diophantine equation

$$
x^{2}+1=2 y^{4}
$$

has only the positive integer solution $(x, y)=(1,1),(239,13)$.

3. Proof of Theorem 1.2

Let (x, y, z) be a solution of (1.2). Suppose that a is even.
When $m=3$, (1.2) becomes

$$
a^{2}-1=3 x^{l} .
$$

Since a is even, we have the following two cases:

$$
\left\{\begin{array} { l }
{ a + 1 = x _ { 1 } ^ { l } } \\
{ a - 1 = 3 x _ { 2 } ^ { l } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
a+1=3 x_{1}^{l} \\
a-1=x_{2}^{l}
\end{array}\right.\right.
$$

where x_{1} and x_{2} are positive integers with $x=x_{1} x_{2}$. Subtracting the two equations in each pair yields

$$
\left|X^{l}-3 Y^{l}\right|=2
$$

where $X=x_{1}, Y=x_{2}$ or $X=x_{2}, Y=x_{1}$. It follows from Lemma 2.3 that the above equation has no positive integer solutions with $|X Y|>1$. We may thus suppose that $m>3$.

Write the factorisation of an odd m as

$$
m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}},
$$

where the p_{k} for $1 \leq k \leq r$ are distinct odd primes such that $3 \leq p_{i}<p_{j}$ with $1 \leq i<j \leq r$ and the e_{k} for $1 \leq k \leq r$ are positive integers. Then

$$
\phi(m)=p_{1}^{e_{1}-1} p_{2}^{e_{2}-1} \cdots p_{r}^{e_{r}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{r}-1\right)
$$

Note that $\phi(m) \equiv 0\left(\bmod 2^{r}\right)$, and

$$
\phi(m) / 2^{r}>1 \Longleftrightarrow m>3 .
$$

Now (1.2) can be written as

$$
\begin{equation*}
\left(A^{2^{r-1}}+1\right)\left(A^{2^{r-2}}+1\right) \cdots\left(A^{2}+1\right)(A+1)(A-1)=m x^{l}, \tag{3.1}
\end{equation*}
$$

where A is a power of the form

$$
A=a^{\phi(m) / 2^{r}}
$$

Since a is even, the factors of the left-hand side of (3.1) are pairwise relatively prime. Furthermore, the number of distinct prime divisors of m is r, while the number of (relatively prime) factors of the left-hand side of (3.1) is $r+1$. We therefore conclude that

$$
\begin{equation*}
A^{2^{k}}+1=x_{0}^{l} \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
A-1=x_{0}^{l} \tag{3.3}
\end{equation*}
$$

for some integer k with $0 \leq k \leq r-1$ and $x_{0} \mid x$. It follows from Lemma 2.4 that (3.2) has only the solution $\left(A, k, x_{0}, l\right)=\left(2^{3}, 0,3,2\right)$ and (3.3) has no solutions. Consequently we obtain $(a, m, x, l)=(2,7,3,2)$.

4. Proof of Theorem 1.3

Let (x, y, z) be a solution of (1.3). If a is even, then it follows from Theorem 1.2 that (1.3) has only the solution $(a, m, x)=(2,7,3)$. We may thus suppose that a is odd.

We now follow the notation and the line of proof of Theorem 1.2. Since a is odd, either m or x is even. Write the factorisation of m as

$$
m=2^{e_{0}} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}},
$$

where the p_{k} for $1 \leq k \leq r$ are distinct odd primes and e_{0} is a nonnegative integer. Note that

$$
\phi(m) / 2^{r}>2 \Longleftrightarrow m \neq 3,5,6,10,15,30 .
$$

If $m=5,10,15,30$, then it follows from Lemma 2.1 that (1.3) has only the solution $(a, m, x)=(3,5,4)$. Since $l=2$, the cases $m=3,6$ can be eliminated by our assumption. We may thus suppose that $m \neq 3,5,6,10,15,30$. Now (1.3) can be written as

$$
\begin{equation*}
\left(A^{2^{r-1}}+1\right)\left(A^{2^{r-2}}+1\right) \cdots\left(A^{2}+1\right)(A+1)(A-1)=2^{s} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} x_{1}^{2} \tag{4.1}
\end{equation*}
$$

where A is a power of the form $A=a^{\phi(m) / 2^{r}}$ with $\phi(m) / 2^{r}>2$ and s is a positive integer. (Define x_{1} by $x=2 x_{1}$ if m is odd, and $x=x_{1}$ if m is even.) Since a is odd, the greatest common divisor of the factors of the left-hand side of (4.1) is equal to 2 . As in the proof of Theorem 1.2, we therefore conclude that

$$
\begin{equation*}
A^{2^{k}}+1=2^{s_{0}} x_{0}^{2} \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
A-1=2^{s_{0}} x_{0}^{2} \tag{4.3}
\end{equation*}
$$

for some integer k with $0 \leq k \leq r-1, s_{0}=1,2$ and $x_{0} \mid 2 x_{1}$. It follows from Lemmas 2.2, $2.4,2.5$ that (4.2) has only the solution $\left(A, k, s_{0}, x_{0}\right)=\left(23^{3}, 0,1,78\right)$, and (4.3) has only the solution $\left(A, s_{0}, x_{0}\right)=\left(3^{5}, 1,11\right)$. But these yield no solutions of (1.3).

5. Proof of Theorem 1.4

Let (x, y, z) be a solution of (1.2). By Theorems 1.2 and 1.3 , we may suppose that a is odd and $l \geq 3$. We now follow the notation and the line of the proof of Theorem 1.2.

First consider the case where m has at least two odd prime divisors. Since a is odd, either m or x is even. Write the factorisation of m as

$$
m=2^{e_{0}} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}},
$$

where the p_{k} for $1 \leq k \leq r$ are distinct odd primes and e_{0} is a nonnegative integer. Now (1.2) can be written as

$$
\left(A^{2^{r-1}}+1\right)\left(A^{2^{r-2}}+1\right) \cdots\left(A^{2}+1\right)(A+1)(A-1)=2^{s} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} x_{1}^{l}
$$

where $A=a^{\phi(m) / 2^{r}}$ and s is a positive integer. (Define x_{1} by $x=2 x_{1}$ if m is odd, and $x=x_{1}$ if m is even.) Note that for $k \geq 1$ and two odd primes p, q with $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$, we have

$$
A^{2^{k}}+1 \not \equiv 0(\bmod 4), \quad A^{2^{k}}+1 \not \equiv 0(\bmod q), \quad p-1 \equiv 0(\bmod 4) .
$$

Using these properties, we conclude that

$$
\begin{equation*}
A^{2^{k}}+1=2 x_{0}^{l} \tag{5.1}
\end{equation*}
$$

for some integer k with $1 \leq k \leq r-1$ and $x_{0} \mid x_{1}$. It follows from Lemma 2.6 that (5.1) has no solutions.

Next consider the case where $m \equiv 0(\bmod 4)$. When $m=4$, (1.2) becomes

$$
a^{2}-1=4 x^{l} .
$$

This implies that $a+1=2 x_{1}^{l}$ and $a-1=2 x_{2}^{l}$, and hence $1=x_{1}^{l}-x_{2}^{l}$, which is impossible. Thus, $m=2^{s}$ with $s \geq 3$ or $m=4 m_{0}$ with m_{0} odd >1. Then, as above, (1.2) can be reduced to solving (5.1). Therefore, (1.2) has no solutions.

6. The case where $m=p^{s}$ or $m=2 p^{s}$

It follows from Corollary 1.5 that if (1.2) has solutions, then $m=p^{s}$ or $m=2 p^{s}$ with p an odd prime and $s \geq 1$.

Suppose that $m=p^{s}$. Then (1.2) becomes

$$
\left(A^{p^{s-2}}-1\right) \cdot \frac{A^{p^{s-1}}-1}{A^{p^{s-2}}-1}=p^{s} x^{l}
$$

with $A=a^{p-1}$. Recall that $\operatorname{gcd}\left(c-1,\left(c^{p}-1\right) /(c-1)\right)=p$ and $\left(c^{p}-1\right) /(c-1) \equiv$ $p\left(\bmod p^{2}\right)$, for an odd prime p and a positive integer c with $c-1 \equiv 0(\bmod p)$. Since $A-1=a^{p-1}-1 \equiv 0(\bmod p)$ from Fermat's little theorem, we obtain

$$
A^{p^{s-2}}-1=p^{s-1} x_{1}^{l}, \quad \frac{A^{p^{s-1}}-1}{A^{p^{s-2}}-1}=p x_{2}^{l},
$$

with $x_{1} x_{2}=x$. Repeating this, (1.2) with $m=p^{s}$ can be reduced to solving

$$
\begin{equation*}
a^{p-1}-1=p u^{l} \tag{6.1}
\end{equation*}
$$

with $x \equiv 0(\bmod u)$. Similarly, the case $m=2 p^{s}$ also yields the equation

$$
\begin{equation*}
a^{p-1}-1=2 p u^{l}, \tag{6.2}
\end{equation*}
$$

since $\left(A^{p^{j}}-1\right) /\left(A^{p^{j-1}}-1\right)$ is odd. By the results of Cao [Ca], we see that if $p \equiv$ $1(\bmod 4)$ and $l>2$, then (6.1) has no solutions, and (6.2) has only the solution $(a, p, u, l)=(3,5,2,3)$. To sum up, we have shown the following result.
Theorem 6.1. Suppose that m has no prime divisor p of the form $p \equiv 3(\bmod 4)$ and $l>2$. Then (1.2) has only the solution $(a, m, x, l)=(3,10,2,3)$.

Remark 6.2. In general, it is difficult to solve (6.1) and (6.2) when $p \equiv 3(\bmod 4)$ (cf. Cao [Ca] and Le [Le]). But for $(l, m)=(3,3),(3,6),(6.1)$ and (6.2) can be reduced to the following elliptic curves and so can be easily solved by Magma:

$$
E_{9}: Y^{2}=X^{3}+9
$$

with $X=3 u$ and $Y=3 a$, and $\operatorname{rank} E_{9}(\mathbb{Q})=1$ and all integer points on E_{9} are $(X, Y)=(-2, \pm 1),(0, \pm 3),(3, \pm 6),(6, \pm 15),(40, \pm 253)$;

$$
E_{36}: Y^{2}=X^{3}+36
$$

with $X=6 u$ and $Y=6 a$, and $\operatorname{rank} E_{36}(\mathbb{Q})=1$ and all integer points on E_{36} are $(X, Y)=(-3, \pm 3),(0, \pm 6),(4, \pm 10),(12, \pm 42)$. Consequently, (1.2) with $(l, m)=(3,3)$, $(3,6)$ has only the solutions $(a, m, x, l)=(5,3,2,3),(7,6,2,3)$, respectively. These are fourth and fifth solutions listed in Conjecture 1.1.

References

[ADS] T. Agoh, K. Dilcher and L. Skula, 'Fermat quotients for composite moduli', J. Number Theory 66 (1997), 29-50.
[BS] M. A. Bennett and C. Skinner, 'Ternary Diophantine equations via Galois representations and modular forms', Canad. J. Math. 56 (2004), 23-54.
[BVY] M. A. Bennett, V. Vatsal and S. Yazdani, 'Ternary Diophantine equations of signature ($p, p, 3$)', Compositio Math. 140 (2004), 1399-1416.
[BC] W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, available online at http://magma.maths.usyd.edu.au/magma/.
[Ca] Z. Cao, 'The Diophantine equations $x^{4}-y^{4}=z^{p}$ and $x^{4}-1=d y^{q}$, C. R. Math. Rep. Acad. Sci. Can. 21 (1999), 23-27.
[Co] J.H.E. Cohn, 'The Diophantine equations $x^{4}-D y^{2}=1$, II', Acta Arith. 78 (1996/1997), 401-403.
[D] L.E. Dickson, History of the Theory of Numbers, Vol. I (Chelsea, New York, 1971).
[KL] O. Kihel and C. Levesque, 'On a few Diophantine equations related to Fermat's last theorem', Canad. Math. Bull. 45 (2002), 247-256.
[Le] M. H. Le, 'A note on the Diophantine equation $x^{p-1}-1=p y^{q}$ ', C. R. Math. Rep. Acad. Sci. Can. 15 (1993), 121-124.
[Lj] W. Ljunggren, 'Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27.
[Lu] E. Lucas, Théorie des nombres (Gauthier-Villars, Paris, 1891), reprinted (A. Blanchard, Paris, 1961).
[M] P. Mihilescu, 'Primary cyclotomic units and a proof of Catalan's conjecture', J. reine angew. Math. 572 (2004), 167-195.
[N] T. Nagell, Introduction to Number Theory, 2nd edn (Chelsea, New York, 1964).
[OT] H. Osada and N. Terai, 'Generalization of Lucas' Theorem for Fermat's quotient', C. R. Math. Rep. Acad. Sci. Can. 11 (1989), 115-120.
[S] C. Störmer, 'L'équation $m \arctan 1 / x+n \arctan 1 / y=k \pi / 4$ ', Bull. Soc. Math. France 27 (1899), 160-170.
[T] N. Terai, 'Generalization of Lucas' Theorem for Fermat's quotient II', Tokyo J. Math. 13 (1990), 277-287.

NOBUHIRO TERAI, Department of Computer Science and Intelligent Systems, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192,
Japan
e-mail: terai-nobuhiro@oita-u.ac.jp

[^0]: (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

