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Abstract

Let a and m be relatively prime positive integers with a > 1 and m > 2. Let φ(m) be Euler’s totient function.
The quotient Em(a) = (aφ(m) − 1)/m is called the Euler quotient of m with base a. By Euler’s theorem,
Em(a) is an integer. In this paper, we consider the Diophantine equation Em(a) = xl in integers x > 1, l > 1.
We conjecture that this equation has exactly five solutions (a,m, x, l) except for (l,m) = (2, 3), (2, 6), and
show that if the equation has solutions, then m = ps or m = 2ps with p an odd prime and s ≥ 1.
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1. Introduction

Let p be an odd prime and a a positive integer prime to p. The quotient

Qp(a) =
ap−1 − 1

p

is called the Fermat quotient of p with base a. By Fermat’s little theorem, Qp(a) is
an integer. Lucas [Lu] proved that Qp(2) is a square only for p = 3 and 7 (see also
Dickson [D, Ch. IV, page 106]). To generalise Lucas’ theorem, in the previous papers
[OT, T], we studied the Diophantine equation

Qp(a) = xl (1.1)

in integers x > 1, l > 1. In particular, we completely solved three cases of (1.1):

Qp(a) = x2, Qp(r) = xr, Qp(2) = xl,

where r is an odd prime. Le [Le] showed that if p ≡ 1 (mod 4) and p > 4 · 10176, then
equation (1.1) has no solutions with l > 2. Cao [Ca] improved Le’s result by showing
that if p ≡ 1 (mod 4), then (1.1) has no solutions with l > 2. Moreover, Cao [Ca]
proved that if p ≡ 1 (mod 4), then the equation

Qp(a) = 2nxl
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has only the solution (a, p, n, x, l) = (3, 5, 1, 2, 3) with l > 2 and n ≥ 1. Kihel and
Levesque [KL] also established similar results.

Let a and m be relatively prime positive integers with a > 1 and m > 2. Let φ(m) be
Euler’s totient function. The quotient

Em(a) =
aφ(m) − 1

m

is called the Euler quotient of m with base a. (See Agoh et al. [ADS] for more on
Fermat quotients and Euler quotients.) By Euler’s theorem, Em(a) is an integer. In the
case where m = p is an odd prime, we have Em(a) = Qp(a).

In this paper, we consider the Diophantine equation

Em(a) = xl (1.2)

in integers x > 1, l > 1. When (l,m) = (2, 3) or (2, 6), (1.2) becomes

a2 − 3x2 = 1 or a2 − 6x2 = 1,

respectively. Since the above equations are Pell equations, there are infinitely many
positive integer solutions a, x in each case. From now on, the cases

(l,m) = (2, 3), (2, 6)

are eliminated as ‘exceptional cases’. As an analogue to the results for (1.1) containing
Fermat quotients, we propose the following conjecture.

Conjecture 1.1. After eliminating ‘exceptional cases’ with (l, m) = (2, 3) and
(2, 6), (1.2) has only the solutions (a,m, x, l) = (2, 7, 3, 2), (3, 5, 4, 2), (3, 10, 2, 3),
(5, 3, 2, 3), (7, 6, 2, 3).

The following theorems are the main results of this paper.

Theorem 1.2. Suppose that a is even. After eliminating ‘exceptional cases’ with
(l,m) = (2, 3) and (2, 6), (1.2) has only the solution (a,m, x, l ) = (2, 7, 3, 2).

Theorem 1.3. After eliminating ‘exceptional cases’ with m = 3 and 6, the Diophantine
equation

Em(a) = x2 (1.3)

has only the solutions (a,m, x) = (2, 7, 3), (3, 5, 4).

Theorem 1.4. Suppose that m has at least two odd prime divisors or m ≡ 0 (mod 4).
Then (1.2) has no solutions.

The following corollary is an immediate consequence of Theorems 1.2–1.4.

Corollary 1.5. If (1.2) has solutions, then m = ps or m = 2ps with p an odd prime
and s ≥ 1.

https://doi.org/10.1017/S0004972714000719 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000719


[3] On exponential Diophantine equations containing the Euler quotient 13

This paper is organised as follows. In Section 2 we state several lemmas concerning
exponential Diophantine equations such as

xm − yn = 1, xl ± 1 = 2y2, x2 + 1 = 2yl,

with m > 1, n > 1 and l > 2. In Sections 3–5 we give the proofs of Theorems 1.2–1.4,
respectively. Our method is to reduce equation (1.2) to deep results concerning the
above equations due to Mihailescu [M] and Benett and Skinner [BS], by comparing
a certain factorisation of aφ(m) − 1 with relatively prime factors and the prime
factorisation of m. In Section 6, using the results of Cao [Ca], we show that if m
has no prime divisor p of the form p ≡ 3 (mod 4) and l > 2, then (1.2) has only the
solution (a,m, x, l) = (3, 10, 2, 3).

2. Preliminaries

We use the following lemmas to prove our Theorems 1.2–6.1.

Lemma 2.1 (Cohn [Co]). The Diophantine equation

x4 − Dy2 = 1 (D = 5, 10, 15, 30)

has only the positive integer solution (x, y) = (3, 4) if D = 5, (x, y) = (2, 1) if D = 15,
and no solutions if D = 10, 30, respectively.

The following result is well known (cf. Nagell [N, Ch. VII, pages 229–230]).

Lemma 2.2 (Nagell [N]). The Diophantine equation

x4 ± 1 = 2y2

has no positive integer solutions x, y with xy > 1.

In Lemma 2.3, the case l > 4 follows from [BVY, Theorem 1.5]. Note that the cases
l = 3, 4 can be easily solved by Magma [BC].

Lemma 2.3 (Bennett et al. [BVY]). Let l be a positive integer with l ≥ 3. Then the
Diophantine equation

|xl − 3yl| = 2

has no integer solutions x, y with |xy| > 1.

The following result resolves Catalan’s conjecture, which is one of the famous
classical problems in number theory.

Lemma 2.4 (Mihailescu [M]). Let x, y,m,n be positive integers with x, y,m,n > 1. Then
the Diophantine equation

xm − yn = 1

has only the positive integer solution (x, y,m, n) = (3, 2, 2, 3).

Lemma 2.5 (Bennett and Skinner [BS]). Let l be a positive integer with l ≥ 3.
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(i) The Diophantine equation
xl + 1 = 2y2

has only the positive integer solutions (x, y, l) = (1, 1, l), (23, 78, 3).
(ii) The Diophantine equation

xl − 1 = 2y2

has only the positive integer solution (x, y, l) = (3, 11, 5).

Lemma 2.6.

(i) (Störmer [S]) The Diophantine equation

x2 + 1 = 2yl

has no solutions in integers x > 1, y ≥ 1 and l odd ≥ 3.
(ii) (Ljunggren [Lj]) The Diophantine equation

x2 + 1 = 2y4

has only the positive integer solution (x, y) = (1, 1), (239, 13).

3. Proof of Theorem 1.2

Let (x, y, z) be a solution of (1.2). Suppose that a is even.
When m = 3, (1.2) becomes

a2 − 1 = 3xl.

Since a is even, we have the following two cases:a + 1 = xl
1

a − 1 = 3xl
2

or

a + 1 = 3xl
1

a − 1 = xl
2,

where x1 and x2 are positive integers with x = x1x2. Subtracting the two equations in
each pair yields

|Xl − 3Y l| = 2,

where X = x1, Y = x2 or X = x2, Y = x1. It follows from Lemma 2.3 that the above
equation has no positive integer solutions with |XY | > 1. We may thus suppose that
m > 3.

Write the factorisation of an odd m as

m = pe1
1 pe2

2 · · · p
er
r ,

where the pk for 1 ≤ k ≤ r are distinct odd primes such that 3 ≤ pi < p j with
1 ≤ i < j ≤ r and the ek for 1 ≤ k ≤ r are positive integers. Then

φ(m) = pe1−1
1 pe2−1

2 · · · per−1
r (p1 − 1)(p2 − 1) · · · (pr − 1).
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Note that φ(m) ≡ 0 (mod 2r), and

φ(m)/2r > 1⇐⇒ m > 3.

Now (1.2) can be written as

(A2r−1
+ 1)(A2r−2

+ 1) · · · (A2 + 1)(A + 1)(A − 1) = mxl, (3.1)

where A is a power of the form
A = aφ(m)/2r

.

Since a is even, the factors of the left-hand side of (3.1) are pairwise relatively prime.
Furthermore, the number of distinct prime divisors of m is r, while the number of
(relatively prime) factors of the left-hand side of (3.1) is r + 1. We therefore conclude
that

A2k
+ 1 = xl

0 (3.2)

or
A − 1 = xl

0 (3.3)

for some integer k with 0 ≤ k ≤ r − 1 and x0|x. It follows from Lemma 2.4 that (3.2) has
only the solution (A, k, x0, l) = (23, 0, 3, 2) and (3.3) has no solutions. Consequently
we obtain (a,m, x, l) = (2, 7, 3, 2). �

4. Proof of Theorem 1.3

Let (x, y, z) be a solution of (1.3). If a is even, then it follows from Theorem 1.2 that
(1.3) has only the solution (a,m, x) = (2, 7, 3). We may thus suppose that a is odd.

We now follow the notation and the line of proof of Theorem 1.2. Since a is odd,
either m or x is even. Write the factorisation of m as

m = 2e0 pe1
1 pe2

2 · · · p
er
r ,

where the pk for 1 ≤ k ≤ r are distinct odd primes and e0 is a nonnegative integer. Note
that

φ(m)/2r > 2⇐⇒ m , 3, 5, 6, 10, 15, 30.

If m = 5, 10, 15, 30, then it follows from Lemma 2.1 that (1.3) has only the solution
(a,m, x) = (3,5,4). Since l = 2, the cases m = 3,6 can be eliminated by our assumption.
We may thus suppose that m , 3, 5, 6, 10, 15, 30. Now (1.3) can be written as

(A2r−1
+ 1)(A2r−2

+ 1) · · · (A2 + 1)(A + 1)(A − 1) = 2s pe1
1 pe2

2 · · · p
er
r x2

1, (4.1)

where A is a power of the form A = aφ(m)/2r
with φ(m)/2r > 2 and s is a positive integer.

(Define x1 by x = 2x1 if m is odd, and x = x1 if m is even.) Since a is odd, the greatest
common divisor of the factors of the left-hand side of (4.1) is equal to 2. As in the
proof of Theorem 1.2, we therefore conclude that

A2k
+ 1 = 2s0 x2

0 (4.2)
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or
A − 1 = 2s0 x2

0 (4.3)

for some integer k with 0 ≤ k ≤ r − 1, s0 = 1,2 and x0|2x1. It follows from Lemmas 2.2,
2.4, 2.5 that (4.2) has only the solution (A, k, s0, x0) = (233, 0, 1, 78), and (4.3) has only
the solution (A, s0, x0) = (35, 1, 11). But these yield no solutions of (1.3). �

5. Proof of Theorem 1.4

Let (x, y, z) be a solution of (1.2). By Theorems 1.2 and 1.3, we may suppose that a
is odd and l ≥ 3. We now follow the notation and the line of the proof of Theorem 1.2.

First consider the case where m has at least two odd prime divisors. Since a is odd,
either m or x is even. Write the factorisation of m as

m = 2e0 pe1
1 pe2

2 · · · p
er
r ,

where the pk for 1 ≤ k ≤ r are distinct odd primes and e0 is a nonnegative integer.
Now (1.2) can be written as

(A2r−1
+ 1)(A2r−2

+ 1) · · · (A2 + 1)(A + 1)(A − 1) = 2s pe1
1 pe2

2 · · · p
er
r xl

1,

where A = aφ(m)/2r
and s is a positive integer. (Define x1 by x = 2x1 if m is odd, and

x = x1 if m is even.) Note that for k ≥ 1 and two odd primes p, q with p ≡ 1 (mod 4)
and q ≡ 3 (mod 4), we have

A2k
+ 1 . 0 (mod 4), A2k

+ 1 . 0 (mod q), p − 1 ≡ 0 (mod 4).

Using these properties, we conclude that

A2k
+ 1 = 2xl

0 (5.1)

for some integer k with 1 ≤ k ≤ r − 1 and x0|x1. It follows from Lemma 2.6 that (5.1)
has no solutions.

Next consider the case where m ≡ 0 (mod 4). When m = 4, (1.2) becomes

a2 − 1 = 4xl.

This implies that a + 1 = 2xl
1 and a − 1 = 2xl

2, and hence 1 = xl
1 − xl

2, which is
impossible. Thus, m = 2s with s ≥ 3 or m = 4m0 with m0 odd > 1. Then, as above,
(1.2) can be reduced to solving (5.1). Therefore, (1.2) has no solutions. �

6. The case where m = ps or m = 2ps

It follows from Corollary 1.5 that if (1.2) has solutions, then m = ps or m = 2ps with
p an odd prime and s ≥ 1.

Suppose that m = ps. Then (1.2) becomes

(Aps−2
− 1) ·

Aps−1
− 1

Aps−2
− 1

= psxl
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with A = ap−1. Recall that gcd(c − 1, (cp − 1)/(c − 1)) = p and (cp − 1)/(c − 1) ≡
p (mod p2), for an odd prime p and a positive integer c with c − 1 ≡ 0 (mod p). Since
A − 1 = ap−1 − 1 ≡ 0 (mod p) from Fermat’s little theorem, we obtain

Aps−2
− 1 = ps−1xl

1,
Aps−1

− 1
Aps−2

− 1
= pxl

2,

with x1x2 = x. Repeating this, (1.2) with m = ps can be reduced to solving

ap−1 − 1 = pul (6.1)

with x ≡ 0 (mod u). Similarly, the case m = 2ps also yields the equation

ap−1 − 1 = 2pul, (6.2)

since (Ap j
− 1)/(Ap j−1

− 1) is odd. By the results of Cao [Ca], we see that if p ≡
1 (mod 4) and l > 2, then (6.1) has no solutions, and (6.2) has only the solution
(a, p, u, l) = (3, 5, 2, 3). To sum up, we have shown the following result.

Theorem 6.1. Suppose that m has no prime divisor p of the form p ≡ 3 (mod 4) and
l > 2. Then (1.2) has only the solution (a,m, x, l) = (3, 10, 2, 3).

Remark 6.2. In general, it is difficult to solve (6.1) and (6.2) when p ≡ 3 (mod 4)
(cf. Cao [Ca] and Le [Le]). But for (l,m) = (3, 3), (3, 6), (6.1) and (6.2) can be reduced
to the following elliptic curves and so can be easily solved by Magma:

E9 : Y2 = X3 + 9

with X = 3u and Y = 3a, and rank E9(Q) = 1 and all integer points on E9 are
(X,Y) = (−2,±1), (0,±3), (3,±6), (6,±15), (40,±253);

E36 : Y2 = X3 + 36

with X = 6u and Y = 6a, and rank E36(Q) = 1 and all integer points on E36 are
(X, Y) = (−3,±3), (0,±6), (4,±10), (12,±42). Consequently, (1.2) with (l,m) = (3, 3),
(3,6) has only the solutions (a,m, x, l) = (5, 3, 2, 3), (7, 6, 2, 3), respectively. These are
fourth and fifth solutions listed in Conjecture 1.1.

References
[ADS] T. Agoh, K. Dilcher and L. Skula, ‘Fermat quotients for composite moduli’, J. Number Theory

66 (1997), 29–50.
[BS] M. A. Bennett and C. Skinner, ‘Ternary Diophantine equations via Galois representations and

modular forms’, Canad. J. Math. 56 (2004), 23–54.
[BVY] M. A. Bennett, V. Vatsal and S. Yazdani, ‘Ternary Diophantine equations of signature (p, p, 3)’,

Compositio Math. 140 (2004), 1399–1416.
[BC] W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics,

University of Sydney, available online at http://magma.maths.usyd.edu.au/magma/.
[Ca] Z. Cao, ‘The Diophantine equations x4 − y4 = zp and x4 − 1 = dyq’, C. R. Math. Rep. Acad. Sci.

Can. 21 (1999), 23–27.

https://doi.org/10.1017/S0004972714000719 Published online by Cambridge University Press

http://magma.maths.usyd.edu.au/magma/
https://doi.org/10.1017/S0004972714000719


18 N. Terai [8]

[Co] J.H.E. Cohn, ‘The Diophantine equations x4 − Dy2 = 1, II’, Acta Arith. 78 (1996/1997),
401–403.

[D] L.E. Dickson, History of the Theory of Numbers, Vol. I (Chelsea, New York, 1971).
[KL] O. Kihel and C. Levesque, ‘On a few Diophantine equations related to Fermat’s last theorem’,

Canad. Math. Bull. 45 (2002), 247–256.
[Le] M. H. Le, ‘A note on the Diophantine equation xp−1 − 1 = pyq’, C. R. Math. Rep. Acad. Sci.

Can. 15 (1993), 121–124.
[Lj] W. Ljunggren, ‘Zur Theorie der Gleichung x2 + 1 = Dy4’, Avh. Norske Vid. Akad. Oslo 5 (1942),

1–27.
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