
9

Relational Databases and Multiple Tables

In the previous chapter of this book, I gave an introduction to a rela-
tional database system and the SQL language that we use to interact with
it. We defined a new table, populated it with data, and extracted and
aggregated the information contained in it. For illustration purposes, this
introduction used a single table only; however, as I emphasized repeatedly,
the power of relational databases lies in their ability to manage many
different, interlinked tables simultaneously. This is why in this chapter,
we are adding more tables to our database.
At this point, let us quickly go through the motivation again for dis-

tributing data across multiple tables. In Chapter 3, we discussed good and
bad designs: Ideally, you should set up your tables such that they avoid
data redundancy – each piece of information should be stored only once in
the database. In our example about elections and the parties participating
in these elections, how could redundancy possibly occur? Imagine for a
moment that we were to store elections and parties in one table:

country_name election_date vote_share party_name_short family_name

Austria 1919-02-16 40.75 SPÖ Social dem.
Austria 1920-10-17 35.99 SPÖ Social dem.
Austria 1923-10-21 39.60 SPÖ Social dem.

The first three columns in this table contain information about election
results: The country they are held in, the date, and the vote share of the
given party. The remaining two columns contain the party information:
The short name, as well as the party family. This short example shows
that we have redundant data: The short name and the party family are

121

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

122 9 Relational Databases and Multiple Tables

repeated every time a party – in our case, the Austrian Social Democrats
(SPÖ) – participates in an election. This is why the ParlGov project splits
up their entire database into multiple tables. By separating data on elec-
tion results from the data on political parties, we can reduce redundancy
in the database. This is what our above example looks like in the actual
ParlGov database: We have one table on election results (which is the one
we used in the previous chapter):

country_name election_date vote_share party_id

Austria 1919-02-16 40.75 973
Austria 1920-10-17 35.99 973
Austria 1923-10-21 39.60 973

and a second one on political parties (all shortened for presentational
purposes):

party_id party_name_short family_name

973 SPÖ Social dem.

By storing the party information in a separate table, we end up with
one record for each party, rather than repeating this information for every
election the party participates in. If we want to add new variables for
parties (e.g., whether they have been coded as populist), we can do this by
updating one row for each party. This facilitates the management of your
data significantly and reduces errors. The above example also shows how
we can link entries across tables: The parties results table has a party_id
column, which we use in the elections table to identify the party that the
given result belongs to. The use of these references is crucial, since we deal
with different tables whose entries are linked to each other. In the world
of relational databases, we often use integer numbers for this purpose.
A unique identifier for a record in a table – such as party_id in the parties
table – is called a primary key. A reference in a table that points to a record
in a different table – such as party_id in the elections table – is called a
foreign key. Much of the work we do below deals with these keys.

9.1 application: the rise of populism in europe

In this chapter, we continue our work with election results, but extend
it in a new direction. Over the recent decade, the Western world – and
Europe in particular – has seen a strong rise in populism. Cas Mudde

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.2 Adding the Tables 123

defines populism as a political discourse or even an ideology based on
the “relationship between the people (good) and the elite (bad)” (Mudde,
2004). In this chapter, we want to track the rise of populism over time.
Specifically, we do this by measuring the electoral success of political
parties that have been defined as “populist.” In this example, we do not
differentiate between different types of populism, as for example, right-
and left-wing populism – readers that are interested in only one or the
other can easily modify the example.
For this exercise, we need two tables in addition to the election results

we used in the previous chapter. So far, we only used data on elections
from ParlGov to compute a Gallagher index of disproportionality. In
the elections table, however, parties are only referenced with an internal
identifier (the party_id), which is why we need to bring in a separate
table on political parties to obtain the names of the parties as well as
other information about them. Since our goal is to measure the success of
populism by the vote share of populist parties, we need to know whether
a party is considered a populist party or not. For this, we rely on the
PopuList database, a list of populist parties in Europe (Rooduijn et al.,
2019). As of Version 2.0, the PopuList dataset can easily be linked to
parties from ParlGov: Each party in the PopuList has a parlgov_id, which
corresponds to the party_id in ParlGov. Combining data from ParlGov
and the PopuList ultimately allows us to track the success of populist
parties over time in parliamentary elections.

9.2 adding the tables

Let us now do some practical work to see tables and the references
between them in action. Do not forget to create a new database, following
the instructions in Chapter 2. We use the dbadvanced database for this
chapter and connect to it:

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "dbadvanced",
user = "postgres",
password = "pgpasswd")

We first add the elections table from the previous chapter, using the cor-
responding function fromR’s DBI interface: dbWriteTable(). This function
simplifies the import, since it automatically creates the table structure for
us. This is convenient, but you have to make sure that the column types
in the initial R data frame have the correct types, as they will be used to

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

124 9 Relational Databases and Multiple Tables

specify the columns in the database table (see the previous chapter). We
also add the year again as a separate column:

elections <- read.csv(file.path("ch09", "elections.csv"))
elections$election_date <- as.Date(elections$election_date)
dbWriteTable(db, "elections", elections)
dbExecute(db,
"ALTER TABLE elections ADD COLUMN year integer")

dbExecute(db,
"UPDATE elections SET year = extract(year from election_date)")

Our next step is to add the ParlGov table with political parties to our
database, using again the functionality provided by R’s DBI extension:

parties <- read.csv(file.path("ch09", "parties.csv"))
dbWriteTable(db, "parties", parties)

Since ParlGov does not provide information about whether a party is
considered populist or not, we rely on the PopuList data described above.
Before we can later merge this data to our parties table, we need to also
import it as a table, using the file populist.csv in the repository for this
chapter:

populist <- read.csv(file.path("ch09", "populist.csv"))
dbWriteTable(db, "populist", populist)

You should now have three tables in your database: the elections table
from the previous chapter, and the parties and populist tables that we
just created. Let us check if this is the case:

dbListTables(db)

[1] "elections" "parties" "populist"

The structure of the parties table should be obvious. Most impor-
tantly, as already mentioned above, each party has a party_id, which
corresponds to the party_id in the elections table and helps us link each
election result to the party it belongs to. This is similar for the PopuList
table (or rather, the reduced version I have prepared for this chapter),
where each party has a parlgov_id, along with information on whether
it qualifies as a “populist” party according to the PopuList dataset, and
whether it is considered to be a party on the far left or the far right:

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.3 Joining the Tables 125

dbGetQuery(db, "SELECT * FROM populist LIMIT 3")

parlgov_id populist farleft farright
1 1536 1 0 1
2 50 1 0 1
3 669 1 0 0

9.3 joining the tables

Before we work with all three tables, let me demonstrate the linking of
tables using the two tables from ParlGov only. To briefly repeat, we have
a table with data on election results (elections), and a parties table with
data on parties. Each entry in elections refers to a party from parties by
means of a party identifier, called party_id in both tables. In the database
world, this is called a “one-to-many” relationship between the two tables,
since each party belongs to several election results – it usually partici-
pated in several elections. The combination of two tables that contain
corresponding data is called a “join.” Joining two tables is a temporary
operation – in contrast to a merge operation,we do not end up with a new,
persistent table that contains the linked records. Rather, a join creates
a temporary dataset with the corresponding records, which we can use
for further data operations, or export for later analysis. The storage of
our data, however, is still done in separate tables, which helps us avoid
redundant data in our database.
So, how do we join tables in SQL? Again, we use a SELECT statement

for this. All we need to change is the FROM part of the statement, such that
it does not select from a single table, but from a set of two joined tables.
This is indicated by the JOIN keyword:

dbGetQuery(db,
"SELECT
elections.country_name, election_date, party_name_short, family_name

FROM elections JOIN parties ON elections.party_id = parties.party_id
LIMIT 3")

country_name election_date party_name_short family_name
1 Denmark 1915-05-07 RV Liberal
2 Denmark 1953-09-22 GrFa no family
3 Greece 1977-11-20 EDA Communist/Socialist

It is not difficult to understand what this statement does: elections
should be joined to parties, by linking entries where the party_id in

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

126 9 Relational Databases and Multiple Tables

elections (which is a foreign key) corresponds to the party_id in parties
(which is a primary key). It is not a requirement that the join attributes in
the two tables have the same name, but we often follow this convention
to make the relationship more obvious. The variables we select – the
country name, the election date, etc. – are specified in the first part of the
SELECT statement. Since country_name appears both in the elections and the
parties table, we need to tell SQL which one we want, by specifying the
name of the table before the name of the field (elections.country_name).
The type of join that is carried out with the simple JOIN keyword is

called an inner join – in fact, you could write INNER JOIN instead and get
the exact same result. An inner join links all pairs of entries from the two
tables that have the same value in the join attribute. That is exactly what
we want in the vast majority of cases. Although much less frequently used,
there are other types of joins that retain all records from one of the tables,
but only the matching records from the other (the LEFT JOIN and the RIGHT
JOIN). Even though the join of the two tables is only temporary, we can
use it in the SELECT statement as if it were a new, big table. For example,
we can count the number of records:

dbGetQuery(db,
"SELECT count(*)
FROM elections JOIN parties ON elections.party_id = parties.party_id")

count
1 5247

Alternatively, we can run aggregations on it. Here is an example that
makes use of the party_family variable contained in ParlGov: We com-
pute the average vote share of social democratic parties per year, to see
the ups and downs in their electoral success:

dbGetQuery(db,
"SELECT year, avg(vote_share)
FROM elections JOIN parties ON elections.party_id = parties.party_id
WHERE family_name = 'Social democracy'
GROUP BY year
ORDER BY year
LIMIT 3")

year avg
1 1900 12.7500
2 1901 17.0600
3 1902 9.4025

In this statement, you recognize all the different parts of a data aggre-
gation, as introduced in the previous chapter: the grouping variable year

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.4 Merging Data from the PopuList 127

(computed by extracting the year from the election date), and the aggre-
gation function (the average over the vote_share values for a given year).
Importantly, we filter out the social democratic parties with the WHERE
keyword, since these are the parties we are interested in. Finally, we order
the result by year, and truncate it for display purposes using the LIMIT
keyword – if you would like to see the entire time series, just remove this
last part of the statement.

9.4 merging data from the populist

In the previous section,we joined the elections and the parties tables. Join-
ing means that the two tables are dynamically combined within a query,
while the original data remains in separate tables. Is this what we should
also do when linking parties from ParlGov with data on populist parties
from the PopuList? We could do a simple join on the party identifier:

test <- dbGetQuery(db,
"SELECT *
FROM parties JOIN populist ON parties.party_id = populist.parlgov_id")

nrow(test)

[1] 199

As per the logic of an inner join, we only get the matching records from
both tables – this is why the result of the join contains only 199 entries,
which is a small subset of the almost 1,300 parties from ParlGov. It is
easy to see why: Unlike ParlGov, which goes back more than a century,
the PopuList covers only recent years. Also, it identifies only populist
and eurosceptic parties, which is why it contains only a subset of recent
parties.
Our parties table and the data from the PopuList are coded at exactly

the same level – both contain information about political parties as unit
of observation. In other words, the relationship between the two is a one-
to-one relationship rather than the one-to-many relationship we have for
parties and elections. While it is technically possible to use SQL joins
whenever we want to combine information from two tables, in this case
it may be more useful to merge the variables from the PopuList to our
parties table. Again, merging means that we amend the parties table,
such that it persistently stores the additional variables from the PopuList.
We can then simply access the information about whether a party is con-
sidered as populist in the parties table, rather than having to join it with
populist every time.

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

128 9 Relational Databases and Multiple Tables

To merge the PopuList coding to the existing parties table, we first
add a new column:

dbExecute(db, "ALTER TABLE parties ADD COLUMN populist integer")

The default value of this new column is NULL (the SQL value for missing
data).We then use an amended version of an UPDATE statement,which uses
a second table to update the values in the given table. More precisely, it
links the two tables similar to a join, and copies the values of the populist
variable from the populist_parties table to the parties table:

dbExecute(db,
"UPDATE parties
SET populist = populist.populist
FROM populist
WHERE parties.party_id = populist.parlgov_id")

Again, the logic of this statement is not difficult to understand. We
update the parties table and want to set the values of the populist field
to the corresponding ones from the populist_parties table. In the WHERE
clause, we need to specify – similar to the join above – what attributes
the two tables should be linked on. Importantly, this updates the values
only for the parties contained in the PopuList data, because these are the
only ones that can be matched. For all other parties, the default values
(missing, or in the database terminology: NULL) remain.
With the new variable populist now being part of our table with politi-

cal parties,we canmodify the above aggregation query such that it counts,
for example, the number of populist parties per year that participated in
elections:

dbGetQuery(db,
"SELECT year, count(*) AS num_parties
FROM elections JOIN parties ON elections.party_id = parties.party_id
WHERE populist = 1 AND year >= 1998
GROUP BY year
ORDER BY year DESC
LIMIT 5")

year num_parties
1 2017 19
2 2016 18
3 2015 23
4 2014 13
5 2013 18

This statement is very similar to the one above, where we computed
the average vote share of social democratic parties by year.We change the

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.5 Maintaining Referential Integrity 129

aggregation function to output the count of elections, join the two tables
as above, and restrict the combined result to parties that are populist
(populist = 1) and elections in 1998 and later, since this is the first year
for which there is data from the PopuList.

9.5 maintaining referential integrity

When introducing relational databases, we discussed some of their
advantages for data management and processing. One of them was
that databases can help us avoid data redundancy, but at the same time
ensure that our data remains consistent. For example, by splitting up the
data on election results and the parties participating in these elections,
we can avoid that information on parties is repeatedly stored every time
a party participates in an election. Splitting data into several tables may
be useful for eliminating data redundancy, but at the same time creates
other problems. As we have seen above, every row in the elections
table has a pointer to the corresponding row in the parties table. This
is implemented by means of an integer number – party_id in elections
points to the corresponding party_id in parties. The latter is a primary
key in the parties table – a field that uniquely identifies an entry. The
former is a foreign key in the elections table – a field that references an
entry in another table.
Problems can now arise if the pointer to the entry in the other table

is invalid – in our example, this would mean that we have a row with
party_id = 1556 in elections, but no corresponding entry with party_id
= 1556 in the parties table. In other words, we would have an election
result for a party that does not exist in our database, and our data would
therefore be inconsistent. In database terminology, this is called a viola-
tion of referential integrity. Referential integrity applies if every reference
between tables is valid, that is, if it points to an existing entry in the
respective table. Of course, we want referential integrity at all times, since
otherwise we would have major gaps in our data – in this case, an election
result we cannot link to a party. How can we ensure that errors of this
kind do not arise?
At the moment, the database does nothing to help us address this

challenge.We could, for example, delete any party from the parties table,
leaving a number of invalid foreign keys in the elections table.Why? The
reason is that our database does not “know”yet that one field in one table
references entries in another table. Let us proceed step by step to define
this relationship in SQL. First, we need to introduce party_id as a primary

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

130 9 Relational Databases and Multiple Tables

key in the parties table. Again, a primary key is a field (or in some case,
a combination of two or more fields) that uniquely identifies each line in
the table. It is common practice to use positive integer values for this –
luckily, we already have such a field in our table and only need to define
it as primary key. We do this using the ALTER TABLE statement again, but
this time without adding a new field:

dbExecute(db, "ALTER TABLE parties ADD PRIMARY KEY (party_id)")

Whenwe define a primary key, the database does different things.Most
importantly, it introduces logical checks, for example, by ensuring that no
single value of the primary key occurs more than once. For example, try
adding a new record with 1739 as the value for the primary key:

dbExecute(db,
"INSERT INTO parties (party_id, party_name_short)
VALUES (1739, 'New Party')")

This value already exists in the table, which is why PostgreSQL refuses
to add the new entry. We get an error message telling us that the value
1739 already exists as a primary key.
Rather than using an existing field as primary key, you can also have

the database create and maintain one for you. Simply add a new field of
the type serial, and you will get an integer variable that automatically
increments when new records are added to the table (you do not need to
provide values for it). If you define this field as primary key, you never
have to worry about duplicate key values anymore.
We now have a primary key for the parties table, and PostgreSQL

ensures that the key does what it is supposed to do: uniquely identify
parties in our database. The second step to have the database check and
maintain referential integrity of our data is to define the party_id field in
elections as foreign key. We again use an ALTER TABLE statement to do
this:

dbExecute(db,
"ALTER TABLE elections
ADD FOREIGN KEY (party_id) REFERENCES parties (party_id)")

Using this statement, we tell the database that party_id in elections
points to party_id in parties. This means that all party IDs used in

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.6 Results: The Rise of Populism in Europe 131

the elections table must be present somewhere in the parties table.
Since PostgreSQL created the foreign key without any error messages,
we know that this is the case. However, once we attempt to delete a
party from parties, the database blocks this operation if this party is
referenced from elections. Try this statement:

dbExecute(db, "DELETE FROM parties WHERE party_id = 1739")

Now, the database refuses to delete party 1739, since this would leave
some election results without a corresponding party. So in essence,
by specifying in our database which attributes are primary keys and
foreign keys, the database helps us maintain the consistency of our
data and ensures that referential integrity is not violated. Using these
mechanisms, distributing data over multiple tables becomes much more
manageable.

9.6 results: the rise of populism in europe

We can finally put our data together and create a dataset for our analysis
of the rise of populism in Europe over time. In the following code example,
we again join the parties and elections tables, the latter now amended
with the PopuList coding. We aggregate the joined tables by country and
election date, which allows us to plot the success of populist parties per
country, as measured by the vote share in the respective election:

populism_ds <- dbGetQuery(db,
"SELECT
elections.country_name,
election_date,
sum(vote_share) AS total_vote_share

FROM elections JOIN parties USING (party_id)
WHERE populist = 1 AND year >= 1998
GROUP BY elections.country_name, election_date
ORDER BY country_name, election_date")

The plot in Figure 9.1 shows that in particular in Eastern Europe,
populist parties have been gaining ground in the recent decade. In several
countries, they now achieve vote shares of up to 50% and more.
As a last step, we need to close the connection to our database:

dbDisconnect(db)

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

132 9 Relational Databases and Multiple Tables

Slovenia Sweden Switzerland UK

Luxembourg Netherlands Norway Poland Slovakia

Greece Hungary Ireland Italy Lithuania

Denmark Estonia Finland France Germany

Austria Belgium Bulgaria Croatia Czech Rep.

20
00

20
05

20
10

20
15

20
00

20
05

20
10

20
15

20
00

20
05

20
10

20
15

20
00

20
05

20
10

20
15

20
00

20
05

20
10

20
15

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

T
o
ta

l
vo

te
 s

h
a

re

figure 9.1. Vote shares of populist parties in different countries.

9.7 summary and outlook

The art of working with relational databases necessarily involves multiple
tables. In this chapter, we extended the single-table example from the
previous chapter such that it uses two tables. More precisely, we added
a second table with data about political parties to the existing elections
table, such that we have more information about the parties themselves.
We supplemented the latter table with data from the PopuList project,
which identifies populist parties in Europe. Using our data, we were able
to plot the electoral gains of populist parties in Europe over the recent
years.
Spreading information out over several tables in a relational database

involves different challenges. First, we need to think about the structure of
our data: What tables do we need, and what variables are they supposed

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

9.7 Summary and Outlook 133

to contain? These are conceptual questions about our database, and they
relate directly to what we discussed in earlier chapters of this book (e.g.,
designing a database such that it avoids storing redundant data). When
we use existing datasets, we often do not have a choice and have to use the
data in the way it is provided to us. However, when designing databases
for our own projects, taking some time to think about the data structure
is important. Database designers have even developed an entire modeling
approach for this purpose, which is based on the definition of real-world
entities and the relationships between them. These “Entity-Relationship”
models can then be used to define the actual tables in a relational database.
For most applications in the social sciences, however, this conceptual step
is not required, as the complexity of the data is limited.
Also, there are technical challenges we need to overcomewhenworking

with multiple tables. The first we discussed is the dynamic combination of
data from different tables. While stored across multiple tables, matching
entries from them can be joined in SQL to perform various tasks such
as aggregation, or can be exported for analysis. Importantly, joins are
dynamic, and the original data are still kept in their original tables. The
second challenge the database can solve for us is to keep our data consis-
tent across different tables. For example, if a table has a foreign key that
refers to a primary key in another table, the database can make sure that
corresponding entries for the latter exist in the second table. This way, we
can automatically ensure referential integrity of the database and prevent
operations that would violate it.
While we now know a lot about databases already, we still need to

explore two more features that can be really useful for our work: the abil-
ity for multiple contributors to jointly work on datasets, and to quickly
search large amounts of data. The next chapter addresses these two
questions, and wraps up the basic introduction of relational databases in
this book. Before we proceed, here are some recommendations from this
chapter:

• Think about the structure of your data: This came up repeatedly in the
book, and here it is again. Choosing a good structure for your database
first requires a good understanding of what is in your data: What real-
world entities are described, and what are their features? How do these
entities relate to each other? Once you have answered these questions,
it becomes easier to design a structure for your data.

• All tables need a primary key: For a smooth operation of a relational
database, it is absolutely necessary to have sensible primary keys for

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

134 9 Relational Databases and Multiple Tables

all your tables. A good choice is a single integer number. Some datasets
already have a primary key, for others you can easily create one in your
database with a serial field.

• Make use of the integrity checks in a DB: In the chapter, we saw
how PostgreSQL can help you maintain referential integrity and make
sure that the data is consistent across tables. I recommend using these
features, in particular when your database becomes more complex.
Without these checks, errors and missing data can occur without you
noticing.

• Merge only when you have to: While joins are the standard operation
to combine data from different tables in a relational database, it is also
possible to merge tables by copying data from one to the other. This is
something you should only do when it is really necessary, since it can
violate the principle of avoiding redundant data.

https://doi.org/10.1017/9781108990424.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.013

