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Abstract. The Microwave Anisotropy Probe (MAP) is scheduled for
launch in 2001. This mission will measure the anisotropy of the cosmic
microwave background in five frequency bands from 22 to 90 GHz. The
angular resolution varies with frequency from 0.93° to < 0.23 0

• The sen-
sitivity should reach a standard deviation of 20 iLK in each 0.30 pixel on
the sky. MAP will observe from the Earth-Sun £2 point using a four-fold
modulation scheme to minimize systematic errors. The 2-year planned
duration will allow for 4 complete coverages of the sky. By observing
the CMB angular power spectrum, MAP will tell us the initial condi-
tions for the galaxy formation that produced the extragalactic infrared
background.

1. Introduction

Observations of the anisotropy of the CMB (Cosmic Microwave Background)
provide some of the earliest views into the history of our Universe. The pho-
tons of the CMB have traveled freely since the time of last scattering, about
tLs = 105.5 years after the Big Bang. Prior to last scattering, photons were
trapped in place by repeated scattering off electrons in the primordial plasma.
Thus any inhomogeneity that existed prior to last scattering will have been con-
verted into anisotropy and is thus observable. On angular scales larger than
2°, the structures we see on the surface of last scattering are larger than ctt.s,
and are thus either primordial or created during an inflationary epoch. The
detection by the COBE DMR of an anisotropy (Smoot et al. 1992, Wright et al.
1992, Bennett et al. 1992 and Kogut et al. 1992) on these large scales, that was
consistent with a primordial density perturbation power spectrum P(k) that
was both scale-free (a power law form: P(k) (X kn ) and scale-invariant (the
Harrison-Zeldovich n = 1 predicted by inflation), provided dramatic observa-
tional evidence in favor of inflationary dark-matter-dominated versions of the
Big Bang model.

Physical processes acting prior to recombination will modify the CMB
anisotropy on angular scales smaller than the angle subtended by the distance
sound can travel between t ~ 0 and tLS. The gravitational potential perturba-
tions produced by dark matter density perturbations drive acoustic oscillations
in the photon-baryon fluid. Recombination terminates the baryon-photon os-
cillations, and the relative phase between the baryon-photon density perturba-
tions and the gravitational potential perturbations depends on the wavelength
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Figure 1. Data from 25 CMB anisotropy experiments. The y-axis
gives the RMS temperature fluctuations in a bandwidth D.f = f as
a function of the spherical harmonic index e. The model curve is a
standard CMB model with a slightly high baryon density.

of the perturbation, resulting in interference that leads to a series of peaks in
the angular power spectrum (Bond & Efstathiou 1987). Following the COBE
DMR detection, a large number of experiments reported results at smaller an-
gular scales, leading to a clear detection of the first of these acoustic peaks and
approximate measurements of its position and amplitude. The latest of these
results, from BOOMERanG and MAXIMA, have covered 3% of the sky with
angular resolutions of 0.2 0

, which are much better than the 70 resolution of the
COBE DMR. Figures 1 and 2 show the current state of knowledge from these
experiments.

In addition to these ground-based and balloon-borne experiments, two new
satellites are being built to study the CMB. In the US, the ~1Apl project is in
the final stages of integration and test, aiming for a launch currently scheduled
for spring 2001. In Europe, the much more ambitious Planck/ project will be
launched with the FIRST far-infrared telescope no sooner than 2007.

1http://map.gsfc.nasa.gov

2http://astro.estec.esa.nl/SA-general/Projects/Planck/
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Figure 2. The data from Figure 1 smoothed with a 25% wide run-
ning median filter. A new dashed curve showing a model with H; == 52,
baryon density nBh2 == 0.03, CDM density f2cDMh 2 == 0.19 and cos-
mological constant nA ==/0.19 has been added.

2. MAP Mission Description

477

During the proposal process, the MAP Principal Investigator, Charles L. Ben-
nett, and the members of the science team recognized the need to scan the
modulated sky signals at frequencies above the 1/f-noise knee of the detectors.
Although bolometers were considered, HEMT (high electron mobility transistor)
radiometers were chosen for simplicity, in the spirit of better, faster, cheaper.
HEMT amplifiers work directly at the 20-100 GHz frequencies of interest to
MAP with very low noise and high bandwidths, but have a fairly high 1/f knee
when used .as total power radiometers. Therefore, experiments that use total
power HEMT radiometers must scan the sky at high angular rates. Thus, the
QMAP experiment (de Oliveira-Costa et al. 1998) used a scan mirror to sweep
its beams across the sky at 200 0 [sec.

MAP was required to scan through each pixel in many different directions.
Scanning in only one direction leads to stripes. When combined with 1/f noise,
scanning in only one direction leads to terrible stripes (Wright 1996). Thus MAP
needed to scan in a complicated cycloidal pattern like the COBE scan pattern.
This implied that a simple spinning spacecraft would not be satisfactory, and
that a continuously slewing 3-axis stabilized spacecraft was needed. But a 3-axis
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stabilized spacecraft that could slew continuously at 200 °[sec was not possible
within the MIDEX budget constraints, so MAP became a two-sided chopping
instrument.

After these decisions, MAP has the same complement of 4 different modu-
lations that COBE used:

• A fast chop between two beams

• A rotation around a spin axis

• A precession of the spin axis around the anti-solar point

• A rotation of the whole scan pattern around the sky once per year

Furthermore, MAP chose an orbit at the Earth-Sun £2 Lagrange point, along
the Earth-Sun line but 1.5 x 106 km further from the Sun than the Earth. This
orbit eliminates the two largest contributors to systematic errors in the COBE
data: the Earth's magnetic field and the thermal emission from the Earth's limb.

The MAP radiometer front ends are passively cooled to rv 95 K. MAP
uses pseudo-correlation differential radiometers in which all the amplification
prior to the square law detectors is at the observation frequency. There are no
local oscillators or intermediate frequency (IF) amplifiers. MAP will map the
entire sky in 5 bands centered at 22, 30, 40, 60 & 90 GHz. The beam sizes are
0.93°,0.68°,0.47°, 0.35° and < 0.23° respectively, after allowing for the beam-
smearing caused by scanning during sampling. The sensitivity will give a noise
level of rv 35 J-tK after two years in each of 393,216 pixels at each frequency.
The actual number of pixels in the MAP maps will be larger and the noise per
pixel correspondingly higher. Both total intensity and linear polarization will
be measured in all channels.

3. Status

The MAP spacecraft and instrument have been integrated into the MAP ob-
servatory, and the whole satellite will undergo EMI, EMC, acoustic, vibration,
thermal vacuum, functional and thermal balance testing in the fall of 2000. If
all goes well, MAP will be ready for launch in spring 2001. After launch it will
take MAP about 3 months to reach its station at £2, and 6 more months to map
the sky for the first time. After 9 months of data analysis, the first results from
MAP covering 100% of the sky should be released 18 months after launch.

4. Prospects

The light gray bands on Figures 1 and 2 show the expected noise performance of
MAP after two years of data gathering. MAP should provide a cosmic variance
limited measurement of the angular power spectrum of the CMB anisotropy
through the first two acoustic peaks, and greatly improve our knowledge of the
state of the Universe 300,000 years after the Big Bang. MAP should also detect
the temperature-polarization cross-correlation. Thus, MAP will tell us the initial
conditions for the galaxy formation process that produced the Cosmic Infrared
Background between t LS and now.

https://doi.org/10.1017/S0074180900226430 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900226430


The lVIAP Mission 479

Acknowledgments. I would like to thank the other members of the MAP
science team: C. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M.
Limon, S. Meyer, L. Page, D. Spergel, G. Tucker, D. Wilkinson, & E. Wollack.
This research has been supported by NASA, and at the lAS by the National
Science Foundation grant number PHY-0070928 and the Ambrose Monell Foun-
dation.

References

Bennett, C. L., et al. 1992, ApJ, 396, L7
Bond, J. R., & Efstathiou, G. 1987, MNRAS, 226,655
Kogut, A., et al. 1992, ApJ, 401, 1
de Oliveira-Costa, A., Devlin, M., Herbig, T., Miller, A., et al. 1998, ApJ, 509,

L77
Smoot, G. F., et al. 1992, ApJ, 396, Ll
Wright, E. L., et al. 1992, ApJ, 396, L13
Wright, E. L. 1996, http:j jxxx.lanl.govjabsjastro-phj9612006

Discussion

Michael Hauser: How well will MAP determine the cosmological parame-
ters?

Ned Wright: That depends on the parameter and the priors. The position
of the first peak, which determines f2total , will be measured to < 1%. A and H 0

should be determined to f'J 10%, which would provide an independent test of
the "accelerating universe" implied by supernova data.

Charley Lineweaver: Two questions: 1. Your estimate of cosmic variance at
low f is larger than other estimates I have seen. Is someone making a mistake?
2. What is your calibration accuracy?

Wright: 1. My chart shows bins at ~£je == 20% on a log - log plot showing
Cg,not ~T. This may have led to an apparently large cosmic variance. 2.
Calibration will be done relative to the dipole to < 1% accuracy. COBE made
an absolute physical determination of the dipole to < 1%.
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