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Abstract. Let λ be a symmetric, normal sequence space equipped with a k-
symmetric, monotone norm ‖.‖λ. Also, assume that (λ, ‖.‖λ) is AK-BK. Corresponding
to this sequence space λ, we study compactness of the operator ideal Kλ. We proved
compactness, completeness and injectivity of the dual operator ideal Kd

λ . We also
investigate the factorization of these operators.
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1. Introduction. Compactness is a significant topological notion of Banach space
theory. This notion, in general, has been used to bridge the gap while passing from finite
dimensional spaces to infinite dimensional spaces. Grothendieck’s [5] development of
various norms on the tensor product of two Banach (locally convex) spaces is an
important milestone in this direction. It may be noted that this process also developed
certain classes of operators which are known as operator ideals. Some of these operator
ideals are closely related to the operator ideal K of compact operators. Let N (= N1)
denote the operator ideal of nuclear operators, I (= I1) denote the operator ideal of
integral operators and � (= �1) denote the operator ideal of absolutely summing
operators. (These ideals were introduced by A. Grothendieck.) Then,

Nmax = I, Kmax = �

I inj = �, N inj = K.

Pietsch [12] and others generalized the notions of nuclear to p-nuclear (Np), integral
to p-integral (Ip) and absolutely summing to p-absolutely summing (�p) operators for
1 < p < ∞. In particular, they established the following relations:

Nmax
p = Ip, (Nd

p )max = Id
p ,

and

I inj
p = �p, (Id

p )sur = �d
p .

However, a suitable extension of compact operators to a p-case (1 ≤ p < ∞) remained
missing till 2002. Motivated by Grothendieck’s characterization of a relatively compact
set as one sitting inside convex hull of a vector-valued null sequence, Sinha and Karn
[16] in 2002 introduced the notion of p-compactness (1 ≤ p < ∞) in Banach spaces.
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They defined a set K in a Banach space X as relatively p-compact if there exists
a sequence x = {xn} ∈ ls

p(X) such that K ⊆ {∑n≥1 αnxn : α ∈ Blq , 1/p + 1/q = 1}. An
operator T ∈ L(X, Y ), X and Y are Banach spaces, is said to be relatively p-compact
operator if T maps bounded sets of X to relatively p-compact sets in Y. They proved
the factorization of adjoint of a relatively p-compact operator through a subspace
of lp. They defined a norm on the class of relatively p-compact operators using this
factorization and proved that Kp, the class of relatively p-compact operators, is a
Banach operator ideal when equipped with this norm. It is also proved that Kd

p = N inj
p

and (Kd
p )max = �p, cf.[16,17]. See also [1,13] for a different approach to these equalities,

which expresses Kp as a surjective hull of a certain well-known operator ideal.
Using the duality theory of sequence spaces, we introduced the notion of λ-

compactness in [6], corresponding to an arbitrary Banach sequence space λ. In this
paper, we prove that every λ-compact operator is compact for a symmetric, normal,
AK-BK sequence space λ. For a pair of Banach spaces X and Y , the space Kλ(X, Y )
is equipped with the quasi-norm ‖.‖kλ

which is defined as ‖T‖kλ
= inf ‖y‖s

λ, where
y = {yn} ∈ λs(Y ) appears in the definition of λ-compact operators. In this paper, we
prove that when λ is a symmetric, normal, AK-BK reflexive sequence space, then for
T ∈ Kλ(X, Y ), X and Y Banach spaces, T∗ factors compactly through a subspace of
λ. We define another quasi-norm on Kλ(X, Y ) through this factorization and establish
the equality of the two quasi-norms. We also show that Kd

λ (X, Y ) is topologically
isomorphic to N inj

λ (X, Y ) for a symmetric, normal, AK-BK sequence space λ which
is equipped with k-symmetric, monotone norm ‖.‖λ. In [6], we proved that Kλ, the
collection of all λ-compact operators, form a quasi-normed operator ideal. In this
paper, we prove completeness of Kd

λ under the operator ideal norm. This follows
from the fact that Kd

λ = N inj
λ as quasi-Banach operator ideals. This paper is in sequel

of [6].

2. Preliminaries. For the rudimentary results and notions of sequence spaces,
we essentially follow [6, 7]. Our references for operator ideals, λ-summing operators,
λ-nuclear, quasi-λ-nuclear, λ-compact operators are [6, 12, 14, 15].

Let λ be an arbitrary sequence space. Then, λ is called (i) symmetric if ᾱσ = {ασ (i)} ∈
λ whenever ᾱ = {αi} ∈ λ and σ ∈ �, where � is the collection of all permutations of the
set of natural numbers �, (ii) normal or solid if β̄ = {βi} ∈ λ whenever |βi| ≤ |αi|, i ≥ 1
for some ᾱ = {αi} ∈ λ and (iii) monotone provided λ contains canonical preimages of
all its stepspaces.

A sequence space λ is said to be perfect if λ = λ×× = (λ×)×, where λ× is the
Köthe-dual of λ.

A Banach sequence space (λ, ‖.‖λ) is called a BK-space provided each of the
projection maps Pi : λ → �, Pi(ᾱ) = αi is continuous, for i ≥ 1, where � is the field of
scalars and ᾱ = {α1, α2, . . .}. A BK-space (λ, ‖.‖λ) is called an AK-space if ᾱ(n) → ᾱ,
for each ᾱ ∈ λ.

For a BK-space (λ, ‖.‖λ), the dual-norm on λ× is defined as follows:

‖β̄‖λ× = sup{
∑

i≥1

|αi||βi| : ᾱ ∈ λ, ‖ᾱ‖λ ≤ 1}.
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The space (λ×, ‖.‖λ× ) becomes a BK-space provided 0 < supn ‖en‖λ < ∞. If (λ, ‖.‖λ)
is also an AK-space, then (λ×, ‖.‖λ× ) is topologically isomorphic to its topological
dual (λ∗, ‖.‖), where ‖f ‖ = sup{|f (ᾱ)| : ᾱ ∈ λ, ‖ᾱ‖λ ≤ 1}.

The norm ‖.‖λ is said to be (i) k-symmetric if ‖ᾱ‖λ = ‖ᾱσ‖λ, for all σ ∈ � and (ii)
monotone if ‖ᾱ‖λ ≤ ‖β̄‖λ for ᾱ, β̄ in λ with |αi| ≤ |βi|, ∀ i ≥ 1.

The space (λ, ‖.‖λ) is said to have the norm iteration property if for each sequence
{ᾱn} in λ, ᾱi = {α1

i , α
2
i , α

3
i , . . . .} ∈ λ for each i ≥ 1 and ‖{‖ᾱn‖λ}n‖λ = ‖{‖ᾱi‖λ}i‖λ,

cf.[14].

Corresponding to a sequence space λ and a Banach space X with its topological
dual X∗ equipped with the operator norm topology generated by ‖.‖, the vector-valued
sequence spaces λs(X) and λw(X) are defined as

λs(X) = {x̄ = {xn} ⊂ X : {‖xn‖} ∈ λ}

and

λw(X) = {x̄ = {xn} ⊂ X : {f (xn)} ∈ λ, ∀ f ∈ X∗}.

If λ is equipped with a monotone norm ‖.‖λ, the space λs(X) becomes a normed linear
space with respect to the norm defined as

‖x̄‖s
λ = ‖{xn}‖s

λ = ‖{‖xn‖}‖λ, x̄ = {xn} ∈ λs(X).

However, for x ∈ λw(X), the norm on λw(X) is defined as

‖x̄‖w
λ = ‖{xn}‖w

λ = sup{‖{f (xn)}‖λ, f ∈ X∗, ‖f ‖ ≤ 1}.

The symbol L(X, Y ) is used for the set of bounded linear operators between
any two Banach spaces X and Y; whereas L denotes the collection of all bounded
operators between any pair of Banach spaces.

An operator T ∈ L(X, Y ) is said to be
(i) absolutely λ-summing [15] if for each x̄ = {xi} ∈ λw(X), the sequence {Txi} is in

λs(Y );
(ii) λ-nuclear [14] if T has the representation

Tx =
∑

n≥1

fn(x)yn,

where {fn} ⊆ X∗ with {fn} ∈ λs(X∗), ȳ = {yn} ∈ (λ×)w(Y );
(iii) quasi-λ-nuclear [14] if there exists {fn} ⊆ X∗ such that f̄ = {fn} ∈ λs(X∗) and

‖Tx‖ ≤ ‖{fn(x)}‖λ, for each x ∈ X ;
(iv) λ-compact [6] if there exists y = {yn} ∈ λs(Y ) such that T(BX ) ⊆ λ − co{yn} =

{∑n≥1 αnyn : α ∈ Bλ×}.
The symbols �λ(X, Y ), Nλ(X, Y ), QNλ(X, Y ) and Kλ(X, Y ) denote respectively the
collection of all λ-summing, λ-nuclear, quasi-λ-nuclear and λ-compact operators from
X to Y. Quasi-norms on �λ(X, Y ), Nλ(X, Y ), QNλ(X, Y ) and Kλ(X, Y ) are defined as

(i) ‖T‖�λ
= inf{C > 0 : ‖{Txi}‖s

λ ≤ C‖{xi}‖w
λ , for {xi} ∈ λw(X)}, T ∈ �λ(X, Y );
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(ii) ‖T‖Nλ
= inf ‖{fn}‖s

λ‖{yn}‖w
λ× , where {fn} ∈ λs(X∗) and {yn} ∈ (λ×)w(Y ) appears

in the definition of Nλ(X, Y );
(iii) ‖T‖QNλ

= inf ‖{fn}‖s
λ, where {fn} ∈ λs(X∗) appears in the definition of

QNλ(X, Y );
(iv) ‖T‖kλ

= inf ‖{yn}‖s
λ, where {yn} ∈ λs(Y ) appears in the definition of λ-compact

operators.
It is known that (�λ,‖.‖�λ

), (Nλ,‖.‖Nλ
), (QNλ,‖.‖QNλ

) are quasi-Banach operator ideals
and (Kλ,‖.‖kλ

) is a quasi-normed operator ideal for suitable sequence spaces λ [6,14,15].

Let A be an operator ideal. For Banach spaces X and Y , recall the following
classes of operators:

(i) Ad (X, Y ) = {T ∈ L(X, Y ) : T∗ ∈ A(Y∗, X∗)},
(ii) Asur(X, Y ) = {T ∈ L(X, Y ) : TQX ∈ A(l1(BX ), Y )}; where the canonical ope-

rator QX : l1(BX ) → X is defined as QX ({ξx}x∈BX ) = ∑
x∈BX

ξxx;
(iii) Ainj(X, Y ) = {T ∈ L(X, Y ) : JY T ∈ A(X, l∞(BY∗ ))}, where the canonical ope-

rator JY : Y → l∞(BY∗ ) is defined as JY (y) = {g(y)}g∈BY∗ ;
(iv) Amin(X, Y ) = {T ∈ L(X, Y ) : T = RT0S, for some S ∈ F(X, X0), T0 ∈ A(X0,

Y0), R ∈ F(Y0, Y )}, where F is the operator ideal of approximable operators;
(v) Amax(X, Y ) = {T ∈ L(X, Y ) : RTS ∈ A(X0, Y0), for any S ∈ F(X0, X), R ∈

F(Y, Y0)}.
Then Ad , Asur, Ainj, Amin and Amax equipped with corresponding norms are quasi-
Banach operator ideals if A is so, cf.[12, Chapter 8].

An operator ideal A is said to be surjective if A = Asur, injective if A = Ainj,
maximal if A = Amax and minimal if A = Amin.

An operator ideal (A, ‖.‖A) is said to have the l∞-extension property if for a
Banach space X , a set � and an operator T ∈ A(X, l∞(�)), there is an operator T̃ ∈
A(l∞(BX∗ ), l∞(�)) such that T = T̃ ◦ iX , with ‖T̃‖A = ‖T‖A, where iX : X ↪→ l∞(BX∗ )
is the Alaoglu embedding.

Regarding the injective hull of composition of two quasi-normed operator ideals,
Karn and Sinha [8] proved.

LEMMA 2.1. Let A1 and A2 be two operator ideals. If A1 has the l∞-extension
property, or if A2 is injective, then

(A1 ◦ A2)inj = A1
inj ◦ A2

inj.

3. λ-compact operators. Throughout this section, we consider that λ is a
symmetric, normal sequence space equipped with a k-symmetric, monotone norm
‖.‖λ such that (λ, ‖.‖λ) is an AK-BK space. As the norm ‖.‖λ is k-symmetric, we have
‖en‖λ = ‖en

σ‖λ, ∀ σ ∈ � and so 0 < supn ‖en‖λ < ∞.
Regarding λ-compact operators, we prove.

PROPOSITION 3.1. Let (λ, ‖.‖λ) be a symmetric, normal, AK-BK space with a k-
symmetric, monotone norm. Then, every λ-compact operator is compact.

Proof. Let T ∈ Kλ(X, Y ). We can find y = {yn} ∈ λs(Y ) such that T(BX ) ⊆
{∑n≥1 αnyn : α ∈ Bλ×}.
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As (λ, ‖.‖λ) is c0-invariant [19, Theorem 1], there exist z = {zn} ∈ c0(Y ) and β =
{βn} ∈ λ such that yn = βnzn. This would imply

T(BX ) ⊆ {
∑

n≥1

γn(‖β‖λzn) : γ ∈ Bl1} = co{‖β‖λzn}.

Thus, by Grothendieck’s characterization of compactness, we have T ∈ K(X, Y ). �
Now, we prove that the quasi-norm ‖ · ‖kλ

is in fact a factorization norm which
follows from the following natural factorizations of λ-compact operators. Though the
result is not needed in the sequel, it is important on its own.

LEMMA 3.2. Let (λ, ‖.‖λ) be as in Proposition 3.1 and reflexive. Let T ∈ L(X, Y ).
Then, the following statements are equivalent:

(i) T is λ-compact operator.
(ii) There are y = {yn} ∈ λs(Y ) and Sy ∈ L(R(y), X∗) such that T∗ = Sy ◦ E∗

y .
(iii) There are y ∈ Bl∞(Y ), γ = {γn} ∈ λ and Sy ∈ L(R(y), X∗) such that T∗ = Sy ◦

My
γ ◦ E∗

y .
(iv) There are y ∈ Bcs

0(Y ), β = {βn} ∈ λ and Sy ∈ L(R(y), X∗) such that T∗ = Sy ◦
My

β
◦ E∗

y .
Here, R(y) = {{f (yn)} : f ∈ Y∗}, Ey : λ× → Y given by Ey(α) = ∑

n≥1 αnyn, Mγ : l∞ →
λ defined as Mγ (α) = {γnαn}, and My

γ = Mγ /R(y).

The proof is omitted since this is on the same line as given in [16, pp. 20–21].

PROPOSITION 3.3. Let (λ, ‖.‖λ) be as in Lemma 3.2 and T ∈ L(X, Y ). Define kλ(.)
on Kλ(X, Y ) as

kλ(T) = inf{‖Sy‖‖y‖s
λ : T∗ = Sy ◦ E∗

y as in Lemma 3.2(ii)}.
Then, for T ∈ Kλ(X, Y ), we have

‖T‖kλ
= kλ(T).

Proof. Though the argument is same as given in [3, Proposition 3.15], we sketch
a proof of a one-sided ineqality for the sake of completeness. Let T ∈ Kλ(X, Y ).
Given ε > 0, we can find y = {yn} ∈ λs(Y ) such that T(BX ) ⊆ {∑n≥1 αnyn : α ∈ Bλ×}
and ‖y‖s

λ < ‖T‖kλ
+ ε. As (λ, ‖.‖λ) is reflexive, {∑n≥1 αnyn : α ∈ Bλ×} is norm-closed.

Thus, ‖T∗f ‖ ≤ ‖{f (yn)}‖λ. Hence,

‖Sy‖ = sup
‖{f (yn)}‖λ≤1

‖T∗f ‖ ≤ 1.

So we have kλ(T) ≤ ‖y‖s
λ < ‖T‖kλ

+ ε. �
As a consequence of [18, page 13, Condition(S)] and the definition of λ-compact

operators, we have the following proposition.

PROPOSITION 3.4. Let (λ, ‖.‖λ) be as in Proposition 3.1. Then, Kλ = K sur
λ as quasi-

normed operator ideals.

Applying the above result, we prove.
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PROPOSITION 3.5. Let (λ, ‖.‖λ) be as in Proposition 3.1. Then, Kd
λ is injective operator

ideal and ‖T‖kd
λ

= ‖T‖(kd
λ)inj , for T ∈ Kd

λ (X, Y ).

Proof. As Kλ is a surjective operator ideal, Kd
λ becomes an injective operator ideal,

cf.[12, 4.7.18, Proposition 2], that is, Kd
λ (X, Y ) = (Kd

λ )inj(X, Y ).
Let T ∈ Kd

λ (X, Y ). Since Kd
λ (X, Y ) ⊆ (Kd

λ )inj(X, Y ), we have T ∈ (Kd
λ )inj(X, Y ).

Then,

‖T‖(kd
λ)inj = ‖T∗(JY )∗‖kλ

≤ ‖(JY )∗‖‖T∗‖kλ
≤ ‖T∗‖kλ

= ‖T‖kd
λ
.

Now we want to show ‖T‖kd
λ

≤ ‖T‖(kd
λ)inj , for T ∈ Kd

λ (X, Y ) = (Kd
λ )inj(X, Y ). For

ε > 0, we can find f = {fn} ∈ λs(X∗) such that

T∗(JY )∗(B(Y inj)∗ ) ⊆ {∑n≥1 αnfn : α ∈ Bλ×} with ‖f ‖s
λ < ‖T∗(JY )∗‖kλ

+ ε.

As J∗
Y : (Y inj)∗ → Y∗ is a metric surjection, J∗

Y transforms the open unit ball of
(Y inj)∗ onto the open unit ball of Y∗. So we have

T∗(BY∗ ) ⊆ {
∑

n≥1

αnfn : α ∈ Bλ×}.

This implies ‖T∗‖kλ
≤ ‖f ‖s

λ < ‖T∗(JY )∗‖kλ
+ ε.

As ε > 0 is arbitrary, letting ε → 0, we have ‖T‖kd
λ
≤ ‖T‖(kd

λ)inj . This completes the
proof. �

The main result of this section is the following theorem.

THEOREM 3.6. Let (λ, ‖.‖λ) be as in Proposition 3.1. Then, Kd
λ = N inj

λ as quasi-
Banach operator ideals.

To prove Theorem 3.6, we need the following lemma, which is essentially [14,
Theorem 7]. We provide a proof for the sake of completeness.

LEMMA 3.7. Let (λ, ‖.‖λ) be as in Proposition 3.1. Then, QNλ = N inj
λ as quasi-Banach

operator ideals.

Proof. It is well known that for any Banach space Z, the map JZ : Z → Zinj is
an isometry. Hence, QNλ = QN inj

λ . Also, Zinj has l∞-extension property. Thus, as a
consequence of [14, Theorem 9] and injectivity of the operator ideal QNλ, we have
QNλ(X, Y ) = N inj

λ (X, Y ) for any pair of Banach spaces X and Y .
For proving ‖T‖QNλ

= ‖T‖N inj
λ

, T ∈ QNλ(X, Y ), we consider S ∈ Nλ(X, Y ). For
given ε > 0, there exists {fn} ∈ λs(X∗) and {yn} ∈ (λ×)w(Y ) such that

Sx =
∑

n≥1

fn(x)yn, for x ∈ X with ‖{fn}‖s
λ‖{yn}‖w

λ× < ‖S‖Nλ
+ ε.
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For g ∈ BY∗ , we have

|g(Sx)| ≤
∑

n≥1

|fn(x)||g(yn)|

= ‖{fn(x)}‖λ

∑

n≥1

|fn(x)|
‖{fn(x)}‖λ

|g(yn)|

≤ ‖{fn(x)}‖λ‖{yn}‖w
λ×

≤ ‖{fn}‖s
λ‖{yn}‖w

λ× < ‖S‖Nλ
+ ε.

This would imply

‖Sx‖ = sup
g∈BY∗

|g(Sx)| ≤ ‖{fn(x)}‖λ‖{yn}‖w
λ× .

Thus, ‖S‖QNλ
≤ ‖{fn}‖s

λ‖{yn}‖w
λ× < ‖S‖Nλ

+ ε. As ε > 0 is arbitrary, letting ε → 0, we
have ‖S‖QNλ

≤ ‖S‖Nλ
.

As Nλ(X, Y ) ⊆ QNλ(X, Y ), we have N inj
λ (X, Y ) ⊆ QN inj

λ (X, Y ) = QNλ(X, Y ) and
so

‖T‖QN inj
λ

= ‖JY T‖QNλ
≤ ‖JY T‖Nλ

= ‖T‖N inj
λ

.

For the other inequality, that is, ‖T‖N inj
λ

≤ ‖T‖QNλ
, let T ∈ QNλ(X, Y ). For given

ε > 0, we can find f = {fn} ∈ λs(X∗) such that ‖Tx‖ ≤ ‖{fn(x)}‖λ with ‖{fn}‖s
λ <

‖T‖QNλ
+ ε, for every x ∈ X . We define a map T0 : X → λ as

T0(x) = {fn(x)} =
∑

n≥1

fn(x)en

for x ∈ X . As {fn} ∈ λs(X∗) and {en} ∈ (λ×)w(λ), T0 ∈ Nλ(X, λ). Also, ‖Tx‖ ≤ ‖T0x‖.
Thus, T ∈ N inj

λ (X, Y ) and ‖T‖N inj
λ

≤ ‖T0‖Nλ
by [12, Proposition 8.4.4]. As

‖T0‖Nλ
≤ ‖{fn}‖s

λ‖{en}‖w
λ× ≤ ‖{fn}‖s

λ < ‖T‖QNλ
+ ε,

we have ‖T‖N inj
λ

< ‖T‖QNλ
+ ε. As ε > 0 is arbitrary, letting ε → 0, we have ‖T‖N inj

λ
≤

‖T‖QNλ
. This completes the proof. �

Proof of Theorem 3.6 Since Nλ(X, Y ) ⊆ Kd
λ (X, Y ), cf.[6, Theorem 4.1], we have

N inj
λ (X, Y ) ⊆ (Kd

λ )inj(X, Y ) = Kd
λ (X, Y ).

For showing Kd
λ (X, Y ) ⊆ N inj

λ (X, Y ), we consider T ∈ Kd
λ (X, Y ). Then, there exists

{fn} ∈ λs(X∗) such that T∗(BY∗) ⊆ {∑n≥1 αnfn : α ∈ Bλ×}.
If Tx = 0 for x ∈ X , we have 0 = ‖Tx‖ ≤ ‖{fn(x)}‖λ. If Tx �= 0, we have 0 �=

‖Tx‖ = supg∈BY∗ |g(Tx)|. For g ∈ BY∗ , we have

|g(Tx)| = |T∗g(x)| = |
∑

n≥1

αnfn(x)|, for some α ∈ Bλ× .
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This would imply

|g(Tx)| = |
∑

n≥1

αnfn(x)|

≤ ‖{fn(x)}‖λ

∑

n≥1

|αn| |fn(x)|
‖{fn(x)}‖λ

≤ ‖{fn(x)}‖λ‖α‖λ×

≤ ‖{fn(x)}‖λ.

Hence, ‖Tx‖ ≤ ‖{fn(x)}‖λ. So T ∈ QNλ(X, Y ) = N inj
λ (X, Y ) and so Kd

λ (X, Y ) ⊆
N inj

λ (X, Y ).
For proving the equality of the norms ‖.‖kd

λ
and ‖.‖N inj

λ
, we consider T ∈ Kd

λ (X, Y ).

For ε > 0, there exists f = {fn} ∈ λs(X∗) such that

T∗(BY∗ ) ⊆ {
∑

n≥1

αnfn : α ∈ Bλ×} and ‖f ‖s
λ < ‖T∗‖kλ

+ ε.

For g ∈ BY∗ , we have

|g(Tx)| ≤
∑

n≥1

|αn||fn(x)|, for some α ∈ Bλ× .

This implies
|g(Tx)| ≤ ‖{fn(x)}‖λ.

Thus, ‖Tx‖ ≤ ‖{fn(x)}‖λ, for every x ∈ X . Hence, ‖T‖QNλ
= ‖T‖N inj

λ

≤ ‖f ‖s
λ <

‖T∗‖kλ
+ ε. As ε > 0 is arbitrary, letting ε → 0, we have ‖T‖N inj

λ
≤ ‖T∗‖kλ

= ‖T‖kd
λ
.

For the other inequality, let T ∈ N inj
λ (X, Y ). This would imply JY T ∈ Nλ(X, Y inj).

Thus, JY T ∈ Kd
λ (X, Y inj). Now we want to prove ‖JY T‖kd

λ
≤ ‖JY T‖Nλ

, that is,
‖T‖(kd

λ)inj ≤ ‖T‖N inj
λ

. For proving this ineqality, let S ∈ Nλ(X, Y ). Given ε > 0, there
exists {fn} ∈ λs(X∗) and {yn} ∈ (λ×)w(Y ) such that

Sx =
∑

n≥1

fn(x)yn and ‖{fn}‖s
λ‖{yn}‖w

λ× < ‖S‖Nλ
+ ε.

For g ∈ BY∗ and x ∈ X , we have

(S∗g)x = g(Sx) =
∑

n≥1

fn(x)g(yn) = (
∑

n≥1

g(yn)fn)x.

Since { g(yn)
‖{yn}‖w

λ×
} ∈ Bλ× , we have S∗(BY∗ ) ⊆ λ − co{‖{yn}‖w

λ× fn}. So

‖S‖kd
λ
= ‖S∗‖kλ

≤ ‖{fn}‖s
λ‖{yn}‖w

λ× < ‖S‖Nλ
+ ε.

Thus, ‖S‖kd
λ
≤ ‖S‖Nλ

as ε → 0.

Hence, for T ∈ N inj
λ (X, Y ) we have T ∈ (Kd

λ )inj(X, Y ) and so

‖JY T‖kd
λ
≤ ‖JY T‖Nλ

= ‖T‖N inj
λ

.

Applying Proposition 3.5, we get ‖T‖kd
λ

= ‖T‖N inj
λ

.
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Since (Nλ, ‖.‖Nλ
) is a quasi-Banach operator ideal, its injective hull (Kd

λ , ‖.‖kd
λ
)

would be a quasi-Banach operator ideal, cf.[12, Theorem 8.4.2].
This completes the proof. �
REMARK: As (Kd

λ , ‖.‖kd
λ
) is an injective quasi-Banach operator ideal, we see that

(Kdd
λ , ‖.‖kdd

λ
) is a surjective quasi-Banach operator ideal. Recall that (Kλ, ‖.‖λ) is a

surjective quasi-normed operator ideal. Though, we have not be able to show its
completeness, we believe it to be true. We may observe that Kλ ⊆ Kdd

λ , for (λ, ‖.‖λ) as in
Proposition 3.1. In fact, Kλ ⊆ QNd

λ = Kdd
λ . We expect that Kλ = Kdd

λ as quasi-Banach
operator ideals.

Regarding the factorization of λ-compact operators, we prove the following.

PROPOSITION 3.8. Let (λ, ‖.‖λ) be as in Proposition 3.1. Then,

K ◦ (Kd
λ )max ◦ F ⊆ Kd

λ ⊆ K ◦ (Kd
λ )max ◦ K.

For proving the proposition we need the following

LEMMA 3.9. Let (λ, ‖.‖λ) be as in Proposition 3.1. Then, Nλ is a minimal operator
ideal.

Proof. Let T ∈ Nλ(X, Y ). Then, there exists {fn} ∈ λs(X∗) and {yn} ∈ (λ×)w(Y )
such that Tx = ∑

n≥1 fn(x)yn, for x ∈ X . As λ is c0-invariant, we can find {αn} ∈ c0 and
{βn} ∈ λ such that ‖fn‖ = αnβn. We define {γn} ∈ c0, where γn = (αn)1/2. The operator
T ∈ Nλ(X, Y ) can be factorized as T = Q1Q2DP2P1, where P1 ∈ L(X, l∞), P2 ∈
L(l∞, l∞), D ∈ L(l∞, λ), Q2 ∈ L(λ, λ), Q1(λ, Y ) are defined as P1(x) = {(fn/‖fn‖)x},
P2({ηn}) = {γnηn}, D({ξn}) = {γ −2

n ‖fn‖ξn}, Q2({δn}) = {γnδn}, Q1({μn}) = ∑
n≥1 μnyn,

respectively. Since l∞ and λ have approximation property, we know that the operators
P2P1 ∈ F(X, l∞) and Q1Q2 ∈ F(λ, Y ). As the operator D ∈ (l∞, λ) is a diagonal
operator, we have D ∈ Nλ(l∞, λ). Therefore, T ∈ F ◦ Nλ ◦ F(X, Y ) = Nmin

λ (X, Y ).
Thus, Nλ(X, Y ) = Nmin

λ (X, Y ). �
Proof of Proposition 3.8. As Nλ is a minimal operator ideal, applying [12,

Proposition 8.7.15] we have

(Nmax
λ )min = F ◦ Nmax

λ ◦ F = Nmin
λ = Nλ.

Since K is injective as well as enjoys l∞-extension property [9] (see also [20, Theorem
4.2]), using Lemma 2.1, we get

Kd
λ = N inj

λ ⊆ (F ◦ Nmax
λ ◦ F)inj

⊆ (K ◦ Nmax
λ ◦ K)inj

= K ◦ (Nmax
λ )inj ◦ K

= K ◦ (N inj
λ )max ◦ K

= K ◦ (Kd
λ )max ◦ K.

For the reverse inclusion, we have

Kd
λ = N inj

λ = (F ◦ Nmax
λ ◦ F)inj = K ◦ (Nmax

λ ◦ F)inj.
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Since (Nmax
λ )inj ◦ F ⊆ (Nmax

λ ◦ F)inj, it follows that

K ◦ (Kd
λ )max ◦ F ⊆ K ◦ (Nmax

λ ◦ F)inj = N inj
λ = Kd

λ .

This completes the proof. �
As a consequence of this result, we prove the following factorization of Kd

λ .

PROPOSITION 3.10. Let (λ, ‖.‖λ) be as in Proposition 3.1. If λ is also perfect and the
norm ‖.‖λ of λ has norm iteration property, the following holds

Kd
λ ⊆ �λ ◦ K.

To prove it, we need the following two lemmas.

LEMMA 3.11. Let (λ, ‖.‖λ) be as in Proposition 3.1. Then, T ∈ �λ(X, Y ) if and
only if for any x1, x2, x3, . . . , xn ∈ X and g1, g2, g3, . . . ., gn ∈ Y∗ there exists a constant
C > 0 such that

‖{g1(Tx1), g2(Tx2), . . . , gn(Txn), 0, 0, . . .}‖λ

≤ C‖{x1, x2, . . . ., xn, 0, 0, . . .}‖w
λ sup

1≤i≤n
‖gi‖.

Proof. Let T ∈ L(X, Y ) satisfy the given criterion and x1, x2, . . . , xn ∈ X . WLOG
we consider Txi �= 0 for i = 1, 2, . . . , n. By the Hann-Banach theorem, for each 1 ≤ i ≤
n, we can find gi ∈ Y∗ with ‖gi‖ = 1 such that ‖Txi‖ = gi(Txi). For i > n, we consider
gi = 0. Thus, by given hypothesis, we have

‖{‖Tx1‖, ‖Tx2‖, . . . , ‖Txn‖, 0, 0, . . .}‖λ

= ‖{g1(Tx1), g2(Tx2), . . . , gn(Txn), 0, 0, . . .}‖λ

≤ C‖{x1, x2, . . . ., xn, 0, 0, . . .}‖w
λ sup

1≤i≤n
‖gi‖

= C‖{x1, x2, . . . ., xn, 0, 0, . . .}‖w
λ .

This would imply T ∈ �λ(X, Y ).
For the converse, let T ∈ �λ(X, Y ), x1, x2, . . . , xn ∈ X and g1, g2, . . . , gn ∈ Y∗.

Then, (gi/‖gi‖)Txi ≤ ‖Txi‖ for each i = 1, 2, . . . , n. Since λ is normal and ‖.‖λ is
monotone, we have

‖{g1(Tx1), g2(Tx2), . . . , gn(Txn), 0, 0, . . .}‖λ

≤ ‖{‖g1‖‖Tx1‖, ‖g2‖‖Tx2‖, . . . , ‖gn‖‖Txn‖, 0, 0, . . .}‖λ

≤ sup
1≤i≤n

‖gi‖‖{‖Tx1‖, ‖Tx2‖, . . . , ‖Txn‖, 0, 0, . . .}‖λ.

As T ∈ �λ(X, Y ), from the above inequality, we can prove that T satisfies the required
criterion. �

LEMMA 3.12. Let (λ, ‖.‖λ) be as in Proposition 3.1. Then, �λ is a maximal operator
ideal.

Proof. Though the proof is same as [12, 17.1.3], we prove the maximality of �λ for
the sake of completeness. From the definition of a maximal operator ideal, it is clear that
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�λ ⊆ �max
λ . For the reverse inclusion, let T ∈ �max

λ (X, Y ). Let x1, x2, . . . , xn ∈ X and
g1, g2, . . . , gn ∈ Y∗. We define X0 = span{x1, x2, . . . , xn}. The operator JX

X0
: X0 → X

is defined as JX
X0

(x) = x for x ∈ X0. Defining the subset Y0 = ∩n
i=1 ker gi of Y , we

consider the quotient space Y/Y0. We have dim(Y/Y0) < ∞. We consider the quotient
operator QY

Y0
: Y → Y/Y0, which is a metric surjection. Hence, for each i = 1, 2, . . . , n,

we can find Gi ∈ (Y/Y0)∗ such that (QY
Y0

)∗(Gi) = gi and ‖(QY
Y0

)∗(Gi)‖ = ‖gi‖ = ‖Gi‖,
cf.[12, Proposition B.3.3, Proposition B.3.10.2]. Since T ∈ �max

λ (X, Y ), applying [12,
Theorem 8.7.5] and Lemma 3.11, we can find a constant C > 0 such that

‖{g1(Tx1), g2(Tx2), . . . , gn(Txn), 0, 0, . . .}‖λ

= ‖{G1(QY
Y0

TJX
X0

x1), G2(QY
Y0

TJX
X0

x2), . . . , Gn(QY
Y0

TJX
X0

xn), 0, 0, . . .}‖λ

≤ C‖{x1, x2, . . . , xn, 0, 0, . . .}‖w
λ sup

1≤i≤n
‖Gi‖

= C‖{x1, x2, . . . , xn, 0, 0, . . .}‖w
λ sup

1≤i≤n
‖gi‖.

This would imply T ∈ �λ(X, Y ) by Lemma 3.11. So �max
λ (X, Y ) ⊆ �λ(X, Y ). This

completes the result. �
Proof of Proposition 3.10. Since Kd

λ ⊆ �λ whenever ‖.‖λ has norm-iteration
property, cf.[6, Proposition 4.3] and �λ is a maximal operator ideal by Lemma 3.12,
we have

Kd
λ ⊆ K ◦ (Kd

λ )max ◦ K

⊆ (Kd
λ )max ◦ K

⊆ (�λ)max ◦ K

= �λ ◦ K.

Hence, the proof. �
REMARK: At present, we do not know a sequence space other than lp, for which

�λ ◦ K ⊆ Kd
λ holds.
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