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Abstract
Pension funds and insurers face difficulties in hedging their longevity risk, which is the uncertainty of how long their
clients will live. A possible solution could be using longevity-linked securities to transfer some of this risk to other
parties. However, these securities may not match the actual mortality rates of the insurer’s clients, resulting in a
potential loss due to basis risk. In this paper, we measure this basis risk through the pricing of a longevity derivative
under Solvency II. We also compare this method with other common pricing methods in finance. We explore and
evaluate different hedging strategies for insurers, using a multi-population model derived from a two-dimensional
Hull and White model that captures the dynamics of mortality over time.

1. Introduction
Annuity providers, such as insurers and pension funds, are exposed to increased longevity risk. This risk
can be broken down into two types of risks: unsystematic and systematic. Unsystematic longevity risk
refers to a possible adverse development of the policyholder’s longevity. According to the law of large
numbers, unsystematic longevity risk can be eliminated by increasing the portfolio size. In contrast,
systematic longevity risk refers to the risk associated with the overall mortality improvement across
the whole population. This risk cannot be diversified by increasing the portfolio size but can be miti-
gated by entering longevity-linked securities, such as survivor bonds, q-forwards, S-forwards or S-swaps
(Blake and Burrows, 2001; Dowd et al., 2006; Barrieu and Veraart, 2014; Levantesi and Menzietti,
2017 and Zeddouk and Devolder, 2019). Some of these financial instruments have been traded over the
counter (OTC), but because of pricing difficulties and the fact that these products only allow for par-
tial hedging of the systematic longevity risk (leaving a residual amount of risk, known as basis risk),
they are not widely traded in the financial market. The payoffs of these financial instruments are deter-
mined by longevity indices based on one or more reference populations (e.g., the national population).
Therefore, the longevity experience of the annuity provider’s population may not coincide with the
reference population (see for example Li and Hardy, 2011 and Coughlan et al., 2011).

The importance of the basis risk induced by the mismatch between the reference population and the
insurer’s population depends on different factors, such as demographic differences (e.g., age profile,
sex, socio-economic status), the volatility of the portfolio to be hedged in comparison with the reference
population and the difference between the payoff structures of the hedging tool and the insurer’s portfolio
(Li et al., 2019).

Many authors have focused on the evaluation of the basis risk. For instance, De Rosa et al. (2017)
provided a model for assessing longevity basis risk, exploring its effect on the hedging strategies of
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pension funds and annuity providers. Haberman et al. (2014) and Villegas et al. (2017) proposed a two-
population mortality projection model for assessing demographic basis risk. Additionally, Plat (2009)
proposed a stochastic model for the spread between reference and the smaller population that allowed
insurers to evaluate mortality rates and assess the basis risk; Cairns and El Boukfaoui (2021) developed
a framework for measuring the impact of a hedge on regulatory or economic capital that considered
basis risk (see also Coughlan et al., 2011; Dahl et al., 2011; Li and Hardy, 2011; Ngai and Sherris,
2011; Tzeng et al., 2011, and Li and Luo, 2012).

Specifically, Zhou and Li (2017) presented the basis risk as a “customised surplus swap” in addition to
standardised financial instruments. However, the management and the pricing of this swap are based on
mutualisation and reinsurance’s classical principles without a risk premium (diversification argument)
or references to financial valuation.

The main contribution of our paper is to extend this approach by associating the basis risk with the
payoff of a longevity-linked OTC security, called S-exchange. We price this derivative under Solvency
II using the cost of capital (COC) approach in a continuous time framework. Thus, we liken this basis
risk to the S-exchange, whose price corresponds to the hedging cost of this risk.

To achieve this goal, we developed a model capable of describing the mortality of the reference
and the insurer’s populations. Many authors have proposed stochastic multi-population models for mor-
tality, such as Bayraktar and Young (2010), Barbarin (2008) and Dahl et al. (2008). Moreover, some
continuous-time models such as the general multi-population mortality surface model proposed by Jevtié
and Regis (2019) and the multi-cohort models used by De Rosa et al. (2017) and Sherris et al. (2020)
have emerged recently.

Our mortality model needed not only to forecast mortality but also to enable the valuation of longevity
derivatives. Therefore, affine models are good candidates because they meet these criteria (Huang et al.,
2019 and Xu et al., 2020). In addition to their proven robustness in terms of mortality prediction (Luciano
and Vigna, 2015, and Zeddouk and Devolder, 2020a), affine models have the advantage of facilitating
the pricing of longevity derivatives and enabling the adoption of the pricing framework developed in
finance for the valuation of financial assets. Thus, we used a one-cohort affine model that we redesigned
into a multi-population model.

Specifically, we used the Hull and White (HW) process in our framework to provide different multi-
population models, depending on eventual differences between the reference population and the insurer’s
population.

Our other contribution consists in providing fair prices for the proposed hedging instrument (in closed
form when possible), using the COC method, which aligns with the directives of Solvency II. In addition,
we used other classical pricing approaches for comparison. Then, depending on the insurer’s strategy
and risk aversion, we provided different hedging options using longevity derivatives. The modelling and
pricing framework proposed in this paper offer hedgers various strategies to reduce or completely cover
their exposure to longevity risk.

This paper is organised as follows: In Section 2, we propose a multi-population model to describe
mortality for the reference and insurer’s population. In Section 3, we briefly define the S-forward contract
and its pricing, then in Section 4, we define the S-exchange contract and provide closed-form formulas
of its price under some classical financial pricing approaches, as well as the COC approach. In Section 5,
we investigate three special cases to model the insurance population’s mortality. Then, in Section 6, we
present a numerical illustration of the prices using Belgian data. We provide sensitivity tests related to
the different parameters in Section 7 and propose different longevity hedging strategies in Section 8.
Finally, Section 9 concludes the paper.

2. Multi-population modelling in continuous time
In order to assess the basis risk, we need to use a model able to capture mortality trends in both the
reference population and the insurer’s population, whose risk is to be hedged. We model mortality
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for a given population using a single explanatory variable, the intensity of mortality μx at age x
defined by

μx = lim
�→0

P
[
x < T̄ ≤ x + � | T̄ > x

]
� , (2.1)

where T is a random variable that represents the future lifetime of an individual.
Within the framework of our study, we model the intensity of mortality μx(t) that represents the

intensity of mortality for an individual aged x + t at time t, as a continuous stochastic process, defined
in the real-world probability (�, F, P) and adapted to its natural filtration (Ft)0≤t≤T . Thus, μx+t is written
as: μx(t, ω), with ω an event of the space of probability (�, F, P).

Therefore, the starting point of our modelling is to describe the dynamics of the mortality through the
specification of a stochastic differential equation (SDE). Afterwards, we focus on the survival process,
that represents the index at time t of an individual initially aged x, alive at time t and surviving T − t
years more. For one individual, the survival index is defined as follows:

I(x + t, T − t) = e− ∫ T
t μx(u,ω)du. (2.2)

2.1. Assumptions
2.1.1. Mortality assumptions
In our setting, we have chosen a stochastic continuous-time model to describe mortality evolution of a
given population, to benefit from the pricing framework used in finance. Among these approaches, we
considered an affine model, whose general formula is given by

dμx(t) = (f1(t) + f2(t)μx(t))dt + √
f3(t) + f4(t)μx(t)dw(t), (2.3)

where f1(t), f2(t), f3(t), f4(t) are deterministic functions, and w(t) is a standard Brownian motion under
the real-world probability measure P.

An affine model facilitates obtaining an explicit formula of the survival index, and therefore the
price of the longevity derivative in closed form. We chose in particular the HW model, which is a
cohort mortality model1 since Zeddouk and Devolder (2020a) showed that this model is suitable for
describing the intensity of mortality of the Belgian population. In fact, they presented a comparison
between different affine processes such as Ornstein Uhlenbeck, Feller, Vasiçek and Cox-Ingersoll-Ross
(CIR) extended models and showed (using different tests such as goodness-of-fit testing and backtesting)
that the HW model gives a very accurate prediction of the survival function. In addition, the HW model
was also used by Zeddouk and Devolder (2019) for mortality to price Survival-forwards and Survival-
swaps.

As mentioned in the introduction, many models have been proposed in the literature to repre-
sent the mortality evolution of two or more populations (Villegas et al., 2017). But the majority of
the models proposed are based on discrete-time stochastic mortality models such as the Lee–Carter
model.

For both the reference population and the insurer’s population, we consider two different correlated
HW models as described in Subsections 2.2 and 2.3.

2.1.2. Financial assumptions

• The spot interest rate r(t) is deterministic.
• P(t, T) = e− ∫ T

t r(s)ds is the price at time t of a zero coupon bound with maturity T .
• There is no counterparty default risk.

1This model describes how the mortality of an individual aged x at time t evolves over time, rather than modelling age-period
mortality like in the Lee–Carter and Cairns-Blake-Dowd (CBD) models.
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2.2. Reference population model
The mortality intensity of the reference population follows the HW model:

dμx(t) = (ξ (t) − bμx(t))dt + σdw(t), (2.4)

where b > 0 is the mean reversion rate, σ > 0 is the volatility of the process, w(t) is a Brownian motion
under the real-world measure P and ξ (t) represents the mean reversion level. The initial condition is
denoted μx(0) = μ0.

ξ (t) is chosen such that it follows the well-known Gompertz formula:

ξ (t) = AeBt,

where A > 0 is the baseline mortality and B > 0 is the senescent component.
The reason behind the choice of the HW model for mortality and ξ (t) as a long term target was

discussed in detail by Zeddouk and Devolder (2020a).
From short calculation, at time 0 we get:

μx(t) = μ0e−bt + A

b + B

(
e−Bt − e−bt

) + σe−bt

∫ t

0

ebudw(u). (2.5)

The HW model being affine, the expectation of the survival index related to the reference population
is directly given by Duffie et al. (2003):

EP(I(x + t, T − t) |F t) = eα(t,T)−β(t,T)μx(t), (2.6)

where α(t, T) and β(t, T) are given by (see for instance Zeddouk and Devolder, 2020a):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α(t, T) = A

b

[
e−bT

e(B+b)T − e(B+b)t

B + b
− eBT − eBt

B

]
− σ 2

2b2

[
1

b
(1 − e−b(T−t)) − T + t

]

− σ 2

4b3

(
1 − e−b(T−t)

)2

β(t, T) = 1

b
(1 − exp (−b(T − t)).

(2.7)

2.3. Insurer’s population model
As we have mentioned previously, we use the HW model also to describe the mortality intensity of the
insurer’s population:

dμ′
x(t) = (ξ ′(t) − b′μ′

x(t))dt + σ ′dw′(t), (2.8)

where the initial condition is μ′
x(0) = μ′

0. ξ ′(t) is a time-dependent function, and we assume that it also
follows the Gompertz model:

ξ ′(t) = A′eB′ t,

A′, B′, b′, σ ′ are positive numbers, and w′(t) is a standard Brownian motion under the real probability
measure P.

The expectation of the survival index related to the insurer’s population is given by

EP(Iins(x + t, T − t) |F t) = eα′(t,T)−β ′(t,T)μ′
x(t), (2.9)
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where α′(t, T) and β ′(t, T) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α′(t, T) = A′

b′

[
e−b′T e(B′+b′)T − e(B′+b′)t

B′ + b′ − eB′T − eB′ t

B′

]
− σ ′2

2b′2

[
1

b′
(
1 − e−b′(T−t)

) − T + t

]

− σ ′2

4b′3
(
1 − e−b′(T−t)

)2

β(t, T) = 1

b′ (1 − exp (−b′(T − t)).

(2.10)

The insurer’s population being a subpopulation of the reference population, we assume that the two
populations are dependent. Therefore, the Brownian motions w(t) related to the reference population
and w′(t) related to the insurer’s population are correlated.

Using the Cholesky decomposition for correlated Brownian motions, we have

w′(t) = ρw(t) + √
1 − ρ2w̃(t), (2.11)

where ρ is the correlation coefficient: ρ · t = Cov(w(t),w′(t)). w(t) and w̃(t) are two independent
Brownian motions. Formula (2.8) then becomes:

dμ′
x(t) = (ξ ′(t) − b′μ′

x(t))dt + σ ′(ρdw(t) + √
1 − ρ2dw̃(t)). (2.12)

2.4. The spread between the reference and the insurer’s population
In order to model a two population situation, it is natural to look at the spread θx(t) between the two
mortality intensities (see for instance Villegas et al., 2017). In our setting, we get:

dθx(t) = dμ′
x(t) − dμx(t)

= (ξ ′(t) − ξ (t) − b′μ′
x(t) − bμx(t))dt + (σ ′ρ − σ )dw(t) + σ ′√1 − ρ2dw̃(t)).

If b′ = b, the spread follows also a HW process with a mean-reverting target ξ ′(t) − ξ (t).
The spread is then given by

dθx(t) = (ξ ′(t) − ξ (t) − bθx)dt + (σ ′ρ − σ )dw(t) + σ ′√1 − ρ2dw̃(t)). (2.13)

2.4.1. Particular case 1: independence between the mortality spread and the reference population
Villegas et al. (2017) have assumed independence between the reference population and the spread.

In our model, this spread at time t is given by

θx(t) = μ′
x(t) − μx(t)

= μ′
0e−bt − μ0e−b′ t + A′

b′ + B′
(
e−B′ t − e−b′ t)

− A

b + B

(
e−Bt − e−bt

) + σ ′ρe−b′ t
∫ t

0

eb′udw(u)

− σe−bt

∫ t

0

ebudw(u) + σ ′√1 − ρ2 e−b′ t
∫ t

0

eb′udw̃(u). (2.14)

Let us remark that the spread can be seen as the payoff of a swap of the mortality intensities.
We can see from formula (2.14) that μx(t) and θx(t) can be independent under the following condition:

σ ′ρe−b′ t
∫ t

0

eb′udw(u) − σe−bt

∫ t

0

ebudw(u) = 0, (2.15)
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which means:

σ ′ρe−b′ t
∫ t

0

eb′udw(u) = σe−bt

∫ t

0

ebudw(u). (2.16)

Therefore, a sufficient condition to satisfy the independence assumption is{
σ ′ρ = σ

b′ = b.
(2.17)

The expression of the insurer’s mortality intensity (2.12) then becomes:

dμ′
x(t) = (ξ ′(t) − bμ′

x(t))dt + σdw(t) + σ̃dw̃(t), (2.18)

with w and w̃ are independent and σ̃ = σ ′√1 − ρ2.
σ̃ represents the volatility of the extra noise related to the insurer’s population.
Under this condition, the variance of the spread is given by

Var
(
θx)(t) = Var

(
σ ′√1 − ρ2e−bt

∫ t

0

ebudw(u)

)

= σ ′2(1 − ρ2
)

e−2btVar
(∫ t

0

ebudw(u)

)

= σ ′2(1 − ρ2
)

e−2bt

2b

(
e2bt − 1

)
= σ̃ 2

2b

(
e2bt − 1

)
. (2.19)

The limit of the spread’s variance when t −→ +∞ is

lim
t−→+∞

Var(θx(t)) = σ ′2(1 − ρ2
)

2b

= σ̃ 2

2b
. (2.20)

Under the independence assumption, the spread has a bounded variance that has the form of Vasicek’s
variance. However, since the two models do not have the same target, the spread’s expectation E(θx) is
not zero. Therefore, the mortality intensities of the two populations converge weakly in long term.

2.4.2. Particular case 2: same mean reversion rate for the two populations
We can choose a more general model than (2.18), without imposing the independence assumption
between the mortality spread and the reference population, but keeping only the second condition of
(2.17) (b = b′) in order to keep a HW structure for the spread (see (2.13)).

dμ′
x(t) = (ξ ′(t) − bμ′

x(t))dt + σ ′dw′(t)

= (ξ ′(t) − bμ′
x(t))dt + σdw(t) + σ̃dw̃(t), (2.21)

where:

σ ′ = √
σ 2 + σ̃ 2 + 2ρ̃σ σ̃ . (2.22)

We denote by ρ̃ the correlation coefficient between w and w̃:

ρ̃ · t = Cov(w(t), w̃(t)).

In this case, the spread’s variance limit is also given by (2.20).
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3. S-forward pricing
3.1. Description of the product
A survival forward (or S-forward2) is an agreement between two counterparties to exchange at a future
date T (the maturity of the contract), an amount equal to the realized survival rate of a given population
cohort (floating leg), in return for a fixed survival rate agreed at the inception of the contract (fixed rate
payment).

For easiness of representation, we consider the notional amount equal to one monetary unit. The
payoff of the S-forward is then given by

Payoff (T) = I(x, T) − T p̂x , (3.1)

where I(x, T ) is the realized survival rate, and T p̂x is a fixed survival rate of an individual aged x at time
0 to be alive at age x + T (F 0 measurable). With this derivative, the insurer can hedge the longevity risk
by being the fixed leg payer of an S-forward: if the realized survival rate is higher than the fixed rate
at the maturity of the contract, he gets a positive payment which can be used to compensate the higher
longevity risk arising from annuity contracts. However, the realized survival rate is usually computed
based on the reference population. Hence, by using this derivative, only a portion of the systemic risk
can be covered, letting the insurer exposed to the basis risk.

3.2. Pricing of the product
Many authors have shed light on pricing longevity-linked securities using methods typically used in
quantitative finance, such as risk-neutral, Sharpe ratio and Wang approaches (Barrieu and Veraart, 2014).
These techniques can be adapted to price longevity-linked securities. However, they require assessment
of longevity risk parameters (market price of longevity risk (risk-neutral approach), Sharpe coefficient
(Sharpe method) or Wang coefficient (Wang approach)). This assessment is challenging due to the lack
of data in the longevity derivatives market.

In the new regulatory context of Solvency II, another approach is to be more consistent with the corre-
sponding valuation. Therefore, some authors have introduced a new methodology inspired by Solvency
II: pricing longevity derivatives using the COC approach. A version of this method was proposed by
Levantesi and Menzietti (2017) in a discrete time model, and another version was presented by Zeddouk
and Devolder (2019) in continuous time models.

The COC method is based on linking the price of longevity derivatives with the capital the insurer
should hold to cover unexpected losses. According to Solvency II, insurance liabilities that cannot be
hedged should be computed as the sum of the best estimate (BE) plus a risk margin (RM), which is the
potential cost of transferring insurance obligations to a third party if the insurer fails. The RM at time
0 is determined by the COC approach based on the future remunerations on the successive Solvency
Capital Requirement (SCR):

RM0 = C%
T−1∑
i=0

SCRi |0 P(0, i + 1), (3.2)

where SCRi |0 is the estimation at time 0 of the solvency capital required to cover with 99.5% probability
the unexpected losses for year i, and C is the Cost of Capital rate (6% in Solvency II). P(0, i + 1) is the
discount factor.

The price at time 0 is then given by

VCOC(0, T) = BEP

0 + RM0. (3.3)

Namely, to lower exposure to longevity risk, the insurer can buy an S-forward contract, and con-
sequently, the corresponding SCR can be mitigated, or even reduced to zero if the longevity risk is

2The concept of S-forward was first introduced in Life and Longevity Markets Association (LLMA), 2010.
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completely covered, as can the corresponding RM. Moreover, this approach has the advantage to be
parametrised by the COC rate, which is fixed by regulation (currently 6% in Solvency II). In contrast
to classical pricing methods, in which the risk premium parameters must be calibrated, this legal and
unique cost-of-capital rate acts as a benchmark.

4. S-exchange pricing
4.1. Description of the product
In this paper, we focus on covering the residual basis risk, by using another derivative called “S-exchange
contract”. In the literature, the price of longevity derivatives is usually computed without taking into
account the basis risk. In this section, we evaluate this risk and determine the price of a financial tool
that allows for the protection against it.

Definition
An S-exchange forward is an agreement between the insurer and an investor to exchange at a future
date T (the maturity of the contract), an amount equal to the realised survival rate of a given reference
population, that is the longevity index, in return for the realised survival rate of the insurer’s cohort
population. For easiness of representation, we consider the notional amount equal to one monetary unit.
The payoff at maturity T of the S-exchange forward is then given by

Payoff (T) = I(x, T)ins − I(x, T), (4.1)

where I(x, T)ins = e− ∫ T
0 μ′

x(s)ds is the realized survival rate of an individual from the insurer’s cohort popu-
lation in a model to be specified, and I(x, T) = e− ∫ T

0 μx(s)ds the longevity index of the reference population
in a model to be specified.

4.2. The pricing under classical financial methods
When it comes to hedging longevity basis risk, to date, most longevity market transactions have been
customised swaps that allow risk transfer to a counterparty with a relatively high cost. In contrast, the
standardised longevity securities based on a given published longevity index that tracks the mortality
experience of a reference population, have higher potential to develop market liquidity and become
viable longevity risk transfer instruments. The main reason being the complexity of the quantification
and the evaluation of basis risk.

Some classical pricing approaches used in finance to evaluate financial securities can also be
used for longevity derivatives. However, in the longevity context, these methods may not appropriate:
these approaches require an important amount of data for calibration, which can be challenging in an
incomplete market. Moreover, these methods are not necessarily consistent with Solvency II.

The COC approach resolves this issue: in addition to being consistent with Solvency II, this method
is parametrised by one variable that is fixed by regulation. Still, we consider some of these classical
pricing approaches for comparison purposes.

In this section, we compute the S-exchange prices under the following three pricing methods, often
used in quantitative finance:

• Risk-neutral approach (Cairns et al., 2006)
• Wang transform (Wang, 2002)
• Sharpe ratio (Milevsky and Promislow, 2001)

The aim is to compare the results found with these classical methods to those found with the COC
method, as developed in Section 4.3.
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4.2.1. Risk-neutral method
Under the risk-neutral probability measure Qλ, the price of an S-exchange contract at time t is
given by

VQλ
(0, T) = P(0, T)

[
EQλ

(Iins(x, T) − I(x, T))
]

(4.2)

= P(0, T)
(

eα′
Qλ

(0,T)−β ′
Qλ

(0,T)μ′Qλ
x (0) − eαQλ

(0,T)−βQλ
(0,T)μ

Qλ
x (0)

)
.

We introduce the market prices λ(t, μx(t)) associated with the longevity risk, and we consider a model
with a constant market price of risk λ(t, μx(t)) = λ.

Using the HW model for longevity, the intensity of mortality under the risk-neutral measure for the
reference population μQλ

x and the insurer’s population μ′Qλ
x are given respectively by

dμQλ

x (t) = (
ξ (t) − bμQλ

x + σλ
)

dt + σdw∗(t) (4.3)

dμ′Qλ

x (t) = (
ξ ′(t) − b′μ′Qλ

x + σ ′λ
)

dt + σ ′dw∗′
(t). (4.4)

Using the HW model, the price becomes:

VQλ
(0, T) = P(0, T)

(
eα′

Qλ
(0,T)−β ′

Qλ
(0,T)μ′Qλ

x (0) − eαQλ
(0,T)−βQλ(0,T)μ

Qλ
x (0)

)
, (4.5)

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αQλ
(0, T) = A

b

[
e−bT

e(B+b)T − 1

B + b
− eBT − 1

B

]
− σ 2

2b2

[
1

b

(
1 − e−bT

) − T

]

− σ 2

4b3

(
1 − e−bT

)2 − λσ

b

(
1 − e−bT

)

βQλ(0, T) = 1

b

(
1 − e−bT

)
,

(4.6)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α′
Qλ

(0, T) = A′

b′

[
e−b′T e(B′+b′)T − 1

B′ + b′ − eB′T − 1

B′

]
− (σ 2 + σ̃ 2 + 2ρ̃σ̃ σ )

2b′2

[
1

b′
(
1 − e−b′T) − T

]

− (σ 2 + σ̃ 2 + 2ρ̃σ̃ σ )

4b′3
(
1 − e−b′T)2 − λ

√
σ 2 + σ̃ 2 + 2ρ̃σ̃ σ

b′
(
1 − e−b′T) )

β ′
Qλ

(0, T) = 1

b′
(
1 − e−b′T) .

(4.7)

4.2.2. Sharpe ratio method
The price of the S-exchange under the Sharpe approach is given by

VSharpe (0, T) = P(0, T)(EP(I(x, T)) − EP(Iins(x, T)) (4.8)

+ S
√

VarP(Iins(x, T) − I(x, T))),

where S is the chosen fixed Sharpe ratio, and VarP(I(x, T)) is the variance of the survival index. We
have

VarP(Iins(x, T) − I(x, T)) = EP[Iins(x, T) − I(x, T) − EP(Iins(x, T) − I(x, T))]2. (4.9)
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4.2.3. Wang transform method
We now compute the S-exchange price under the Wang approach. The Wang transform method is a
distortion approach that is based on a distortion operator. In insurance context, this operator converts
the BE of the survival index into its risk equivalent using a specific price of risk. This procedure was
presented by Dowd et al. (2006) as a pricing method used in the pricing of several OTC longevity swaps
in practice and used for instance by Denuit et al. (2007). The Wang distortion risk measure is given by

ρgδ
(x) =

∫ ∞

0

gδ

(
F̄x(s)

)
ds −

∫ 0

−∞

(
1 − gδ

(
F̄x(s)

))
ds, (4.10)

where x is a continuous random variable. F̄x(s) is its decumulative function, and gδ is the distortion
function associated with the distortion parameter δ and given by

gδ(s) = �(�−1(s) + δ), (4.11)

where �(.) is the cumulative standard normal distribution. We then have

ρg
δ

(
Iins(x, T) − I(x, T)

) =
∫ ∞

0

�
(
�−1

(
F̄(Iins(x,T)−I(x,T))(s)

) + δ
)

ds (4.12)

−
∫ 0

−∞

(
1 − �

(
�−1(F̄(Iins(x,T)−I(x,T))(s)) + δ

))
ds.

The price of the S-exchange is given by

VWang (0, T) = P(0, T)
[
ρg

δ
(Iins(x, T) − I(x, T))

]
. (4.13)

4.3. S-exchange pricing with COC approach
Let us now focus on the pricing, calibration and Solvency II consistency issues raised in Subsection 4.2.
The solution is based on linking the basis risk to a longevity derivative that we price under the COC
approach, consistent with Solvency II and whose parameter is fixed by the regulator.

This pricing approach can also be seen as a method that enables the estimation of the maximum
market price of longevity risk, depending on the RM implicit within the calculation of the technical
provisions as defined by Solvency II (Levantesi and Menzietti, 2017).

The price of the S-exchange contract at time 0 under the COC is given by

Proposition:

VCOC(0, T) = P(0, T)(EP(I(x, T)ins) − EP(I(x, T)))

+ 6%
T−1∑
i=0

VaR99,5%

[
ΨiI(x + i, 1)ins − �iI(x + i, 1) − �i

]
× P(i, T)P(0, i + 1), (4.14)

where:

Ψi = EP

(
I(x, i)ins

)
EP

(
I(x + i + 1, T − i − 1)ins

)
�i = EP(I(x, i))EP(I(x + i + 1, T − i − 1))

�i = EP(I(x, i)ins)EP

(
I(x + i, T − i)ins

)
− EP(I(x, i))EP(I(x + i, T − i)) . (4.15)

Proof. We recall that under the COC approach, the price of any product is given by Zeddouk and
Devolder (2019):

VCOC(t, T) = BEP

t + RMt, (4.16)
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where BEP
t is the BE under the real-world measure, of the payoff of the S-exchange at time t, and RMt

the RM. The price of the S-exchange at time 0 is given by

VCOC(0, T) = BEP

0 + RM0, (4.17)

where BEP
0 is as follows:

BEP

0 = P(0, T)(EP(I(x, T)ins) − EP(I(x, T))). (4.18)

The RM is defined by the present value of the future remunerations on the successive SCR:

RM0 = 6%
T−1∑
i=0

SCRi P(0, i + 1). (4.19)

The future SCRi are random variables. To compute the initial RM, we need to use their estimation at
time 0 denoted by SCRi |0. The RM at time 0 is then given by

RM0 = 6%
T−1∑
i=0

SCRi |0 P(0, i + 1). (4.20)

The SCRi are given by

SCRi = VaR99,5%

[
BEP

i+1P(i, i + 1) − BEP

i

]
, (4.21)

where:

BEP

i+1 = (I(x, i + 1)insEP

(
I(x + i + 1, T − i − 1)ins

)
(4.22)

− I(x, i + 1)EP(I(x + i + 1, T − i − 1)))P(i + 1, T),

and

BEP

i = (I(x, i)insEP(I(x + i, T − i)ins)

−I(x, i)EP(I(x + i, T − i))))P(i, T). (4.23)

The SCRi are then given by

SCRi = P(i, T)VaR99,5%

[
I(x, i + 1)insEP

(
I(x + i + 1, T − i − 1)ins

)
−I(x, i)insEP(I(x + i, T − i)ins) − I(x, i + 1)EP(I(x + i + 1, T − i − 1))

+I(x, i)EP(I(x + i, T − i)))
]
. (4.24)

Formula (4.24) is assumed to be equivalent to:

SCRi = P(i, T)VaR99,5%

[
I(x, i)(I(x + i, 1)insE

(
I(x + i + 1, T − i − 1)ins

)
−EP(I(x + i, T − i)ins)) − I(x, i)(I(x + i, 1)(EP(I(x + i + 1, T − i − 1))

−EP(I(x + i, T − i)))
]
. (4.25)

Then their estimations at time 0 are given by

SCRi |0 = P(i, T)VaR99,5%

[
EP(I(x, i)ins)(I(x + i, 1)insEP

(
I(x + i + 1, T − i − 1)ins

)
−EP(I(x + i, T − i)ins)) − EP(I(x, i))(I(x + i, 1)EP(I(x + i + 1, T − i − 1))

−EP(I(x + i, T − i)))
]
. (4.26)

The SCRi |0 can be then written as

SCRi |0= P(i, T)VaR99,5%[ΨiI(x + i, 1)ins − �iI(x + i, 1) − �i], (4.27)
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where Ψi,�i and �i are constants given by

Ψi = EP

(
I(x, i)ins

)
EP

(
I(x + i + 1, T − i − 1)ins

)
�i = EP(I(x, i))EP(I(x + i + 1, T − i − 1))

�i = EP(I(x, i)ins)EP

(
I(x + i, T − i)ins

)
− EP(I(x, i))EP(I(x + i, T − i)) . (4.28)

Finally, the RM at time 0 is then equal to:

RM0 = 6%
T−1∑
i=0

VaR99,5%[ΨiI(x + i, 1)ins − �iI(x + i, 1) − �i]P(i, T)P(0, i + 1). (4.29)

Remark 1. This framework can be extended to assess the basis risk of a portfolio of individuals with
different ages. This case has been addressed in Zeddouk and Devolder (2020b) who generalised the COC
approach to price a global survival forward contract (GS-forward), and thereby hedge the systematic
longevity risk for a portfolio of various generations while accounting for the eventual correlation between
their mortality probabilities. To capture the mortality correlation between different cohorts, they have
considered a multi-cohort model based on the HW model.

In their approach, the correlations across generations are captured through the introduction of inter-
generational correlations with different levels. These correlations are based on the introduction of n risk
factors modelled by independent Brownian motions.

5. Trend and volatility effects on the insurer’s population model
The mismatch between the insurer’s population and the reference population can have many reasons,
such as the socio-economic conditions. In this spirit, and based on the general formula (2.8), we can
isolate the effects of the two main components of the insurer’s population model, by modifying the
trend, the volatility or both. In this section, we consider b = b′, therefore we use formula (2.21) for the
insurer’s mortality, together with formula (2.4) for the reference population.

1. First effect: the insurer’s portfolio has the same mean structure as the reference population
(no differences in terms of general mortality pattern), but its reduced size generates an extra
volatility (extra-vol).

2. Second effect: the trend of the portfolio population is not similar to the trend of the reference
population (significant differences in terms of mortality pattern, for instance linked to special
job conditions or because of adverse selection issues). This can be translated into the model by
different initial conditions and different targets (constant shift).

3. Third effect: we combine the two effects (difference in terms of trends and presence of an
additional volatility).

5.1. Volatility effect (extra-vol)
Based on the general formula (2.21) of the insurer’s population mortality, we can have the first extra-vol
case by taking the following assumption:

• The same mean structure assumption is translated by incorporating the same trend as the
reference population. That is, the following condition should be satisfied:
– A = A′

– B = B′

The insurer’s population mortality under the extra-vol case is then given by

dμ′
x(t) = (ξ (t) − bμ′

x(t))dt + σdw(t) + σ̃dw̃(t), (5.1)
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The expectation of the survival index related to the insurer’s cohort is given by:

EP(I(x + t, T − t)ins) = eα′(t,T)−β ′(t,T)μ′
x(t), (5.2)

α′(t, T) and β ′(t, T) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α′(t, T) = A

b

[
e−bT

e(B+b)T − e(B+b)t

B + b
− eBT − eBt

B

]
− (σ 2 + σ̃ 2 + 2ρ̃σ̃ σ )

2b2

[
1

b
(1 − e−b(T−t)) − T + t

]

−
(
σ 2 + σ̃ 2 + 2ρ̃σ̃ σ

)
4b3

(
1 − e−b(T−t)

)2

β ′(t, T) = β(t, T).
(5.3)

Let us look at the form of the spread between the two mortality intensities. We denote this spread by
θx(t), defined as the difference between the mortality intensity of the insurer and the reference population.
We have

dθx(t) = dμ′
x(t) − dμx(t)

= −b(μ′
x(t) − μx(t))dt + σ̃dw̃(t)

= −bθx(t)dt + σ̃dw̃(t). (5.4)

The spread θx(t) given by (5.4) follows the Ornstein Uhlenbeck process, which is mean-reverting to
0. Its variance is bounded by its asymptotic value:

lim
t−→+∞

Var(θx(t)) = σ̃ 2

2b
. (5.5)

In this case, we have a real basis risk because the spread is stochastic. Let us remark that the initial
level of the two mortality intensities can be different: μx(0) 
= μ′

x(0). We can also observe that since
the spread has a mean reversion level equal to 0 and a bounded variance (formula (5.5)), there is no
divergence between the two populations as discussed, for instance by Villegas et al. (2017) and Li and
Hardy (2011).

5.2. Trend effect (constant shift)
In this case, the only difference between the reference and the insurer’s population mortality models is
the drift. Therefore, and based on formula (2.21), this is satisfied when σ̃ = 0.

The insurer’s intensity of mortality is then given by

dμ′
x(t) = (ξ ′(t) − bμ′

x(t))dt + σdw(t). (5.6)

In this case, the expression of α′(.) to put in formula (2.9) becomes:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α′(t, T) = A′

b

[
e−bT

e(B′+b)T − e(B′+b)t

B′ + b
− eB′T − eB′ t

B′

]
− σ 2

2b2

[
1

b

(
1 − e−b(T−t)

) − T + t

]

− σ 2

4b3

(
1 − e−b(T−t)

)2

β ′(t, T) = β(t, T).

(5.7)

The spread θx(t) between the mortality intensity of the reference population, and the insurer’s one in
the constant shift case is given by

dθx(t) = (ξ ′(t) − ξ (t) − b(μ′
x(t) − μx(t))dt

= (ξ ′(t) − ξ (t) − bθx(t))dt. (5.8)

with θx(0) = μ′
x(0) − μx(0).
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In this case, we do not have a real basis risk since θx(t) is a deterministic mean-reverting function
without any noise.

5.3. Total effect (extra-vol and constant shift)
This case is the combination of the extra-vol and constant shift effects. The insurer’s intensity of
mortality in this case is then given by

dμ′
x(t, T) = (ξ ′(t) − bμ′

x(t))dt + σdw(t) + σ̃dw̃(t). (5.9)

The spread θx(t) between the mortality intensity of the reference population and the insurer’s is given
by

dθx(t) = (ξ ′(t) − ξ (t) − b(μ′
x(t) − μx(t))dt + σ̃dw̃(t)

= (ξ ′(t) − ξ (t) − bθx(t))dt + σ̃dw̃(t). (5.10)

θx(t) is a mean-reverting process to a floating target ξ ′(t) − ξ (t). In this case, we have three effects:

• Level effect: μ′
x(0) 
= μx(0)

• Target effect: ξ ′(t) 
= ξ (t)
• Volatility effect: presence of additional variance

In this case the expression of α′(.) is given by

α′(t, T) = A′

b

[
e−bT e(B′+b)T − e(B′+b)t

B′ + b
− eB′T − eB′ t

B′

]

−
(
σ 2 + σ̃ 2 + 2ρ̃σ̃ σ

)
2b2

[
1

b

(
1 − e−b(T−t)

) − T + t

]
(5.11)

−
(
σ 2 + σ̃ 2 + 2ρ̃σ̃ σ

)
4b3

(
1 − e−b(T−t)

)2
.

6. Numerical illustrations
In this section, we give the numerical results of the prices of different S-exchange contracts, using the
COC method and the classical approaches for the Belgian population. We use the following assumptions:

• An insurer with a portfolio of pure endowment contracts paying a lump sum of 1AC at maturity
T in case of survival;

• N 0 = 10,000 initial policyholders for each cohort;
• Individuals aged 65 or 70 years in 2015;
• Payment of 1AC to each policyholder alive at time T ;
• Calibration is based on projected data from the IA|BE (2015) unisex projected generational

mortality table.
• The risk-less interest rate is considered constant (equals to 1%);
• We consider that A′ = g · A with g > 0, and B′ = B.
• The parameters λ, S and δ have been chosen to be quite similar to the values usually suggested

in the literature (see for instance Cui, 2008; Barrieu and Veraart, 2014). These parameters are
reported in Table 1:

We calibrate the HW model on projected mortality data for each cohort using the least square
estimation. The optimal parameters are reported in Table 2:
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Table 1. The classical methods’
parameter values.

Parameter Values (%)
λ –20
S 10
δ 10

Table 2. Optimal parameter values for the survival function in the HW model.

Age μx(0) A B b σ

65 0.0105677 0.002398110 0.115379365 0.261814487 0.001864268
70 0.01608859 0.005079817 0.116501598 0.311927223 0.006213681

Table 3. Fixed-legs and S-forward prices under the different methods.

Fixed leg COC Risk-neutral Sharpe Wang
x0 = 65, T = 5 0.94193 52.63125 55.24155 52.88389 52.88651
x0 = 65, T = 10 0.86580 88.39936 86.98154 88.89517 88.90408
x0 = 70, T = 5 0.91012 49.96718 55.95713 49.55169 49.57395
x0 = 70, T = 10 0.78655 61.52067 53.61137 59.66057 59.72016

It is noteworthy to mention that using a projected for calibration increases the uncertainty, and using
observed data would have been more reliable, but as Plat (2009) states: “there is not enough insurance
portfolio specific mortality data available to fit stochastic mortality models reliably”.

We have followed the Luciano and Vigna (2015) framework, who have also calibrated the data on UK
projected table, and compared between calibrating some stochastic time-continuous models on observed
and projected data. They have found that the volatility has lower values in the case of projected data;
however, “this seems to indicate that, relying on the observed data, the future evolution of the intensity
of mortality for an individual aged x now (observing his/her current force of mortality) presents low
variability”.

Zeddouk and Devolder (2020a) have followed the same routine using the observed Belgian mortality
data and projected data from IA|BE and have found the same conclusions.

Therefore, although the data we used is taken from projected mortality tables and not from observed
ones, the values of the parameter seem to be realistic and fall within the usual values range. Overall, in
practice, if the observed mortality data is available, our framework can be used by a hedger who can
directly calibrate the multi-population model to the observed insureds’ mortality data.

Zeddouk and Devolder (2019) have computed the prices of the S-forward contracts under the COC
and the classical approaches, using HW model for mortality and the assumptions made in this paper.
The prices as well as the fixed legs are reported in Table 3:

6.1. S-exchange prices in the extra-vol case
We determine the price of the different S-exchange derivatives under the extra-vol effect case using the
following parameters:

• σ̃ = 20%σ

• ρ̃ = 0.5
• μ′

x(0) = μx(0)
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Table 4. Comparison between S-exchange prices under the different methods, extra-
vol case.

COC Risk-neutral Sharpe Wang
x0 = 65, T = 5 2.48922 1.12973 0.88968 0.9315238
x0 = 65, T = 10 5.52361 1.41983 1.50233 1.232661
x0 = 70, T = 5 8.89376 3.72324 3.23218 3.006879
x0 = 70, T = 10 17.88005 4.97062 5.82333 6.06159

The main objective of the paper is to focus on the pricing framework and not really on the calibration
itself. Therefore, we have chosen these values for illustration, and a stress test related to each of these
values is provided in Section 7. This framework can be used by an insurer who can adjust these values
and calibrate the multi-population model to his own mortality data.

Our approach can be even more relevant in case the insurers’ mortality data is weak or not available,
but also when this data is available: in this case, the hedger can directly use the insureds’ mortality
for calibration and derive the extra volatility by comparing the volatilities of the two population. The
correlation can also be easily computed since the data for both population is available.

By studying these parameters, the mortality model will fall in one of the three possibilities we discuss
in the paper, and therefore the insurer can observe the volatility effect, trend effect or both (the total
effect).

We report in Table 4 the different S-exchange prices computed under the extra-vol effect case:

6.2. S-exchange prices in the constant shift case
We consider the following parameters:

• g = 0.9
• μ′

x(0) = g · μx(0)

Under this case, we get more or less the same S-exchange prices with the four methods.

6.3. S-exchange prices in the total effect case
We determine the price of the different S-exchange derivatives under the total effect case using the
following parameters:

• σ̃ = 20%σ

• ρ̃ = 0.5
• g = 0.9
• μ′

x(0) = g · μx(0)

Table 6 represents the different S-exchange prices computed under the total effect case:

Comments:
The S-exchange prices given by Wang and risk-neutral approaches are more or less similar. Overall,

the Sharpe method provides the highest S-exchange prices in comparison with the four methods. By
comparing Tables 4, 5 and 6, we can also remark that the sum of the prices under the extra-vol and the
shift cases is very close to the price found under the total effect case, which results from the cumulative
effects of the drift and the volatility.

Also, the price under the shift case is very high when compared to the extra-vol effect, where more
than 90% of the price under the total effect is linked to the shift parameter g, and this can be explained
by the small values of the volatility σ .
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Table 5. Comparison between S-exchange prices under the different methods, constant
shift case.

COC Risk-neutral Sharpe Wang
x0 = 65, T = 5 49.48473 49.48929 49.47635 49.47637
x0 = 65, T = 10 105.8105 107.25240 107.27830 107.2784
x0 = 70, T = 5 80.38255 79.80213 79.743380 79.74367
x0 = 70, T = 10 170.68800 172.32610 172.47010 172.4728

Table 6. Comparison between S-exchange prices under the different methods, total
effect case.

COC Risk-neutral Sharpe Wang
x0 = 65, T = 5 51.95998 50.62522 53.42589 50.68662
x0 = 65, T = 10 111.19450 108.69150 116.88090 108.5659
x0 = 70, T = 5 88.37966 83.55947 86.51790 85.32901
x0 = 70, T = 10 188.27620 177.41610 188.85620 177.4802

Table 7. Price sensitivity test for σ̃ and ρ̃ parameters under COC approach, extra-vol case.

σ̃ ρ̃

10%σ 20%σ 30%σ 50%σ 0 0.5 1
x0 = 65, T = 5 1.2560 2.4892 4.2621 6.2730 2.3410 2.4892 2.7980
x0 = 65, T = 10 2.8349 5.5236 8.3154 13.9834 5.3298 5.5236 5.7838
x0 = 70, T = 5 4.2763 8.8937 15.3118 22.7217 7.5817 8.8937 9.5652
x0 = 70, T = 10 7.8704 17.8800 24.8066 47.9071 15.0588 17.8800 20.4783

7. Sensitivity test
In this section, we perform a sensitivity test for the prices, BEs and RMs computed under the COC
approach. For each case, cohort and maturity, we vary one parameter and consider other parameters
fixed, and we see how the price of the S-exchange contract under the COC method changes. For illustra-
tion, we provide in the Appendix Section the sensitivity test for the classical methods in the total effect
case.

7.1. Volatility effect
In this case, to compute the prices of the S-exchange contracts, we have chosen σ̃ = 20%σ and ρ̃ = 0.5.
Now we use different values of σ̃ and ρ̃ and see how the price changes. The different prices, BE and
RM are reported in Tables 7, 8 and 9:

7.2. Trend effect
In this case, to compute the prices of the S-exchange contracts we have chosen g = 0.9. We consider
now different values for g and see how the price changes. The results are reported in Tables 10, 11
and 12:
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Table 8. Best estimate sensitivity test for σ̃ and ρ̃ parameters under COC approach, extra-vol case.

σ̃ ρ̃

10%σ 20%σ 30%σ 50%σ 0 0.5 1
x0 = 65, T = 5 0.0299 0.0654 0.1063 0.2045 0.0109 0.0654 0.1199
x0 = 65, T = 10 0.10628 0.2318 0.3768 0.7246 0.0986 0.2318 0.4251
x0 = 70, T = 5 0.2783 0.6072 0.9868 1.8978 0.1012 0.6072 1.1133
x0 = 70, T = 10 0.8530 1.8613 3.0249 5.8183 0.3101 1.8613 3.4128

Table 9. Risk margin sensitivity test for σ̃ and ρ̃ parameters under COC approach, extra-vol case.

σ̃ ρ̃

10%σ 20%σ 30%σ 50%σ 0 0.5 1
x0 = 65, T = 5 1.2260 2.4237 4.1558 6.0685 2.3301 2.4237 2.6780
x0 = 65, T = 10 2.7286 5.2917 7.9386 13.2588 5.1925 5.2917 5.3587
x0 = 70, T = 5 3.9979 8.2864 14.3250 20.8238 7.4805 8.2864 8.4518
x0 = 70, T = 10 7.0173 16.0186 21.7817 42.0887 14.7486 16.0186 17.0654

Table 10. Price sensitivity test for g parameter under COC approach, constant shift case.

g

0.5 0.7 0.9 1.1
x0 = 65, T = 5 250.2315 149.2817 49.4847 –49.0785
x0 = 65, T = 10 543.6788 321.6998 105.8105 –103.7540
x0 = 70, T = 5 411.7152 244.9485 80.3825 –78.1786
x0 = 70, T = 10 905.0097 526.3405 170.6880 –162.5489

Table 11. Best estimate sensitivity test for g parameter under COC approach, constant shift case.

g

0.5 0.7 0.9 1.1
x0 = 65, T = 5 249.9182 149.1292 49.4378 –49.16796

x0 = 65, T = 10 550.2550 325.7032 107.1109 –105.6799
x0 = 70, T = 5 405.1099 240.8466 79.5514 –78.8294

x0 = 70, T = 10 900.6148 527.4891 171.6711 –167.6422

Table 12. Risk margin sensitivity test for g parameter under COC approach, constant shift case.

g

0.5 0.7 0.9 1.1
x0 = 65, T = 5 0.3133 0.1524 0.0468 0.0894
x0 = 65, T = 10 –6.5761 –4.0034 –1.3003 1.9259
x0 = 70, T = 5 6.6053 4.1018 0.8311 0.6508
x0 = 70, T = 10 4.3949 –1.1486 –0.9830 5.0932
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7.3. Total effect
In this case, to compute the prices of the S-exchange contracts, we have chosen g = 0.9, σ̃ = 20%σ and
ρ̃ = 0.5. Let us now compute the price using different values of g, σ̃ and ρ̃, then we see how the price
changes. The results are reported in Tables 13, 14, 15:

In general, the two populations may have different speeds of reversion: the insurer’s population tends
to be wealthier, which would imply a possibly slower mean reversion. The effect of this difference can
be measured by analysing the sensitivity of the price with respect to the mean reversion rate parameter.
As we mentioned previously, in order to fulfil the independence assumption, the mean reversion rate b
in the population’s force of mortality formula should be the same as in the insurer’s population formula.
Namely, we should have b = b′.

In the Appendix Section, we ignore this assumption and perform a sensitivity test on parameter b′.

8. Different longevity hedging strategies
In this section, we define and compare different longevity hedging strategies using the COC approach.
For each strategy, we determine the solvency capital required that the insurer should hold to cover
unexpected losses, as well as the BE at time 0.

Depending on his risk aversion, the insurer can choose to hold an SCR and/or to totally or partially
hedge the longevity risk. More precisely, we compare the following possible strategies:

1. The insurer can choose to hold an SCR and not resort to the financial market or reinsurance to
hedge the longevity risk.

2. He can choose to only hedge a portion of the systemic longevity risk by entering an S-forward
and hold the SCR corresponding to the basis risk.

3. In addition to the purchase of an S-forward, he can choose a total protection against the
longevity risk by entering an S-exchange contract (assuming that such product is available in
the financial market, or proposed by an investor).

4. The insurer can choose a total protection without entering an S-forward and an S-exchange, but
simply by transferring the total longevity risk to a reinsurer who accepts to take it. The cost of
this protection is also assumed to be computed using the COC approach.

• Auto-protection: holding an SCR (S1)

In this strategy, the insurer manages himself the longevity risk by holding successive annual solvency
capitals following the directives of Solvency II. We denote by T p̂x a fixed survival rate of an individual
aged x at time 0 to be alive at age x + T (F 0 measurable). The premium paid by the insured is based on
this fixed rate.

The BE in this case is given at time 0 by

BEP

0 = P(0, T)(EP

(
I(x, T)ins − T p̂x

)
. (8.1)

The expression of the successive solvency capitals under the COC approach is given by Zeddouk and
Devolder (2019):

SCRi = VaR99,5%

[
BEP

i+1P(i, i + 1) − BEP

i

]
, (8.2)

where

BEP

i+1 =
(

I
ins

(x, i + 1)EP

(
I

ins
(x + i + 1, T − i − 1) − T p̂x

))
P(i + 1, T)

BEP

i =
(

I
ins

(x, i)EP

(
I

ins
(x + i, T − i) − T p̂x

))
P(i, T). (8.3)
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Table 13. Price sensitivity test for g, σ̃ and ρ̃ parameters under COC approach, total effect case.

g σ̃ ρ̃

0.5 0.7 0.9 1.1 10%σ 20%σ 30%σ 50%σ 0 0.5 1
x0 = 65, T = 5 253.0618 151.8753 51.9599 –46.4201 50.7853 51.9599 53.5352 56.3035 51.8764 51.9599 52.3302
x0 = 65, T = 10 548.6933 326.8021 111.1945 –98.6251 108.3595 111.1945 113.5351 119.6683 110.5150 111.1945 111.4551
x0 = 70, T = 5 424.6750 252.2611 88.3796 –70.4250 84.3369 88.3796 92.7267 103.0981 87.4360 88.3796 90.6162
x0 = 70, T = 10 927.0974 544.8262 188.2762 –148.6811 179.8440 188.2762 197.5176 218.0175 183.5376 188.2762 193.0048
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Table 14. Best estimate sensitivity test for g, σ̃ and ρ̃ parameters under COC approach, total effect case.

g σ̃ ρ̃

0.5 0.7 0.9 1.1 10%σ 20%σ 30%σ 50%σ 0 0.5 1
x0 = 65, T = 5 249.9851 149.1950 49.5036 –49.1024 49.4680 49.5036 49.5448 49.6435 49.4489 49.5036 49.5585
x0 = 65, T = 10 550.5031 326.8020 107.3459 –98.6252 107.2186 107.3459 107.4928 107.8453 107.1500 107.3459 107.5417
x0 = 70, T = 5 405.7455 241.4701 80.1642 –78.2276 79.8323 80.1642 80.5473 81.4666 80.1503 80.1642 80.6749
x0 = 70, T = 10 902.7108 529.4879 173.5772 –165.8245 172.5446 173.5772 174.7687 177.6292 171.9880 173.5772 175.1659
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Table 15. Risk margin sensitivity test for g, σ̃ and ρ̃ parameters under COC approach, total effect case.

g σ̃ ρ̃

0.5 0.7 0.9 1.1 10%σ 20%σ 30%σ 50%σ 0 0.5 1
x0 = 65, T = 5 3.0801 2.6820 2.4562 2.6816 1.3173 2.4562 3.9903 6.6600 2.4275 2.4562 2.7717
x0 = 65, T = 10 –1.8093 0.8587 3.8486 6.8260 1.1409 3.8486 6.0423 11.8230 3.3649 3.8486 3.9133
x0 = 70, T = 5 18.9304 10.7905 8.2154 7.8026 4.5046 8.2154 12.1794 21.6314 7.2857 8.2154 9.9412
x0 = 70, T = 10 24.38662 15.3382 14.6990 17.1434 7.2994 14.6990 22.7488 40.3882 11.5489 14.6990 17.8388
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Therefore, the estimation of SCRi |0 can be given by

SCRi |0 = P(i, T)EP

(
I

ins
(x, i)

) [
VaR99,5%

(
I

ins
(x + i, 1)

)
− EP

(
I

ins
(x + i, 1)

)]
× EP

(
I

ins
(x + i + 1, T − i − 1)

)
, (8.4)

and the hedging cost in this strategy is equal to 0.

• Partial hedging: S-forward (S2)

The insurer choose to partially hedge the longevity risk (its systemic part), by entering an S-forward.
In this case, he should pay the price of the S-forward (formula (4.17)) and hold the SCR to cover the
eventual losses related to the basis risk. The BE at time 0 is given by formula (4.18), and the estimation
of the SCRi at time 0 is given by formula (4.26).

• Total hedging: S-forward + S-exchange (S3)

In this strategy, the insurer prefers not to hold the SCR and to be totally protected against the longevity
risk. The cost of this protection is equal to the sum of the S-forward and S-exchange contracts prices.

• Reinsurance (S4)

Instead of buying an S-forward and an S-exchange, the insurer can directly resort to a reinsurer who
accepts to totally cover the longevity risk. In this case, the SCR is equal to 0. For example, if the reinsurer
uses the COC approach to compute the price of the total protection, the price of this protection should
be equal to:

VCOC (0, T) = P(0, T)
(
EP

[
Iins(x, T) − T p̂x

])
+ 6%

T−1∑
i=0

[
EP(Iins(x, i))

[
VaR99,5%(Iins(x + i, 1)) − EP(Iins(x + i, 1))

]
× EP(Iins(x + i + 1, T − i − 1))P(0, i + 1)P(i, T). (8.5)

For illustration, we compute the different hedging strategies in this section to compare the various
strategies that reflect the risk aversion of the insurer.

We use the same data considered in the numerical illustration part of Section 6. We restrict ourselves
to two initial ages, 65 and 70 years old, for a maturity of T = 5 years. Table 16 reports a comparison
between the hedging strategies under the COC approach:

• In case S1, the insurer does not buy any protection, but must hold the SCRs corresponding to
the longevity risk (the systemic and basis risks). This strategy cost the insurer the expense of
holding these SCRs (6% of the SCRs), and the SCRs can be totally or partially lost if things go
wrong. In this strategy, however, the insurer is not exposed to credit risk.

• In case S2, the insurer enters into an S-forward contract, which is an exchange-traded deriva-
tive based on the reference population index that partially covers the insurer (systemic risk).
Therefore, this insurer should hold smaller SCRs (which can also be totally or partially lost)
corresponding to the remaining basis risk. In this strategy, the insurer is exposed to credit risk,
but it is limited since the risk is spread among a large number of investors.

• In case S3, the insurer buys two protections: an S-forward contract from the financial markets
and an S-exchange derivative, which is a customised contract OTC. Hence, the insurer will be
fully covered against the longevity risk and will not need to set aside an SCR. The credit risk
is more significant in this case since it is related to the financial market (S-forward) and the
S-exchange’s seller.

• In case S4, the insurer delegates the risk to a reinsurer, and as in case S3, there is no need to
hold SCRs. The cost of this protection is also computed using the COC approach. This strategy
represents the highest credit risk since it is related to one entity.
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Table 16. Comparing different longevity hedging strategies using the COC approach.

x0 = 65, T = 5 x0 = 70, T = 5

Price BE0 SCRt Price BE0 SCRt

S1 0 95.31299 t = 0 17.03330 0 108.13463 t = 0 68.72862

t = 1 17.35925 t = 1 69.15855

t = 2 17.43082 t = 2 69.21941

t = 3 17.27303 t = 3 68.94691

t = 4 16.90103 t = 4 68.35740

S2 52.63125 49.50369 t = 0 4.98812 49.96718 80.16426 t = 0 12.48208

t = 1 7.82119 t = 1 23.93022

t = 2 8.53356 t = 2 29.12340

t = 3 10.54643 t = 3 39.51281

t = 4 13.38823 t = 4 48.05535

S3 104.59125 0 0 138.34670 0 0

S4 100.38690 0 0 128.80417 0 0

Besides S1, all other strategies the insurer might choose do not completely mitigate the risk, as credit
risk must be considered in the risk transfer decision. Credit risk represents a state in which the coun-
terparty (in our case, the financial market or the reinsurer) is unable to fulfil its financial obligations in
a timely manner or at all. Neither the financial market nor the reinsurer is completely free from default
risk, and therefore, the insurer must hold a capital for this extra credit risk. However, the level of this
risk is more important for the reinsurer than for the financial market. Assessment of this risk is beyond
the scope of this paper; we refer the interested reader to Biffis et al. (2016) for more details.

The choice of the best hedging strategy depends on the insurer’s risk aversion. Moreover, deciphering
the best strategy in terms of cost is difficult at time 0: if the insurer chooses S1 or S2, the cost of the
hedging strategy will be known only at maturity of the contract, since it depends on whether or not the
SCRs are used to cover the risk. For example, S1 would be better than S3 if the SCRs are not needed;
otherwise, S1 would be more expensive than S3 and S4. Additionally, from S1 to S3, the expectation
of the cost (BEP

0 + Price) increases since the expense increases the more the insurer seeks protection
against the longevity risk.

9. Conclusion
In this paper, we developed a continuous time framework to assess the basis risk through the pricing of
a longevity derivative. We proposed a bi-dimensional HW process that can capture mortality trends in
the reference population and in the insurer’s population, whose risk is to be hedged. We associated the
basis risk with a longevity derivative called S-exchange that we priced under the COC method, which
is consistent with Solvency II. We presented this approach as a new benchmark and compared it with
other classical pricing methods. In addition, we proposed various hedging strategies depending on the
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insurer’s risk aversion. For further research, we could price nonlinear longevity derivatives, such as
longevity options, using the same cost of capital philosophy.

References
Barbarin, J. (2008) Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios.

Insurance: Mathematics and Economics, 43(1), 41–55.
Barrieu, P. and Veraart, L.M. (2014) Pricing q-forward contracts: An evaluation of estimation window and pricing method under

different mortality models. Scandinavian Actuarial Journal, 2016(2), 146–166.
Bayraktar, E. and Young, V. (2010) Optimal investment strategy to minimize occupation time. Annals of Operations Research,

176(1), 389–408.
Biffis, E., Blake, D., Pitotti, L. and Sun A. (2016) The cost of counterparty risk and collateralization in longevity swaps. Journal

of Risk and Insurance, 83(2), 387–419.
Blake, D. and Burrows, W. (2001) Survivor bonds: Helping to hedge mortality risk. Journal of Risk and Insurance, 68, 339–348.
Dahl, M., Glar, S. and Møller, T. (2011) Mixed dynamic and static risk-minimization with an application to survivor swaps.

European Actuarial Journal, 1(2), 233–260
Dahl, M., Melchior, M. and Møller, T. (2008) On systematic mortality risk and risk minimisation with survivor swaps.

Scandinavian Actuarial Journal, 2008(2–3), 114–146
De Rosa, C., Luciano, E. and Regis, L. (2017) Basis risk in static versus dynamic longevity-risk hedging. Scandinavian Actuarial

Journal, 2017(4), 343–365.
Cairns, A.J.G, Blake D. and Dowd, K. (2006) A two-factor model for stochastic mortality with parameter uncertainty: Theory

and calibration. Journal of Risk and Insurance, 73(4), 687–718.
Cairns, A.J.G. and El Boukfaoui, G. (2021) Basis risk in index-based longevity hedges: A guide for longevity hedgers. North

American Actuarial Journal, 25(S1), 97–118.
Coughlan, G.D., Khalaf-Allah M., Ye, Y., Kumar, S., Cairns, A.J.G., Blake D. and Dowd, K. (2011) Longevity Hedging 101: A

framework for longevity basis risk analysis and hedge effectiveness. North American Actuarial Journal, 15(2), 150–176.
Cui, J. (2008) Longevity risk pricing. SSRN Electronic Journal.
Denuit, M., Devolder P. and Goderniaux, A.C. (2007) Securitization of longevity risk: Pricing survivor bonds with Wang transform

in the Lee-Carter framework. Journal of Risk and Insurance, 74, 87–113
Dowd, K., Blake, D., Cairns, A.J.G. & Dawson, P. (2006). Survivor swaps. Journal of Risk and Insurance, 73(1), 1–17
Duffie, D., Filipović, D. and Schachermayer, W. (2003) Affine processes and applications in finance. Annals of Applied Probability,

13, 984–1053.
Haberman, S., Kaishev, V., Millossovich, P.,Villegas, A., Baxter, S., Gaches, A., Gunnlaugsson, S. and Sison, M. (2014) Longevity

basis risk: A methodology for assessing basis risk. Cass Business School and Hymans Robertson LLP, Institute and Faculty
of Actuaries (IFoA) and Life and Longevity Markets Association (LLMA), London, UK.

Huang, Z., Sherris, M., Villegas, A. and Ziveyi, J. (2019). The application of affine processes in cohort mortality risk models.
Research paper, UNSW Business School, Available at SSRN 3446924.

Ia| be. (2015). Mortality projection for the Belgian population. (Research Report).
Jevtić, P. and Regis, L. (2019) A continuous-time stochastic model for the mortality surface of multiple populations. Insurance:

Mathematics and Economics, 88, 181–195.
Levantesi, S. and Menzietti, M. (2017) Maximum market price of longevity risk under solvency regimes: The Case of Solvency

II. Risks, 5(2), 1–21.
Li, J., Li, J.S., Tan, C.I. and Tickle, L. (2019) Assessing basis risk in index based longevity swap transactions. Annals of Actuarial

Science, Cambridge University Press, 13(1), 166–197.
Li, J.S. and Luo, A. (2012) Key Q-duration: A framework for hedging longevity risk. ASTIN Bulletin, 42(2), 413–452.
Li, J.S.H. and Hardy, M.R. (2011) Measuring basis risk in longevity hedges. North American Actuarial Journal, 15(2), 177–200.
Luciano, E. and Vigna, E. (2015) Non mean reverting affine processes for stochastic mortality. ICER Working Papers.
Milevsky, M.A. and Promislow, S.D. (2001) Mortality derivatives and the option to annuitise. Insurance: Mathematics and

Economics, 29(3), 299–318.
Ngai, A. and Sherris, M. (2011) Longevity risk management for life and variable annuities: The effectiveness of static hedging

using longevity bonds and derivatives. Insurance: Mathematics and Economics, 49(1), 100–114.
Plat, R. (2009) Stochastic portfolio specific mortality and the quantification of mortality basis risk. SSRN Electronic Journal, 45.
Sherris, M., Xu, Y. and Ziveyi, J. (2020) Cohort and value-based multi-country longevity risk management. Scandinavian

Actuarial Journal, 2020, 1–27.
Tzeng, L.Y., Wang, J.L. and Tsai, J.T. (2011) Hedging longevity risk when interest rates are uncertain. North American Actuarial

Journal, 15(2), 201–211.
Villegas, A.M., Haberman, S., Kaishev, V.K. and Millossovich, P. (2017) A comparative study of two-population models for the

assessment of basis risk in longevity hedges. ASTIN Bulletin, 47(3), 631–679.
Wang, S.S. (2002) A universal framework for pricing financial and insurance risks. Astin Bulletin, 32, 213–234.
Xu, Y., Sherris, M. and Ziveyi, J. (2020) Continuous-time multi-cohort mortality modelling with affine processes. Scandinavian

Actuarial Journal, 2020(6), 526–552.

https://doi.org/10.1017/asb.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.37


184 Fadoua Zeddouk and Pierre Devolder

Zeddouk, F. and Devolder, P. (2020a) Mean reversion in stochastic mortality: Why and how?. European Actuarial Journal, 10,
499–525.

Zeddouk, F. and Devolder, P. (2019) Pricing of longevity derivatives and cost of capital. Risks, 7(2), 41.
Zeddouk F. and Devolder P. (2020b) Longevity modelling and pricing under a dependent multi-cohort framework. Risks, 8(4),

121.
Zhou, K.Q. and Li, J.S.H. (2017) Dynamic longevity hedging in the presence of population basis risk: A feasibility analysis from

technical and economic perspectives, Journal of Risk and Insurance, 84(S1), 417–437.

https://doi.org/10.1017/asb.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.37

	Introduction
	Multi-population modelling in continuous time
	Assumptions
	Mortality assumptions
	Financial assumptions

	Reference population model
	Insurer"2019`s population model
	The spread between the reference and the insurer"2019`s population
	Particular case 1: independence between the mortality spread and the reference population
	Particular case 2: same mean reversion rate for the two populations


	S-forward pricing
	Description of the product
	Pricing of the product

	S-exchange pricing
	Description of the product
	The pricing under classical financial methods
	Risk-neutral method
	Sharpe ratio method
	Wang transform method

	S-exchange pricing with COC approach

	Trend and volatility effects on the insurer"2019`s population model
	Volatility effect (extra-vol)
	Trend effect (constant shift)
	Total effect (extra-vol and constant shift)

	Numerical illustrations
	S-exchange prices in the extra-vol case
	S-exchange prices in the constant shift case
	S-exchange prices in the total effect case

	Sensitivity test
	Volatility effect
	Trend effect
	Total effect

	Different longevity hedging strategies
	Conclusion

