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ABSTRACT

Maximum likelihood estimation is derived for the Lagrangian Poisson distribution
for a simple and a loglinear model and illustrated with real data.
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1. INTRODUCTION

The monograph by CONSUL (1989) is on a nice counting distribution known as
Lagrangian Poisson':

(1.1) p(n\e, £) = 0(0 + «£ ) ' I - 1 exp [ - (0 + n£)]/n!

n = 0, 1, 2, 3, 4, ... 0>O 0 < ? < l

The mean and variance of this probability distribution are finite when £ < 1 and are
given by:

E[N] = 0(1 - £ ) " ' var(JV) = 0 ( 1 - £ ) " 3

When £ = 0 this distribution reduces to the well-known Poisson distribution.
CONSUL and SHENTON (1972) derive (1.1) using Lagrange's expansion. A

probabilistic derivation of the Lagrangian Poisson distribution can be found in
GOOVAERTS and KAAS (1991). Once we know this distribution it is possible to
recognize it in the literature. Browsing in Cox and MILLER (1965), I encountered it
as a queueing exercise on page 250. They refer to MCMILLAN and RIORDAN

(1957).
Clearly, the Lagrangian Poisson is a useful distribution which belongs to the

statistical toolkit.
A generalization of the loglinear Poisson model using the Lagrangian Poisson

may be useful. This allows the variance to exceed the mean. Maximum likelihood

This adheres to the terminology in CONSUL and SHENTON (1972). The distribution is also known as
Generalized Poisson. The adjective generalized, being rather uninformative anyway, applies also to
arbitrary mixed and compound Poisson distributions.
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analysis for a simple model is given in the next section, followed with the
exposition for a loglinear model.

Evaluation of Information matrices needs the following moments, which can be
found on page 157 in CONSUL (1989):

(1.2)

r
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6(6 + 2 5)

e
\

6(9 + 2)

1(9

N2(N-\)

(6 + Nt,)2

A numerical illustration and some final remarks complete the paper.

2. A SIMPLE MODEL

The convolution of two independent Lagrangian Poisson random variables with
parameters (0\, 5) and (92, 5) is Lagrangian Poisson with parameters (9] +92, t,)-
This justifies the replacement of 9 in (1.1) by m9, where m is a known size factor.
This situation may be appropriate for a statistical agency, which collects economy-
wide data on the number of policies and number of claims. Let there be R reporting
units numbered r- 1, ..., R. Minus the logarithm of the likelihood function can be
written as:

(2.1) / = c

(2.3)

ar = (mr9 + nr c - X [In nr\ - In mr]

where X denotes summation over r. The elements of the gradient of / result as:

rif
(2.2) — = Xwir - RG~l - 'Lmr(nr-])ar

86

— = Lnr - L,nr(nr- \)ar
3?

Following page 102 in CONSUL (1989), we multiply (2.2) by 9 and (2.3) by
Adding together and equating to 0 results in:

(2.4)
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So, the implied maximum likelihood estimator for the population mean is given by
the sample mean. The elements of the Hessian of/can be displayed in partitioned
matrix form as:

H _ a2/ _ Re-i\
l °l + y n _l)a2\mr
LO o j + ^ a \ n r

If we have a pathological sample for which all nr = 0, the Hessian will be a
zero-matrix. In case also nr = 1 are observed, the Hessian will be positive
semi-definite. In all other cases the Hessian is positive definite, which implies / to
be convex with a unique stationary point.

Searching along the line (2.4) we derive that this stationary point will have £ < 1
and t, > 0 depending on the sample. To this end we substitute (2.4) in (2.1) and get a
convex function in £:

(2.6)/ = (c + I « r - fllnA) - flln(l-£) - I ( n , - l ) l n [ m r l ( l - 5 ) + «,-£]

where A = Znr/Zwr, the sample mean. Numerically, / is defined on the open
interval (z, 1) where z < 0 is given as:

z = 1 - min [nru~ ' I Mr>0] ur= nr - mrX
r

At the boundaries of this interval/ approaches +«=. Probabilisticaly, the stationary
point of/ should be in the interval [0, 1]. Differentiation of (2.6) results in:

(2.7) - - ] l U l

Taking the limit of (2.7) for £ —> 1 results in +°°. So, the search for a stationary
point, starting in this limit point, will be in the direction of f < 1. Next we evaluate
(2.7) for ? = 0. When this value is negative, the stationary point will have
This condition can be simplified to:

2

<\?,mr\\'Lnr(nr-l)/mr

When all mr are equal, this condition amounts to the statement that the sample
variance exceeds the sample mean. This agrees with the findings on page 102 in
CONSUL (1989).

So, there is a possibility that the stationary point will have £<0. In such cases
we should decide to use the Poisson model by setting 5 = 0.
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The Information matrix results as the expectation of (2.5). Using the expectations
in (1.2) and adjusting for mr we get:

( 7 9 i \ 7 ~ ' r T T 1 x ' - -- " • ^< « • • > - ' i " " r N ' 3 / . — , - w i r f 7

m,0

Both the inverse of (2.5) or (2.8) give an estimator for the covariance matrix of the
maximum likelihood estimator.

Whenever all mr are equal we may normalize mr=\ and the sample data are
conveniently stored in a frequency table. Such a situation arises when considering
the number of claims per policy. In Table 1 we find data from BICHSEL (1964)
together with the maximum likelihood fit.

TABLE 1
LIABILITY CLAIMS PER AUTOMOBILE POLICY, SWITZERLAND 1961

Number of claims Number of policies Lagrangian Poisson fit

0 103 704 103 722.2
1 14 075 14 003.7
2 1 766 1 838.2
3 255 248.5
4 45 34.6
5 6 4.9
6 2 0.7

>7 0 0.1

The maximum likelihood estimates are § = 0.14455 and £ = 0.06826 with
standard deviations 0.0011 and 0.0028.

3. A LOGLINEAR MODEL

We model 0 in the following loglinear way, which reconciles with the loglinear
Poisson model as presented in TER BERG (1980):

(3.1) dr = Xr(\-'Q)

lr = exp [\'rfi]

where xr is a vector of explanatory variables and ff a parameter vector with K
elements.

Following the interpretation of the R reporting units with different size given by
mr this model is capable of incorporating differences between reporting units and
differences between time periods by introducing appropriate dummies. A more
common interpretation is the modelling of claim frequencies as a step towards a
multiplicative rating structure.

The RxK matrix X is defined as:

x = [x, x2 ... \Ry

and is assumed to have full column rank. The first column of X equals 1, a vector
containing the elements 1.
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Minus the logarithm of the likelihood function is a function of P and £ and can be
written as:

(3.2) / = c + ( l - C ) I m ^ r H l « r + l ( n r - l ) l n a r - fl In ( ! - £ ) - I'Xfi

ar = (mr6r+nrt,)
-1

Differentiation of / with respect to ft and t, results in the elements of the
gradent g:

(3.3) — = ( 1 - C ) I [ 1 - ( n r - l ) a r ] m r A r x r - X ' l
dfi

R(lO~l + I [ l - (nr- l)ar]ur ur = nr-mrXr

Differentiation of g with respect to /? and t, results in the elements of the
Hessian H:

(3.4) — L = S [ l -nr(nr-l)a
2
r£]mrerxrx'r

pp'

= - L [1 - nr(nr- \)ar]mrXrxr

ZV2 + l(nr-l)[arur]
2>0

The Information matrix is given as the expected value of the Hessian:

The Newton-Raphson search direction is given by H ~' g. Whenever the Hessian H
is not positive definite, we replace the Hessian by the Information matrix.
Occasionally, an iteration may imply £—1, an a r < 0 or an increase of/. In such
cases, we halve the stepsize.

Taking the loglinear Poisson model as a starting value, convergence is quick and
swift.
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4. NUMERICAL ILLUSTRATION

In Table 2 we find data from BAILEY and SIMON (1960) on R = 2Q risk groups
defined by 2 risk indicators with 5 and 4 levels.

TABLE 2

EXPOSURE AND NUMBER OF CLAIMS, AUTOMOBILE LIABILITY, CANADA 1957-1958

yV l l l d l l LA.

1 0000 000
1 1000 000
10 100 000
1 0 0 1 0 000
1 000 1 000
1 0000 100
1 1 000 1 00
1 0100 100
1 0 0 1 0 1 0 0
1 0001 100
1 0000 0 10
1 1000 0 1 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 1 0
1 0001 0 10
1 0000 00 1
1 1 000 001
1 0100 00 1
1 0 0 1 0 0 0 1
1 0001 001

Earned car
years

2757 520
130 535
247 424
156 871
64 130

130 706
7 233

15 868
17 707
4 039

163 544
9 726

20 369
21 089
4 869

273 944
21 504
37 666
56 730

8 601

Observed

217 151
14 506
31 964
22 884
6 560

13 792
1 001
2 695
3 054

487

19 346
1 430
3 546
3618

613
37 730
3 421
7 565

11 345
1 291

Number of claims

Poisson

219 950.1
14 052.3
31 546.8
21 170.2
6 345.7

13 688.2
1 022.3
2 656.3
3 137.4

524.7

18 607.9
1 493.5
3 704.6
4 059.7

687.3
35 772.8
3 789.9
7 862.3

12 533.7
1 393.3

Lagrangian Poisson

219 868.7
14 083.6
31 590.9
21 085.6
6 394.7

13 761.4
1 030.5
2 675.3
3 142.8

531.8

18631.6
1 499.3
3 715.9
4 050.1

693.7

35 715.3
3 793.6
7 863.5

12 468.2
1 402.4

Applying the maximum likelihood model of the previous section, we have K =
1 + ( 5 - 1 ) + ( 4 - 1 ) = 8 elements for p. The maximum likelihood results are
presented in Table 3.

TABLE 3

MAXIMUM LIKELIHOOD ESTIMATES AND STANDARD DEVIATIONS

Parameter

Pi
ft
PA

Pi
Pt,
Pi

Loglinear Poisson

Maximum

estimate

- 2.5287
.2998
.4691
.5259
.2156
.2723
.3552
.4930

0

Maximum

estimate

-2.5291
.3024
.4708
.5222
.2236
.2780
.3568
.4917
.8154

Loglinear Lagrangian Poisson

Standard deviation based on

Hessian

.0110

.0392

.0273

.0294

.0575

.0385

.0337

.0247

.0294

Information matrix

.0111

.0392

.0272

.0291

.0575

.0385

.0336

.0244

.0294
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We see close agreement between the parameter estimates for p in the loglinear
Poisson as well as the loglinear Lagrangian Poisson model. This agreement is also
evident in the fitted claim numbers in Table 2. The relative large value for £
increases the variances in the Lagrangian Poisson model.

The similarity between the standard deviations based on the inverse of the
Hessian and Information matrix is reassuring.

If, in this illustration, we shrink the X-matrix to the first column, the maximum
likelihood estimate for /J, changes to -2.3295 and that for £ increases to
0.9738.

5. FINAL REMARKS

The use of the Lagrangian Poisson distribution with loglinear mean contains,
through the parameter £, a diagnostic tool to infer the presence of omitted
explanatory variables in the loglinear specification. As such, the loglinear Lagran-
gian Poisson model is a possible starting point from which to model the loglinear
Poisson model.

When the maximum likelihood estimate for £ is clearly different from 0, the
variance of the Poisson distribution is too small, whereas the Lagrangian Poisson
distribution implies the appropriate larger variances.

As shown by GOOVAERTS and KAAS (1991) the Lagrangian Poisson distribution
also allows a recursive evaluation of a compound Lagrangian Poisson distribution.
So, from an applied point of view, there is little reason to object to the use of the
Lagrangian Poisson distribution.
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