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Abstract

We examine the piecewise-constant collocation method, with collocation points the
mid-points of subintervals, for first-kind integral equations with logarithmic ker-
nels on polygonal boundaries. Previously this method had been shown to converge
subject to certain restrictions on the angles at the corners of the polygon. Here,
by considering a slightly modified collocation method, we are able to remove any
restrictions on these angles, and to generalise slightly the meshes which may be
used. Moreover, the modification leads to new results on the convergence of pre-
conditioned two-(or multi-) grid methods for solving the resultant linear systems.

1. Introduction

Many boundary-integral methods in potential theory (e.g. [14]) require the
numerical solution of the equation

-±/log|x-£|H(£)rfr(£) = s(x), x e r , (1.1)

or

where g : P - » R is given, u : F —> R is to be found, and F is the boundary
of a polygonal domain in R . We assume throughout that the transfinite
diameter of F is not equal to 1, so that (1.1) is uniquely solvable for g
sufficiently smooth. We shall discuss the numerical solution of (1.1) by the
following very simple collocation scheme. Subdivide F into n segments
(where each corner of F is a break point), and choose as collocation points
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40 I. G. Graham and Y. Yan [2]

the mid-points of the segments. Then the approximate solution « (h = \/n)
is denned to be constant on each segment, and to satisfy

x*-t\uh(Z)dr{t) = g{x'), (1.2)

for all collocation points x*.
This method has been in practical use for many years, and seems to have

originally been proposed by Symm [19]. However, in contrast to the less
practical Galerkin methods which are well analysed (e.g. [13], [5], [9], [15],
[20]), its numerical analysis is still incomplete. For smooth F and a uniform
grid, the convergence of uh to u was first demonstrated by De Hoog [10].
The results of [10] were considerably generalised by Arnold, Wendland and
Saranen ([3], [17]), who studied spline collocation schemes of arbitrary order
applied to a variety of equations, with method (1.2) for (1.1) contained as
a special case, but their analysis was restricted to smooth F . Subsequently,
Costabel and Stephan [8] were able to extend the ideas in [3] to the practically
important case of polygonal F , but only for the special numerical method
where u is approximated by a continuous piecewise linear function, and
(1.1) is collocated at the break points. However, the techniques of [3], [17]
for dealing with piecewise-constant (or, more generally, even-order) spline
approximation are more deeply rooted in Fourier analysis than those for odd-
order splines, and hence appear less easily adaptable to the case of polygonal
F . (The Fourier analysis technique applies naturally only when 'V is a
smooth perturbation of a pure convolution operator; this is the case when F
is smooth, but not when it is polygonal.)

A new approach to the analysis of the polygonal case is given in [22]. In
this approach, F is parametrised by y : [-n, n] -> F, and any v : F -• R,
is identified with u(s) = v(y(s)), s e [-n, n]. Then (1.1) is written

| pit

- - / tog\y{s) - y(a)\\y'(a)\u(a)da = g(s),
71 J-n

which we abbreviate as
Kw = g, (1.3)

where w = \y'\u. Let A denote the operator

= ~ f log\2sin{s - a)/2\u(a)da + ^ f v{a)da. (1.4)

The first term is merely the operator K when F is the unit circle parametrised
by y{s) = {coss, sins); the second term is a compact perturbation. Then A
is invertible (on appropriate function spaces), and (1.3) may be written

(I + A-l(K-A))w = f:=A-lg. (1.5)
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[3] Collocation for first-kind equations 41

Thus w satisfies a (nonstandard) second-kind equation. The principal idea
in [22] was to observe that (1.2) can similarly be converted into a (non-
standard) projection method for this second-kind equation, and then to in-
voke well-known arguments for the analysis of such methods. This works
beautifully when F is smooth, for then A~X{K - A) is compact. But when
F is polygonal, A~l(K-A) turns out to contain a noncompact (Mellin) con-
volution component, which makes the analysis of the numerical method more
difficult. Consequently [22] obtained convergence results for (1.2) when F is
polygonal, only under certain unnatural restrictions on the angles subtended
by the boundary at each corner of F , and on the mesh which could be used.

The present paper has two purposes. The first is to propose a slightly
modified collocation method for (1.1), and to prove its convergence in the
presence of corners of any angle. In the process we also generalise the kind
of meshes which can be used somewhat, although further work is required
to prove results for the graded meshes needed to obtain optimal convergence
rates. The modified collocation method proposed is similar in spirit to that
proposed in [6] for collocation for standard second-kind boundary integral
equations on polygons. There the modification was a device for proving gen-
eral stability results, but was not usually needed in practice [1], [6]. We shall
see in Section 3 that a similar situation pertains to the proposed modification
of (1.2).

However, the modification in [6] found itself a more practical role in the
acceleration of convergence of multigrid procedures for solving the colloca-
tion equations. (See [2], which dealt with a discrete collocation method.) The
second purpose of our paper, then, is to prove similar results for the multi-
grid solution of the modified version of (1.2). Here again the correspondence
between (1.3) and (1.5) and the correspondence between their respective dis-
cretisations is of prime importance. The multigrid method for (1.2) is in fact
derived as a method for the discrete version of (1.5). The smoothing operator
in the algorithm is the discretisation of K — A preconditioned by the inverse
of the discretisation of A. Since the discretisation of A is a circulant matrix
it is very efficiently inverted by FFT, and the preconditioning step does not
increase the operation count significantly.

In Section 2, various required results on the discretisation of A and other
operators on the unit circle are derived. In Section 3 the properties of (1.1),
(1.2), when F is a polygon are discussed. Then Section 4 discusses the
modified collocation method, and Section 5 describes the related multigrid
algorithm.

Before leaving this introduction, we describe some notation needed later.
We assume F has corners XQ , x 2 , . . . , x2r = XQ , and that the exterior angle
at each x2/ is (1 + xi)n • Let x2/_, be the mid-point of the straight line
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joining x2/_2 to x2 / . We use F- to denote the portion of F joining x, ,
to x;.. Then we shall choose fixed integers m,, j = \, ... ,2r and, for any
J V e N , divide F. up into ntjN equal segments. This yields a mesh on F
with N = (m, H h m2r)N segments. It is uniform on each F , , but (in
contrast to [22]), not necessarily uniform over all of F . We now construct a
special parametrisation y of F as follows. For j = 1 2r set

\-rrij,

and M = M2r. Next define points 5 e [-n, n\ by

S0 = -n,

Sj = -n + (MJ/M)2n, j=\,...,2r.

Finally define y : [-n, n] - • F by

y(s) = x,_, + I s _£ 1 (Xj -xy_,), s e [Sj_{, Sj],

for j = 1, . . . , 2r.
Let h = 2n/n , and introduce the uniform mesh on [-n, n]:

and the mid-points of subintervals

Then y maps this mesh on [-n, n] to the mesh on F defined above. Let X,
denote the characteristic function of [s,_v Sj] and set ^ = span{A'1, ..., Xn}.
For v : [-n, B ] - > R , define Qhv e Vh by requiring Qhu to interpolate v
a t t j , j = 1 , ... , n .

Then (1.2) is equivalent to seeking uheVh such that wh := \y'\uh satisfies

Kwh(tj) = g(tj), j=\,...,n, (1.6)

or equivalently,
(1.7)

For later reference, the (j, k) th element of the coefficient matrix of the
system (1.6) is

KXk(tj) = - i r log\y(tj) - y{a)\da. (1.8)
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2. The circle

43

With * denoting convolution, the operator A defined in (1.4) may be
written

Av=A*v, (2.1)

where A(s) = (-l/7t)log|2e~1/2sin(s/2)|.
Let Z denote the set of all integers. For v e C°° (i.e. D'v is continuous

and 2/r-periodic for all r > 0), define the Fourier transform of v by

1 f
^( m ) = ~77TT / "(•*)exp(-/ms)ds,

V(27t) J-7t
Then

For t £R, define the norm \u\t on C°° by

[-n, n].

and define the usual Sobolev space H' to be the completion of C°° under
this norm. If L is a bounded linear operator on H', then \L\t denotes its
norm.

By applying the convolution theorem to (2.1), (computing A by contour
integration,) we obtain the well-known representation

Au{s) =
1 \ H 0(0)1 , se[-n,n]. (2.2)

As is easily shown, |^H / + 1 = \v\t > f° r ^ u £ H', and so A is an isometry
from H' to H'+l. Its inverse A~l : Ht+i -> H' is given by

A~xv(s) = \m\0(m) exp(ims) + i>(

and hence
1 = -DH + J = -HD + J,

where H is the Hilbert transform:

Hv(s) = - ^-p.v. f" cot (^^] v(o)dt
2n J_n V 2 )

^ /sign(m)i>(m)exp(/m5)

(2.3)
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D is the 27r-periodic (distributional) differentiation operator, and J is the
linear functional

1 f*
Jv = -r- I via) da.

2n J_n

Clearly
| i / | 0 = l . (2.4)

Consider now the integral equation

Aw = g,

and the piecewise constant collocation method defined by seeking wh e Vh

(defined in Section 1) which solves

QhAwh = Qhg = QhAw.

For any operator L on H°, let Lh denote its restriction to Vh . Then

QhAhwh = QhAw. (2.5)

This method is analysed in [22]. The technique used there is to first show
QhAh:Vh^Vh Avertible, and then to show that the operator

Bh:={QhAhT
lQhA, (2.6)

is uniformly bounded on H°, for all n . Then Bh-> I pointwise on H°, as
N -» oo. If now g eHl, then w e H°, and by (2.5) we have

\w-wh\o = \(I-Bh)w\o-+°> asiV-oo.

In this paper we shall need some generalisations of the results of [22].
Related calculations can be found in [16]. First observe that operators A
and AH above are both of the form

— ( 2 > 7 a )

where
| C O | < 1 , and | C J < N " ' , f o r a U w ^ O . (2.7b)

Any such L is a bounded linear operator from H' to Ht+1.
Now let co = exp(ih), and define the nxn Fourier matrix F = (fjk) by

Observe that F* = F~x. We shall be interested in the basis {eJ
h,

j = 1, . . . , n) of the complex extension V. = {i/, + iv2 : vx,v2 € Vh)
of Vh, which is obtained from {Xj} by the transformation:

fpl p1 pn\T — F*\y x Y i r o si
* /I * « * ' n J * I * z * ' / I J v '
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Since F*F = / , we have (e{ ,eh) = hSjk (with the usual inner product on

H°), i.e. {eJ
h} is an orthogonal basis for Vh .

THEOREM 1. Let L be of the form (2.7). Then QhLh :Vh^Vh has eigen-
values

Xj = y/nLeJ
h{tl), j=l,...,n,

and corresponding eigenfunctions eJ
h, j = I, ... , n. When all its eigenvalues

are nonzero, the matrix representing QhLh (with respect to {Xj}) may be
inverted in O{n\o%n) operations.

PROOF. Let sf = (ay. k) be the matrix of QhLh with respect to the basis
{Xj}. Then

F) £ CmXk(m)exp(imtj)

1 ^
— 2 ^ CmPm exp(im(tj - tk))

mez

mez

where

Pm ={n/(mn)) sin((mn)/n), m ? 0

= 1, m = 0. (2.9)

Hence, for j = 1 , . . . , n - 1, we have

aj+i,k+i=
aj,k

and

That is, J*' is a circulant matrix and its eigenspaces may be determined
explicitly. (See, for example, [7].)

Let 7 — (?i»• • •. yn)
T denote (the transpose of) the first row of s/ . This

is enough to determine s/ uniquely, and we write sf = circ y. Then a
straightforward calculation shows

...,XH), (2.10)

. (2.11)

where A = (A,, . . . , Xn)
T is given by
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Thus each Xj is an eigenvalue of sf , and also of QhLh . The corresponding
eigenvector of sf is the j th column (or equivalently, the j th row) of F*.
By (2.8), then, the corresponding eigenvector of QhLh is eJ

h . Also, by (2.11)
and (2.8),

k=l

as required. If now all the X. are nonzero, sf has the inverse given, using
(2.10), by

Then sf l is also a circulant, sf ' = circ<5, say. For any x e C \ { 0 } ,
let x"1 denote the vector (x"1, . . . , x~{)T . Then analogously to (2.11),
A"1 = y/nF*S so that

fd = (l/Vn)FX~l = {\ln)F{F*y)-\

So $f~l may be completely determined by finding 5, which in turn requires
two discrete Fourier transforms and one inversion. Using FFT, this amounts
to O(A l̂ogA^) operations (recall n = MN, with M fixed).

COROLLARY 2.

(i) The eigenvalues of QhAh are A, = 1, and for j = 2, ... , n,

Xj = i s i n ( i ^ £(_„*( 1— 1 + L_—A

(ii) The eigenvalues of QhAHh are /il = 0, and for j = 2,... , n,

.n . (j-l)n^. ..kj 1 1 1
u,=i— s in— — > (-1) < , r } .

1 n " t o {(kn + U-l))2 ((k+l)n-(j-l))2)

In both cases the corresponding eigenfunctions are eJ
h .

PROOF. Some calculation shows

shrv,\- JV(2ff/n)?Mexp(-im/,), m = j - l(modn) \
e"{m)-\0, m?j-l(modn)f {2AZ

with pm given by (2.9). Then, applying Theorem 1 with L = A yields
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and, for j = 2, ... , n ,

1 V s i i - l

A, = > \m\ p
m=j— l(modn)

which yields part (i).
On the other hand, noting that

AHv{s) = ^2 im~lO(m)exp(ims),

applying Theorem I with L = AH yields nl = AHl(xl) = 0, while, for
j = 2, . . . , n,

m=j—l{modn)

71 n

which yields (ii).

REMARK. The eigenvalues {A} are well known (see, for example, [7], [10],
[22]).

Observe now that A > 0 for all j = 1, . . . , n and recall the operator Bh

denned by (2.6).

COROLLARY 3. \BhHh\0 < I, for all h = In/n, n e N .

PROOF. By Corollary 2,

So if v = J2]=i vje{ e V/i > t n e n s m c e {^} *S a n orthogonal basis,

| ; / y | V | 5
The result follows since |M ,/A | < I for j = I , . . . , n .
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THEOREM 4. For all h = Injn, n 6 N, we have

\Bh\0<B,

with 1 . 3 4 < 5 < 1.35.

This result has been proved in [22] by (essentially) a careful Fourier analy-
sis employing (2.2), and a result similar to Corollary 2 (i). We omit its proof
here.

3. The polygon

Return to the collocation method of Section 1, and recall that each Tj,
was divided into nijN subintervals. Introduce the ratios

,
W 2

, i — i , ... , r,
2/+l lr2/l

(where m2r+l = m, , and r2r+1 = F,) . Recall also the operators A and H
introduced in Section 2. The following decomposition of K generalises that
obtained in [21].

THEOREM 5. K = A(I - HR + E) where E is compact on H°, and
R = Yf,=1 Ri, where, for I = 1 , . . . , r - 1,

and

fsSL-2« '7 ( ^ ) ! g § . se [SQ, Sl]
0, ^ ^ [ ^ o . ^ l

with
± = ± 1 f o+ dfl cos x,n
' \ 2 rf±I2

Furthermore, for each e > 0 there exists 6 > 0 such

_CSMV/=1 r\
cos 2 j . , . . . , r j
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provided
max{ | r f / - l | : / = \,...,r}<6.

PROOF. By (2.3),

K = A(I + A~\K - A)) = A(l - HD(K -A) + E),

with E compact. A minor variation of the argument in [21, Section 5] then
shows that

1=1

with E again compact, and Rt as given above, and the first part of the
theorem follows.

To prove the second part, it is sufficient to show that, for any e > 0 and,
for any particular / e { l , . . . , r - l } , there exists <5 > 0 such that

when \dt - 1| < S . To prove (3.1)we assume, without loss of generality, that

S 2 / _ 1 = a - < 0 = S 2 / <a + = S2/+1. (3.2)

Then

f t ) ^ ssla-,0]
, s e [0, a+] (3.3)

s$[a-,a+].

Define the Mellin transform of u : [0, oo) -> R by

f
R,u(s) = _ j j . r~

l
. , , f°° iw . ,ds
v{w) = I s v{s)—.

JO 5
to

Then it is well known (eg in [9], [21]) that

From integral transform tables,

1 J±(I'A—5) / . , 1 \ ,
r—r a, l COS W - T Xin ~ 1

coshnA ' \ 2/ '

r,±(A-//2)= ±

= hf{dt,X), say.

Let us consider
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The first derivative of this function with respect to dt is bounded on {dl, X)
€ [1/2, 3/2] x R. Hence there exists a constant Co such that, for all (dt, X)
€[1/2, 3/2] xR,

l̂ -V^-^O.̂ CoK-ll. (3.5)
But (see [21]),

^ l , A)| = 1 - c o s ^ . (3.6)

Now let e > 0 and choose 0 < 8 < max{£ , e/C0} . Then (3.5), (3.6) show

max \hUd,, X)\ < 1 - cos -j-r- + e,

provided \Dt — \\ < 8 . An identical bound can be proved for hj . Using
these in (3.4) proves (3.1), as required.

From the last part of the theorem, it is clear that by choosing fn2l/m2l+l

sufficiently close to | r 2 / | / | r 2 ; + 1 1 , for / = 1, . . . , r we can guarantee

l* lo<l . (3-7)
Let us assume for the remainder of the paper that such a choice of {m;} has
been made. Using Theorem 5, (1.3) may then be written

= f:=A~g. (3.8)

Similarly (1.7) may be written

QhA(I - HR + E)wh = QhAf,

or, equivalently,
{I-Bh(HR-E))wh = Bhf, (3.9)

with Bh given by (2.6).
By (2.4) and (3.7), HR is a contraction on H°. Standard uniqueness

results for (1.1) imply / - (HR - E) is one-one on H°. So the Fredholm
alternative ensures I-(HR-E) is invertible on H°, and (3.8) has a unique
solution in H° whenever g e Hl. By (2.4) and Theorem 4,

\BhHR\0 < B\R\0

uniformly in N, with B as in Theorem 4. Suppose now

B\R\O<1. (3.10)

Since Bh—> I pointwise on H°, as N -* oo, standard arguments then show
that / - Bh(HR — E) has a uniformly bounded inverse on H°, and then
(3.8), (3.9) give

\w -wh\ = | ( / - Bh(HR -E))~\l -Bh)w\0

<C\(I-Bh)w\Q^0, a s# -oo .
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However, \R\0 -> 1 when any xt -» ±1 • Since 1.34 < B < 1.35, the
requirement (3.10) leads to unnatural restrictions on the angles at each of
the corners of F . This is similar to the situation for second-kind boundary
integral equations on polygons [ 1 ]. We circumvent it by a modification similar
to that used for second-kind equations in [6].

4. Modified collocation

For any fixed nonnegative integer /* < (min mj)N, let Ih denote the
region

[So, So + Ch] U [\J[S2l - i'h, S2l + i'h]) U [S2r - Ch, 52r].
\/=i /

Then define the modified operator K by

Khv{s) = - - { I log \2e~T- sin((s - <X)/2)KCT) da
it (Ji"

+ [ \og\y{s)-y(s)\v((j)da\.
JIM" J

When i* = 0, Kh = K. When i* > 0, the kernel of K, log\y(s) - y{a)\,
- h
2 I

- - h

is replaced by the kernel of A, log|2e 2 sin(.s - a)/2\, when a e I , and
s e [-n, n].

We then define the modified collocation solution wh to (1.3) by

(4.1)

When /* = 0, the method coincides with (1.7). When /* > 0, the modifica-
tion is equivalent to changing the (j, k) th matrix element (1.8) to

- - f" log|2e~*sin(($,-(7)/2)|</(7,
n -V.

when k is such that [slc_l, sk] c Ih .
For the analysis of (4.1) we define the truncation operator:

Thv(s) = 0, szlh

Thv{s) = v{s), se[-n,n]\Ih.

Then we can write
KH = A + (K-A)Th. (4.2)
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Moreover, \Th\0 = 1, and Th —> / pointwise on H°, as N -> oo. The
identity,

and the fact that Bh —> I pointwise on H°, as iV ->• oo then imply that
T Bh —• I pointwise on H°, as N -* oo. Now, for w e H° , define

dM{w, A) = max{|«; - Bhw\0, \w - Thw\0},

Then, by the above remarks,

dM{w, h) -» 0 asA^—»oo,

for any w £ H° . Also, introduce PA , the orthogonal projection of H° onto
^ . Then |.PA|0 = 1, and Ph-> I pointwise on H° as N —* oo. Throughout
this section, C will denote a generic constant independent of N.

The following technical result is at the heart of the theory of (4.1).

THEROEM 6. For each e > 0, there exists i* independent of N, such that

\(I-Ph)RT\<e, (4.3)

for all N sufficiently large.

PROOF. Recall the mesh on [-n, n] defined in Section 1, with mesh diam-
eter h = In/n , where n = (ml H h mlr)N = MN. Clearly the theorem
will be proved if we can show (4.3) with R replaced by R, for arbitrary
/ e {1 r} . Without loss of generality we assume / < r - 1, so that we
can adopt the simplification (3.2), (3.3). Set

m~ = m2lN, m+= m2l+lN.

Then the mesh on [S2l_{, S2l+l] = [a~ , a+] coincides with the points

Sj = jh, j = -m~, . . . , 0 , . . . , m+.

For any v : \—n, n] —» R, let f denote its restriction to [ j _ , , sA . Observe
that there exists a constant C such that

sup l a V r f (ff)| < C, ; = 0 , l . (4.4)
<7€[0,oo)

Then for v e H°,

( ° m+\
\{I-Ph)(R,Thv)\2

0=\ £ +J£\\(I-Ph)(RlT
hu)J\

2
Q. (4.5)

\ j = - m " + l 7 = 1 /

https://doi.org/10.1017/S0334270000008614 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008614


[15] Collocation for first-kind equations 53

Let us investigate the second sum on the right-hand side of (4.5). It may be
written

(4.6)
7=2

say. But, for j = 2, ... , m+, using well known polynomial approximation
results in H°, we have

jll < (4.7)

and

So if \v\0 < 1, we have

~'** 4 ^ , *e[0 , * + ] .

\D(R,Th
v)(S)\< [""\ DrJ (-S-)\\v{a)\da

J a O \ a / \

> a + ] - ( 4 - 8 )

Thus (4.7), (4.8) show that for j = 2,... ,m+ ,

J-i

where the last inequality uses (4.4). Hence

V . SJ

Hence,

2 (4.9)
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for all N. Also, if M o < 1,

v{a)da ds

a
Cs\ f-''h 1 I / c s , 2

< / / i f " - - dads
Jo Ja- a 2 I ' v <rJ\

where we have used (4.4) again. Collecting (4.9), (4.10) and recalling (4.6)
shows the second sum in (4.5) is arbitrarily small for appropriate /* and
all N. The first sum in (4.5) may be estimated analogously, and the lemma
follows.

Next we prove the main result of this section.

THEOREM 7. Let g e Hl. Then there exists a fixed f > 0 such that, for all
N sufficiently large, (4.1) defines wh£Vh uniquely, and

\w-wh\0<CdM(w, /i)->0, OSN-KX,

where w is the unique solution of (1.3).

REMARK. Recall dM is defined just prior to the statement of Theorem 6.
PROOF. Using (4.2), (4.1) may be written

Qh(A + (K-A)Th)wh = Qhg.

By Theorem 5, this is equivalent to

QhA(I - (HR - E)Th)wh = QhAf

with / = A~lg, i.e.

(/ - Bh(HR - E)Th)wh = Bhf, (4.11)

with Bh defined by (2.6). We examine the solvability of (4.11).
Recall that, as discussed at the end of Section 3, (I-(HR-E)) isinvertible

on H°, and hence (by (2.4), (3.7)), so is / + (/ - HR)~lE. Recall also that
for any & : H° -> H° , the identities

(4.13)
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are valid (when the inverses involved exist). By (2.4), Corollary 3, and The-
orem 4,

\BhHRT\ < \BhHPhRT\ + \BkH(I - Ph)RTh\0

<\R\0 + B\(I-Ph)RT\.

So, by Theorem 6 and (3.7), there exists fixed i* such that \BhHRTh\0 is
bounded below 1 as N -» oo, and so

\(I-BhHRThyl\0<C, asiV^oo.

By (4.13), then

\(I-ThBhHR)~\<C, asN^oo. (4.14)

Thus,

|(7 - ThBhHR)~lThBhE - (7 - HR)'lE\0

<\(I-ThBhHR)-\ThBh-I)E\0

+ |(7 - ThBhHR)~\ThBh - I)HR(I - HR)~*E\0 ^ 0 as N -» 0,

since E is compact, and T Bh —• 7 pointwise on H .
The operator 7 + (7 - ThBhHR)~xThBhE therefore tends in norm to

the invertible operator I + (I - HR)~lE and thus has an inverse which
is uniformly bounded, as N —* oo . By (4.14), then

\(I-ThBh(HR-E))-l\0<C, asiV-oo,

and so, by (4.12),

| (7-5A(77JR-£)rA)"1 | 0<C, asiV^oo. (4.15)

Hence for sufficiently large N, (4.11) is uniquely solvable, and

w-wh = (I- Bh{HR - E)Th)~\w - Bh((HR - E)Thw + /))

= (7 - Bh(HR - E)Th)~\{w - Bhw) + Bh(HR - E)(w - Thw)]

where we have used (3.8). Recall that w & 77° . Taking | • |0 and using the
triangle inequality with Theorem 4 and (4.15) yields the theorem.

The rate of convergence of wh to w can now easily be deduced from
Theorem 7. It is known that when y(^) = x2/ then, for s near st, we
have, in general, w(s) = O(\s - s,^''*), where 0, = (1 + IX/I)"1. (If we
are using the "direct" boundary integral method on a convex polygon, the
singularity will not be as severe as this: here we consider the worst case
which may arise.) Since (7 - Bh) annihilates Vh , we have, by Theorem 4,
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that |w — Bhw10 is of the order of the error in the best approximation to w
from Vh . It follows (seq, e.g. [22]) that \w - Bhw\Q = O(Nl/2~fi), where
P = mini)?/: / = 1, . . . , r) € (1/2, 1). Since i* is fixed, \w - Thw\0 is of
the same order. So, overall,

\w -wh\Q = O(N ' ~ ) as N -* oo. (4.16)

Thus, for any polygon, the modified method (with appropriate fixed /*)
is stable, and its rate of convergence as N —> oo is precisely the same as
that of the unmodified method [22] (for which the stability theory is angle-
dependent). This result is reminiscent of the role played by modification
in collocation methods for second-kind equations [6]. In contrast to [6],
however, we have not been able here to demonstrate any example in which
the modification is necessary for stability. Nevertheless, the results here show
conclusively that, even for a domain with very fine angles, not very much can
go wrong with the collocation method. Moreover the modification has a more
practical application to the acceleration of convergence of iterative methods
for solving the collocation equations, and we develop this theme in Section
5 below.

Unfortunately all the theoretical results presented here are for uniform
subdivisions of (each side of) the polygon F . This is because our theory for
collocation on the polygon involves "preconditioning" the collocation matrix
with the discretisation of the operator A, and needs the results of Section 2,
which depend very much on uniform grids. Nevertheless, it is well known that
graded meshes are necessary to obtain optimal convergence rates in practice,
and we now report a numerical experiment demonstrating this fact.

In this experiment, we solved (1.1), with g(\) = (x2 +x\)/n, and with F
the boundary of the L-shaped domain with vertices (in anticlockwise order):
( 0 , 0 ) , ( 1 , 0 ) , ( 1 , | ) , {\,\), ( i . l ) . a n d ( 0 , 1 ) . The sides of length
1 are subdivided into N segments (N even), while the other sides (all of
length \) are subdivided into N/2 segments. Then n = 4N, and h =
l/(4N). The mesh is graded near each corner in the usual way (e.g. [5],
[6], [8], [20]). For example, for given q > 1, the mesh on the side joining
(0,0) to (1 ,0) consists of the points {{\){2i/N)q, 0) , i = 1 , . . . , N/2,
plus their reflections in the line xl = j . The mesh is similarly graded near
all the other corners, using the same grading exponent q . The modification
was not needed to ensure the stability of the method (i.e. the method used
was simply (1.2)).

Rather than calculating the rate of convergence of uh, we look at the
following functional of uh :

(a) j^uh{QdY{Q; (6)^(0.25,0.25); (c) ^ ( - 0 . 2 5 , - 0 . 2 5 ) ,
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where
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a potential which is often required in practice. (For example if the indirect
boundary integral method is used to solve Laplace's equation in a region
exterior or interior to F.) The integrals required for implementation of
the collocation method are computed analytically. Those required in the
calculation of the potentials are computed by Simpson's rule. The results,
given in Table 1 below, show an estimated order of convergence (EOC) which
climbs to a maximum of about 3 as the grading is increased. Since O(N~3)
is the rate of convergence which would be expected for potentials when F
is smooth [16], the results with the graded meshes are very encouraging.
However at present the theory does not explain properly the observed success
of the method.

TABLE 1

9

1

N

16

32

64

128

(a)

1.1251

1.1299

1.1318

1.1325

EOC

1.37

1.36

(b)

0.25651

0.25621

0.25611

0.25608

EOC

1.59

1.43

(c)

-0.34490

-0.34604

-0.34649

-0.34668

EOC

1.33

1.33

Q

2

N

16

32

64

128

(a)

1.0903

1.1258

1.1318

1.1328

EOC

2.59

2.56

(b)

0.26113

0.25710

0.25622

0.25608

EOC

2.19

2.66

(c)

-0.33704

-0.34457

-0.34642

-0.34673

EOC

2.56

2.56

Q

3

N

16

32

64

128

(«)

1.1273

1.1322

1.1329

1.1329

EOC

2.83

2.92

(*)

0.25749

0.25632

0.25609

0.25606

EOC

2.37

2.86

(c)
-0.34491

-0.34652

-0.34676

-0.34679

EOC

2.78

2.91

Even though the modification was not necessary for stability in this exam-
ple, it is still of interest to know how well the modified method calculates
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linear functional of u . To complete this section, we now use Theorem 7 to
prove a "superconvergence" result for the error in approximating the linear
functional (w, v) by (wh , v), (where v is a smooth given function). Note
that the uniformity of the meshes demanded by Theorem 7 restricts the rates
of convergence which may be proved. Better rates will be obtainable when
the stability theory is extended to graded meshes.

THEOREM 8. Let v e H1. Then, when i* > 1, the uniquely defined wh e Sh

in (4.1) satisfies

\(wh ,u)-(w, i/)| < CN~i/2dM(w , h)\v\v

REMARK. When /* = 0, the modification is not in use, and an analogous
(but smaller) error bound is given in [22].
PROOF. In the proof we use the formulae

K-Kh = {K- A)(I - Th),

\(I-Th)wh\0<CdM(w,h)

without further appeal. Let v € H1 , and write v = Kvx, where i / , e i f ° ,
Then

= (wh-w, Kvx) = (K(Wj -w),vx)

= ((I - Qh)K(wh - w), ux) + (QhK(wh - w), v{).

Since QhK
hwh = QhKw , we have

QhK(wh-w) = Qh(K-Kh)wh

= - (I - Qh){K - Kh)wh + (K- Kh)wh.

Hence

(wh-w,v) = ((I-Qh)K(wh-w),vl)-((I-Qh)(K-Kh)wh,vl)

+ ((K-Kh)wh,vl). (4.17)

Now, it is clear that

|((7 - Qh)K{wh - w), ux)\ < |(7 - Qh)K\0\wh - w\0Wx\0

<ChdM{w,h)\v\x, (4.18)

and

- Qh)(K - Kh)wh , vx)\ < |(7 - Qh)(K - A)\0\(I - Th)wh\0\vx |0
<ChdM(w,h)\v\x. (4.19)
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However,

= ((I-Th)wh,(I-T
h)(K-A)ul).

So,

\{(K - Kh)wh, vx)\ < |(/ - Th)wh\Q\(I - r*)(tf - A)\0\Vl\0

<Ch*dM(w,h)\u\v (4.20)

The next follows by substitution of (4.18)-(4.20) into (4.17), and using h =

5. An iterative solver

The theory of the previous section has an interesting application to the
acceleration of multiple-grid methods for solving the collocation equations
(1.7). Such multiple-grid methods apply most naturally to second-kind equa-
tions rather than first kind, but recall from Section 3 that we may write (1.7)
as

(QhAh)(I + BhA~\K - A))wh = {QhAh)Bhf

where f = A~xg. The matrix of QhAh is inverted in O{N\ogN) operations
as described in Section 2, and so it is realistic to premultiply by (QhAh)~

l,
obtaining the non-standard second-kind numerical method

(/-
This can be rearranged as

BhA-\K-A))wh=Bhf. (5.1)

wh = Bhf-BhA \K-A)wh. (5.2)

A multiple-grid procedure, e.g. [11], [18], can be written down for (5.1),
using (5.2) as a smoothing step, and this procedure can be shown to converge
provided A~X{K-A) is sufficiently smooth (e.g. compact on H°). Most
importantly, the multiple-grid method for (5.1) boils down to nothing more
than a preconditioned multiple-grid procedure for (1.7), where the precondi-
tioner is the circulant matrix corresponding to QhAh . Hence the operators in
(5.1) (which are unpleasantly obscure) never have to be calculated in practice.

If F is smooth, A~l(K-A) is compact on H°, and the convergence proof
mentioned above follows. (See [18] for related observations for a multigrid
Galerkin-type method.) If T is a polygon, this proof fails. A similar fail-
ure of proof occurs for second-kind equations on polygons, and indeed this
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theoretical failure manifests itself in the actual practical failure of the it-
erative method when the polygon has very sharp corners [2]. In [2], these
failures were corrected by an appropriate modification of the equations near
the corners. Here we show that a similar modification leads to the generation
of pleasant convergence proofs for (preconditioned) multiple-grid methods
applied to (1.7).

We remark in passing that the idea of preconditioning with a circulant
matrix has received recent attention in a different context (see [4] and the
references therein). We also mention that the Galerkin equations for a dif-
ferent first-kind integral equation are solved iteratively in [12].

To simplify the discussion here, we shall restrict attention to a popular two-
grid algorithm (e.g. [11, p. 309]). This algorithm avoids the recursion present
in full multigrid schemes, but in many circumstances is powerful enough to
solve (1.7) efficiently. We first give an algorithm description and then we
discuss the theory. The idea is to solve (1.7) for h = 2n/n, n = MN, N
large iteratively by a process involving direct inversion of (1.7) only for some
larger h, say h = 2n/h, h = MN, with N small. For convenience we
assume

N = kN, (5.3)

for some k € N , although the algorithm does not depend strongly on this
assumption. Note that (5.3) implies VflCVfl.

Then we propose the following (preconditioned) two-grid algorithm for
(1.7). Choose tujo). (Usually wf] = wh,or w^ = 0.) Then, for v > 0 ,
until \w^+l) - W^IQ is sufficiently small, perform the following steps.

Input tuj0

Compute residual d^ := Qh{g - Kw^)
Precondition d^ := {QhAh)~ld^
Smoothing step 5^ := Qh{K - A)d^] (5.4)
Precondition *Jw) := {QhAh)~xd^
Coarse grid correction 8^ := -(QhKh)~l

Output w^+l) = w^ + ^ ^

Some elementary algebra shows (5.4) is equivalent to the following algorithm
for (5.1).

Input w^
Compute residual djf0 := BJ - (I + Lh)w^]

Smoothing step d^ := Lhd^] (5.5)
Coarse grid correction 6^ := - ( / + Lh)~xBhSP

Output < + 1 ) := w™ + 4V) + d
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where Lh := BhA~l(K-A).
then yield the error estimate
where Lh := BhA~l(K-A). Standard arguments (e.g. [11]) applied to (5.5)

K^V^K^V (5.6)
where

and
C^k = \(I + Lh)-\

L)L\

Observe now that the operators BjlBfl - Bh and B-hBh - B-h both annihilate
Vfr , and hence, as N -* oo,

* * * * - * * - < > . BhBh-Bh^0, (5.9)

with the convergence in each case being pointwise on H°. Thus, when
A~X(K - A) is compact, C^ k may be made arbitrarily small and C^ k

is uniformly bounded as N -* oo. So for N sufficiently large C% k < 1,
and (5.4) converges linearly. Then w^ converges to within 0(1/n) = 0{h)
tolerance of wh in O(logn) iterations. Each iteration costs O(n2) multi-
plications, provided the coarse grid correction is considered negligible (recall
that each preconditioning step costs O(n\o%n) multiplications). Conver-
gence is thus obtained in O(n2\o%ri) = O(N2\ogN) multiplications.

When F is a polygon, A~l(K - A) = -HR + E is not compact and the
above convergence proof fails. However consider the modified collocation
scheme (4.1). This may be solved iteratively by applying (5.4) with K re-
placed by K . This is again equivalent to (5.5), but this time with

Lh = Bh(-HR + E)Th and Lh = Bh{-HR + E)Th.

(i.e. it is a two-grid method for (4.11).) An error estimate is again given
by (5.6)-(5.8). We analyse its convergence in Theorem 9 below, under the
further assumption that /* is allowed to depend on A .̂ For simplicity we
assume that

i* = N. (5.10)

We discuss the practical implications of this at the end of the section. Recall
from Section 4 that T truncates a function to zero on the interval Ih.
Assuming sufficiently large k, assumptions (5.3), (5.10), yield
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So /* does not vary with N. Under these assumptions we have the following
result.

THEOREM 9. For sufficiently large k, (5.4) with K replaced by Kh converges
linearly for all N sufficiently large.

PROOF. The result is obtained by proving the following assertions.

(i) For sufficiently large k, C~ k is uniformly bounded as N -> oo .

(ii) For all K, C~ k -» 0, as N -» oo.

To obtain (i), recall that, for all k, \ThHR\0 < \R\0 < 1, which shows
(/ - ThHR)~x uniformly bounded in k . Also Th -» / pointwise on H° as
k —> oo. Since E is compact, (I-Th(HR-E)) has a uniformly bounded in-
verse as A:-»oo. Hence by (4.12), {I-(HR-E)Th)~l exists for sufficiently
large k. Choosing such a k, (-HR + E)Th is compact and independent of
N. Since B-h -* I pointwise on H°, as N -» oo, it follows that {(I+L^)'110

is uniformly bounded as Â  -+ oo, yielding (i). The proof of (ii) is trivial
from (5.9) and the compactness of (HR - E)Th .

Discussion

(i) If /* is allowed to depend on N, as in (5.10), the limit function of wh

of the sequence w^ denned by (5.4) does not converge as Â  —> oo. This
is because the component \w-Thw\0 in the error given by Theorem 7 does
not converge as N —> oo. However, for k chosen sufficiently large initially
this error will be small compared with the other component \w-Bhw\0 , thus
making wh respectably close to w . In the second kind case [2], experiments
suggest that even in the case of extremely sharp angles relatively small /* is
needed to achieve convergence of the iteration for moderately large N. It is
hoped that the assumptions (5.10) will prove much stronger than necessary.
Future numerical experiments will be needed to see how the method behaves
in practice.

(ii) Although the collocation method with a uniform grid applied on the
polygon has suboptimal convergence, as reported in Section 4, the fast solver
described here allows much finer discretisations to be implemented in the
same amount of computation time, and thus increases the practicality of the
method.
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