
JFP 14 (3): 263–315, May 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796803004775 Printed in the United Kingdom

263

The recursive record semantics
of objects revisited

GÉRARD BOUDOL

INRIA Sophia Antipolis, BP 93 – 06902 Sophia Antipolis Cedex, France

Abstract

In a call-by-value language, representing objects as recursive records requires using an unsafe

fixpoint. We design, for a core language including extensible records, a type system which rules

out unsafe recursion and still supports the construction of a principal type for each typable

term. We illustrate the expressive power of this language with respect to object-oriented

programming by introducing a sub-language for “mixin-based” programming.

1 Introduction

During the past fifteen years there has been very active research about the formal-

ization of object-oriented programming concepts. One of the main purposes of this

research was to design operational models of objects supporting rich type systems,

so that one could benefit both from the flexibility of the object-oriented style, and

from the safety properties guaranteed by typing. Let us be more precise here: our

goal is to have an expressive language – as far as object-oriented constructs are

concerned – with a type discipline à la ML (Damas & Milner, 1982; Milner, 1978),

i.e. implicit typing with assignment of a principal type, ruling out run-time errors.

This goal has proven difficult to achieve, and most of the many proposals that were

put forward fall short of achieving it – with the exception of OCaml (Leroy et al.,

2000; Rémy & Vouillon, 1998), that we will discuss later.

While the meaning of “typing à la ML” should be clear, it is perhaps less easy to see

what is meant by “object-oriented”. We do not claim to answer to this question here.

Let us just say that, in our view, objects encapsulate a state and react to messages,

i.e. method invocations, by updating their state and sending messages, possibly

to themselves. Moreover, in our view, object-orientation also involves inheritance,

which includes – but should not be limited to, as we shall see – the ability to add

and redefine methods. With this informal notion of object-orientation in mind, let

us review some of the proposals we alluded to.

An elegant proposal was made by Wand (1994), based on his row variables (Wand,

1987), consisting of a class-based model, where classes are functions from instance

variables and a “self” parameter to extensible records of methods, and objects are

fixpoints of instantiated classes, that is, recursive records. In this model invoking

the method of an object amounts to selecting the corresponding component of the

record representing the object. An operation of record extension is used to provide

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

264 G. Boudol

a simple model of inheritance, à la Smalltalk: a class B inherits from a class A by

adding to it new methods, or redefining (overriding) some of them. Unfortunately,

although its elegance and simplicity make it very appealing, Wand’s model is not

expressive enough. More specifically, it does not support state changes in objects:

one may override a method in an inherited class, but one apparently cannot modify

the state of the object during its life-time (see, for instance, Abadi & Cardelli 1996,

Section 6.7.2). This is because in creating the object, the “self” parameter is bound

too early.

Wand’s model is an instance of what is known as the recursive record semantics

for objects (see Fischer & Mitchell, 1995), initiated by Cardelli (1984). Based on

this idea that an object is the fixpoint of an instantiated class, Cook proposed a

more elaborate model (Cook et al., 1994), where updating the state of an object is

possible, by creating new objects, instances of the same class. Then a class is also

recursive in Cook’s model, since methods may have to call a “myClass” parameter.

This model is operationally quite expressive, but the type theory that it uses is also

quite elaborate, and does not fulfil our desires, of existence of an algorithm for

assigning a (principal) type to each typable expression. The same remark actually

applies to all the object models that use higher-order types (Abadi & Cardelli, 1996;

Bruce, 1993; Eifrig et al., 1995b; Fisher et al., 1993; Pierce & Turner, 1994).

In another approach, due to Kamin (1988) and known as the self-application

semantics, an object is a record of pre-methods, that are functions of the object

itself. The object is bound to self only when a method is invoked, by applying

the pre-method to the object. In this way, the state of the object may dynamically

be updated. In this model, which looks indeed operationally satisfactory, an object

is not quite a record, since from a typing point of view, we must know that the

first parameter (that is, self) of all its pre-methods have the same type. In other

words, one must have in this approach specific constructs for objects and object

types, depending on the type of self, thus different from record types. This has

been developed in object calculi, most notably by Fisher and Mitchell (Fisher, 1996;

Fisher et al., 1993; Fisher & Mitchell, 1995) – who call it “the axiomatic approach” –

and Abadi and Cardelli (Abadi, 1994; Abadi & Cardelli, 1996), but as we already

noticed, in calculi that support a rich form of inheritance, and in particular object

extension, like Fischer et al. (1993), the type theory which is used is quite elaborate,

and does not support implicit typing.

Object calculi claim to fix the principles for objects, thus providing simple formal

models, but they actually take design decisions, about inheritance in particular –

a concept which is still a matter of debate in the object-oriented programming

community (see Taivalsaari (1996), for example). As a matter of fact, many of the

proposals for an object model, including OCaml, follow this approach of designing

a specific calculus (Abadi & Cardelli, 1996; Bono et al., 1999a; Bruce, 1993; Fisher

et al., 1993; Rémy & Vouillon, 1998). However, there could be some benefits from

deriving object-oriented concepts from more basic principles: first, their typing

could be derived within simple, unquestionable typing systems (see, for instance,

the comments in McQueen (2002)). Secondly, they could be better integrated in a

standard computational model, in which one could formalize and compare various

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 265

approaches to objects, and get more flexible object models. Furthermore, we would

not have to develop specific theories for reasoning about them.

In this paper, we pursue Wand’s approach, aiming at encoding object-oriented

concepts by means of extensible records. One may observe that the update operation

of object calculi (Abadi & Cardelli, 1996; Fisher et al., 1993) is actually overloaded:

it serves both in inheritance, to override methods, and in the dynamic behaviour

of an object, to update the state (see Abadi & Cardelli, 1996, Section 5.2). As we

have seen, the first usage is not problematic in Wand’s model, whereas the second is.

Then an obvious idea is to abandon the “functional update” approach in favor of

a rather more natural imperative update approach (Abadi & Cardelli, 1996; Bono

et al., 1999a; Eifrig et al., 1995b; Rémy & Vouillon, 1998). This means that we are

in a language with references (following ML’s terminology), where a call-by-value

strategy is assumed for evaluation. Now a new problem arises: to build objects as

recursive records one must have the ability to build recursive non-functional values,

and this, in principle, is not supported in a typed call-by-value language. More

specifically, we would like to use the construct (let rec x = N in M), where N may

be of a record type. This is evaluated by first computing a value for N, returning a

cyclic binding to this value for x, and then computing M. Notice that side effects and

creation of new references arising from the evaluation of N are completed before a

cyclic binding is returned. This is what we need to install the state of an object before

returning its (recursive) record of methods. The resulting object model is similar to

what is known as the “cyclic record” encoding, see Abadi & Cardelli, 1996, Sections

18.2.4 and 18.3.4 (see also Eifrig et al. (1995a), which includes a discussion about

how to compensate for the lack of a general fixpoint).

As remarked by Rémy (1994a), a recursive record semantics of objects works fine

with the let rec construct, except that this construct is unsafe. Indeed, some langages,

like Scheme or OCaml, provide us with this feature, but, except for defining recursive

functions, its semantics is implementation-dependent. More precisely, in computing

(let rec x = N in M), it could happen that evaluating N we have to call the value

of x, which is not yet computed, thus getting stuck at this point. An example, in the

simply-typed call-by-value λ-calculus with recursion, is (let rec x = F(xV) in · · ·)
where F is the combinator λxλy y and V is any typable value. One must then have

means to prevent such a run-time error in order to design a “safe” object model from

recursive records. We must point out that, although this problem of determining

restrictions on recursive definitions to ensure that they define something is not at all

a new one, no obvious solution to our specific problem emerges from the literature,

since we have to sometimes accept (let rec x = (Gx) in M), especially when G

reduces to a “generator” λselfM (Cook & Palsberg, 1989).

The main contribution of this paper is a solution to this problem: first, we extend

the core “Reference ML” language, as considered by Wright & Felleisen (1994),

with let rec and operations on records, similar to the ones of Cardelli & Mitchell

(1994). We then provide a type system for this language, refining the simple typing

by assigning a boolean information, 1 or 0 – that we call the “safeness degree” –, to

variables in the typing context. This “degree” is to be interpreted as “certainly safe”,

or conversely “possibly unsafe”, for recursion. Typically, a variable occurring within

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

266 G. Boudol

M, N expressions

V | (MN) | (let D in M) core constructs

| 〈M, � = N〉 | (M.�) | (M\�) record operations

V , W x | ref | ! | set | (setV) values

| λxM | () | R
R x | 〈〉 | 〈R, � = V 〉 record values

D x = N | rec x = N declarations

Fig. 1. Syntax.

a value is safe for recursion, hence may have degree 1 – this is basically the standard

approach, where recursion is “guarded”, like for instance in (let rec f = λxN in M).

We also have to introduce degrees in function types, considering types of the form

θd → τ. Then a function of type θ1 → τ is “protective” towards its argument, like for

instance K = λxλy x, or more generally λxV . For a recursion (let rec x = (Gx) in M)

to be safe, the function G must be “protective”. Regarding our type system, we prove

the standard properties: we show that the evaluation of a typable term either diverges

or returns a value, thus avoiding to get stuck in run-time errors, and, adapting a

result by Jategaonkar & Mitchell (1993), we show that a principal type may be

computed for any typable expression. To assess the usefulness of the approach, and

to illustrate the expressive power of the model, we introduce a few derived constructs

for a mixin-based style of programming.

The rest of the paper is organized as follows: a first section introduces the

language, from an operational point of view. We characterize in particular the

possible outcomes of a computation. Section 3 introduces the type system. In the next

one the type safety result is established. This relies upon the fact that substituting

a term of appropriate type for a variable preserves the typing; the proof of this

fact is more difficult than usual, because we have to deal with degrees. In Section 5

we present the type assignment algorithm, and prove the principal type property.

In Section 6 we introduce our sub-language for mixin-based programming, and its

derived typing. We illustrate the flexibility of the approach by means of a series of

examples. Finally, we discuss related work, and present some conclusions.

Note. The type system presented in this paper is similar to, but not the same as,

that presented in the conference version of this work (Boudol, 2001), which appeared

to be not expressive enough for the purpose of typing the object-oriented constructs

presented below. This is explained in Section 6.

2 The calculus

Assuming that a set X of variables, ranged over by x, y, z . . . , and a set L of labels

are given, the syntax of our core language is given in figure 1, where x∈X and �∈L.

It contains the “Reference ML” calculus of Wright & Felleisen (1994) – defining the

call-by-value fixpoint combinator Y as (let rec y = λf.f λx.yfx in y), where we use

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 267

E | (EN) | (VE) | (let x = E in M) | (let rec x = E in M)

| 〈E, � = N〉 | 〈R, � = E〉 | (E.�) | (E\�)

Fig. 2. Evaluation contexts.

(λxMV) → {x �→V }M
(let x = V in M) → {x �→V }M

(let rec x = V in M) → {x �→(let rec x = V in V)}M

(〈R, � = V 〉.�) → V

(〈R, � = V 〉.�′) → (R.�′) �′ �= �

(〈R, � = V 〉\�) → R

(〈R, � = V 〉\�′) → 〈(R\�′), � = V 〉 �′ �= �

M →M ′ ⇒ E[M]→ E[M ′]

Fig. 3. Local reduction.

the standard abbreviations, namely λx1 . . . xn.M for λx1 . . . λxn M and MN1 · · ·Nk

for (· · · (MN1) · · ·Nk), and denoting .. by set. Free (fv) and bound (bv) variables

are defined as usual, and we denote by {x �→N}M the capture-free substitution.

As usual we write (M ; N) for (let x = M in N) provided that x does not occur

in N.

Regarding records, we use the operations of Cardelli & Mitchell (1994), denoting

by 〈M, � = N〉 the record M extended with a new field, labelled �, with value N.

As in Cardelli & Mitchell (1994), this will only be well-typed if M does not exhibit

an � field, whereas the restriction operation, still denoted (M\�) and consisting of

removing the � field from M, will only be well-typed here if M does contain an

� field. This record calculus is equivalent to the one defined by means of pattern

matching in Jategaonkar & Mitchell (1993): using abstraction on patterns, one

may define selection and restriction respectively as λ〈x, � = y〉y and λ〈x, � = y〉x.
Conversely, the expression λ〈x, � = y〉M for instance may be written λz(let x =

z\� in (let y = z.� in M)). The overriding operation is denoted 〈M, �←N〉; this

is an abbreviation for 〈(M\�), � = N〉. We may also define the renaming operation

M[�← �′] = (let x = M in 〈x\�, �′ = x.�〉). We shall write 〈�1 = M1, . . . , �n = Mn〉
for the record 〈· · · 〈〈〉, �1 = M1〉 . . . , �n = Mn〉.

Now we specify the semantics of our language, defining first an evaluation relation

M → M ′, that we also call local (or functional) reduction. The axioms and rules

are given in figure 3. Here, as it is standard, we use a semantics by substitution for

the let construct, and for βv-reduction. This will simplify the proofs of the technical

results, since we do not enter into the details of α-conversion, which is a standard

matter. Obviously, an implementation would rather be closer to an abstract machine

description, based on environments and closures (see Boudol & Zimmer (2002)).

Reduction may be performed in evaluation contexts, defined in figure 2. Regarding

these contexts, it is easy to see that the following holds.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

268 G. Boudol

M →M ′ ⇒ [S |M]→ [S |M ′]

[S | E[(ref V)]] → [u .. V ; S | E[u]] u fresh, fv(V) ∩ capt(E) = ∅
[S | E[(!u)]] → [S | E[V]] S (u) = V , fv(V) ∩ capt(E) = ∅

[S | E[((set u)V)]] → [{u .. V }S | E[()]] fv(V) ∩ capt(E) = ∅

Fig. 4. Global reduction.

Remark

An evaluation context is either , or of the form E[F] where F is a frame, given by

the following grammar:

F (N) | (V) | (let x = in M) | (let rec x = in M)

| 〈 , � = N〉 | 〈R, � = 〉 | (.�) | (\�)

To describe the semantics of the imperative constructs, given by the rules for global

reduction in figure 4, we enrich the language with a denumerable set N of names,

or locations u, v, w . . . , distinct from the variables and the labels. These names

are also values. A configuration is a pair [S |M] of an expression M and a store S ,

that is a mapping from locations to values. We use the following syntax for stores:

S ε | u .. V ; S

The value S(u) of a name in the store, and the partial operation {u .. V }S of

updating the store, are defined in the obvious way. In the side conditions of the

rules for global reduction, capt(E) is the set of variables that are captured by E, that

is, bound in E by a let rec binder introducing a sub-context. Let us see an example

– which will be the standard object-oriented example of a “point”. Assuming that

some arithmetical operations are given, we define a “class” of unidimensional points

as follows:

let point = λxλself〈pos = ref x,

move = λy((set self .pos)(!self .pos + y))〉 in . . .

Within the scope of this definition, we may define a point object, instance of that

class, by intantiating the position parameter x to some initial value, and building a

recursive record of methods. Let us define the fixpoint operator fix as follows:

fix =def λf(let rec z = fz in z)

Then, if we let V = λy((set z.pos)(!z.pos + y)) and R = 〈pos = u,move = V 〉, we

have for instance:

[ε | fix(point 0)]
∗→ [ε | (let rec z = 〈pos = ref 0,move = V 〉 in z)]

→ [u .. 0 ; ε | (let rec z = R in z)]

∗→ [u .. 0 ; ε | 〈pos = u , move = {z �→O}V 〉]

where O = (let rec z = R in R). One can see that there are two parts in this

evaluated object: a state part, which records the (mutable) position of the object,

and the (recursive, immutable) record of methods. Now imagine that we want to

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 269

enhance the point class with a clear method that resets the position to the origin.

Then we introduce a new class inheriting from point:

let point′ = λxλself〈(point x)self , clear = ((set self .pos)0)〉 in . . .

This is a perfectly acceptable way of building a class inheriting from point, except

that, due to the way the clear method is written, we cannot create an object

instance of that class. More precisely, the type system will reject an expression like

fix(point′ 0), and rightly so. Indeed, if we try to compute this expression, we get stuck

in [u .. 0 ; ε | (let rec z = E[z] in z)] where E = 〈pos = u , move = V , clear =

((set .pos)0)〉. In the clear method, the self parameter ought to be protected from

being evaluated, and a standard way to do this is to define this method as a “thunk”,

clear = λy((set self .pos)0), which may be invoked on an object, o = fix(point′ 42)

for instance, as o.clear(). This is the main technical point of the paper: to create

objects instance of some class, we must be able to sometimes accept, sometimes reject

expressions of the form (let rec z = (Gz) in N), in particular when G
∗→ λselfM,

depending on whether the function (with side effects) G is “protective” towards its

argument or not. As we mentioned in the Introduction, unsafe recursion is not tied

to record computations: it already shows up in the purely functional fragment of

the language.

In the type system we will use a notion of a pure expression, which is an expression

that can be evaluated without producing any side effect. In particular, evaluating

a pure expression does not expand the store, and therefore such expressions

have also been called non-expansive expressions. They are given by the following

syntax:

U x | λxM | (let x = U in U ′) | (let rec x = U in U ′)

| 〈U, � = U ′〉 | (U.�) | (U\�)
Lemma 2.2

(i) If U and U ′ are pure expressions, then {x �→U}U ′ is a pure expression.

(ii) If M is a pure expression and M →M ′ then M ′ is a pure expression.

Proof

(i) Immediate.

(ii) By induction on the proof of M →M ′, using the previous point. �

To establish a type safety result, we need to analyse the possible behaviour of

expressions under evaluation: computing an expression may end on a value, or

may go forever, but there are other possibilities – in particular an expression may

“go wrong” (Milner, 1978) (or “be faulty”, following the terminology of Wright &

Felleisen (1994)). Our analysis is slightly non-standard here, since we have to deal

with open terms. Besides the faulty expressions, we distinguish what we call “global

redexes” and “head expressions”. A global redex is an expression that has to be

reduced, but whose reduction needs the participation of the store. A head expression

is, by analogy with the “head normal forms” of the λ-calculus, a term M where a

variable appears in the head position, that is M = E[x] for some evaluation context

E, and where something has to be done with the value of x.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

270 G. Boudol

Definition 2.3

A term M is a global redex if M is E[(ref V)], or E[(!u)], or else E[((set u)V)] for

some value V and location u, with fv(V) ∩ capt(E) = ∅.

Definition 2.4

A term M is a head expression if M = H[x] with x �∈ capt(H), where the H contexts

are given as follows:

H E[(V)] | E[(!)] | E[(set)] | E[(.�)] | E[(\�)]

Definition 2.5

A term M is faulty if it contains a sub-expression of one of the following forms:

(i) (VN), where V is either a location, or (), or a record value;

(ii) (let rec x = H[x] in M) with x �∈ capt(H)

(iii) (let rec x = E[N] in M) where N is either (ref V) or ((set u)V) with x∈ fv(V);

(iv) (!V) or (setV) where V is neither a variable nor a location;

(v) 〈V , � = N〉 where V is not a record value;

(vi) (V .�) or (V\�), where V is neither a variable, nor a non-empty record-value.

Notice that an expression of the form (setV) where V is neither a variable nor a

location is both a value and a faulty expression. This definition of faulty expressions

extends the usual one (again, see Wright & Felleisen (1994)) with new cases regarding

recursion: the evaluation of (let rec x = H[x] in M) is stuck if x �∈ capt(H), since

H[x] is not reducible, though not a value. The fact that (let rec x = E[(ref V)] in M)

and (let rec x = E[((set u)V)] in M) have to be regarded as faulty when x ∈ fv(V)

has to do with the way we have defined the operational semantics of recursive

definitions, using substitution instead of environments: these expressions are global

redexes, but they are not reducible since x is captured by the recursive definition.

Then our first result is as follows.

Proposition 2.6

For any expression M, either M reduces, i.e. M →M ′ for some M ′, or M is a head

expression, or a faulty expression, or a global redex, or a value.

Proof

By induction on the structure of M. The case where M is a value is trivial.

1. In the case of an application (MN), we use the induction hypothesis for M:

1.1. if M reduces into M ′ then (MN) reduces into (M ′N).

1.2. If M is a head expression, then (MN) is also a head expression.

1.3. If M is faulty, then (MN) is faulty too.

1.4. If M is a global redex, then the same holds for (MN).

1.5. If M is a value V , we examine the possible cases for V . If V is neither a

variable, nor a functional value (that is, V is either a location, or (), or a record

value), then (VN) is a faulty expression. If V is a variable or a functional value,

we use the induction hypothesis for N. If N reduces, or is a head expression, or is

faulty, or else is a global redex, then the same holds for (VN). If N is a value W ,

then we examine the possible cases for V : if V is a variable, then (VW) is a head

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 271

expression. If V = ref then (VW) is a global redex. If V = ! then either W is not a

variable, nor a location, in which case (VW) is faulty, or (VW) is a global redex (if

W is a location) or a head expression (if W is a variable). If V = set then (VW) is

a value (which may be faulty if W is neither a variable nor a location, and is also a

head expression if W is a variable). If V = (setV ′) then (VW) is a head expression

if V ′ is a variable, or a global redex is V ′ is a location, and a faulty expression

otherwise. Finally, if V is an abstraction λxM ′, then (VW) reduces to {x �→W }M ′.

2. In the case of a let expression (let x = N in M), we use the induction hypothesis

for N:

2.1–4. if N reduces, or is a head expression, or is faulty, or else is a global redex,

then the same holds for (let x = N in M).

2.5. If N is a value V , then (let x = N in M) reduces to {x �→V }M.

3. In the case of a let expression (let rec x = N in M), we use the induction

hypothesis for N:

3.1. if N reduces, then (let rec x = N in M) reduces too.

3.2. If N is a head expression H[z], there are two cases: if z = x then (let rec x =

N in M) is faulty, and a head expression otherwise.

3.3. If N is faulty, then (let rec x = N in M) is faulty.

3.4. If N is a global redex E[N ′], then either there exist V and x ∈ fv(V) such that

N ′ = (ref V) or N ′ = ((set u)V), in which cases (let rec x = N in M) is faulty, or

(let rec x = N in M) is a global redex.

3.5. If N is a value V , then (let rec x = N in M) reduces to {x �→(let rec x =

V in V)}M.

All the other cases, that is 〈M, � = N〉, (M.�), (M\�), are similar to the one of the

application (MN) (and in fact simpler for the latter two). �

Notice that in the last case of proof (3.5), we may have N = x, or N = 〈x, � = W 〉,
or else N = 〈R, � = x〉. Although the expression (let rec x = N in M) is not

considered faulty in these cases – its evaluation may diverge, depending on how x

is used in M –, we will see that it is rejected by the type system (see Corollary 3.3).

Let us say that a configuration [S |M] is closed if M is a closed expression, that

is fv(M) = ∅, S = u .. V ; S ′ implies that V is closed, and the locations occurring in

M are in dom(S). It is easy to see that if [S |M]→ [S ′ | N] and [S |M] is closed,

then [S ′ | N] is closed too.

Corollary 2.7

For any closed configuration [S | M], if its evaluation terminates on [S ′ | N], that

is [S |M]
∗→ [S ′ | N], and [S ′ | N] is irreducible, then N is either faulty or a value.

3 The type system

The aim in using a type system is to prevent run-time errors – and also to provide

some interesting information about expressions. Then we have to design such a

system in a way that rules out faulty expressions. Apart from the case of let rec

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

272 G. Boudol

expressions, that is (ii) and (iii) of Definition 2.5, we already know how to do that:

use functional types θ → τ for expressions that have to be applied, reference types

τ ref for expressions that have to be de-referenced or assigned to, and record types,

with row variables (Rémy, 1994b; Wand, 1987), 〈ρ, �1 : τ1, . . . , �k : τk〉 for expressions

that are subject to selection, or extension, or restriction. Since we want to be able to

define recursive expressions of any type, there is no specific type construct associated

with recursion. However, to exclude unsafe recursion, we will use “decorated types”,

where the decorations are boolean values 0 or 1 (with 0 � 1), also called safeness

degrees, to which we must add, in order to obtain principal types, degree variables

p, q . . . We denote by a, b, c . . . ∈D these degrees, either constant or variable.

Following Milner (1978), we use a polymorphic let construct. This is crucial for

defining classes that may be inherited in various ways, and instantiated into objects,

and to type generic functions like λx(x.�) or λxλy〈x, �← y〉. Then we will use type

schemes. As in Jategaonkar & Mitchell (1993), we do not allow the same label to

occur several times in a given record type – but our treatment of row variables

is quite different from the one of Jategaonkar & Mitchell (1993). Therefore, in

quantifying on a row variable, we must take into account the context in which it

occurs, by means of the set L of labels that it must not contain. More precisely, we

use (series of) quantifications of the form (∀t :: L.σ), meaning that the type variable

t ranges over types which are not record types containing a label mentioned in L.

This is similar to the bounded quantification (∀t <: 〈〉\L.σ) of Cardelli & Mitchell

(1994), but notice that, apart from “generic instantiation” (see below), we do not

use any form of subtyping here. In Jategaonkar & Mitchell (1993), annotated type

variables, that is tL, are used for the same pupose. Given a set TyVar of type

variables, the syntax of types and type schemes is:

τ, θ unit | t | (θa → τ) | τ ref | ρ
ρ t | 〈〉 | 〈ρ, � : τ〉

σ, ζ τ | (∀Q.σ)

Q t :: L | t :: L,Q

where t is any type variable, a is any degree, and L is any finite set of labels.

As for record expressions, we shall denote a record type 〈· · · 〈〈〉, �1 : τ1〉 . . . , �k : τk〉
by 〈�1 : τ1 . . . , �k : τk〉, and similarly 〈t, �1 : τ1 . . . , �k : τk〉 stands for the “open” record

type 〈· · · 〈t, �1 : τ1〉 . . . , �k : τk〉. We shall denote by =T the least congruence on type

schemes containing α-conversion of type variables bound by quantification, and

satisfying the following law:

〈〈ρ, � : τ〉, �′ : τ′〉 = 〈〈ρ, �′ : τ′〉, � : τ〉

As we said, not all record types are legal types: for instance 〈〈ρ, � : τ〉, �′ : τ′〉 is not

regarded as a well-formed type if �′ = �. Then we have a simple inference system

allowing us to infer judgements of the form Q � σ :: L, which can be read “σ is

well-formed under the assumption Q, and is not a record type containing one of the

labels in L”.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 273

t :: L,C � t :: L′
L′ ⊆ L

C � unit :: ∅

C � θ :: ∅ C � τ :: ∅

C � (θa → τ) :: ∅

C � τ :: ∅

C � τ ref :: ∅ C � 〈〉 :: L

C � ρ :: L ∪ {�} C � τ :: ∅

C � 〈ρ, � : τ〉 :: L
� �∈ L

Q,C � σ :: ∅

C � (∀Q.σ) :: ∅
dom(Q) ∩ dom(C) = ∅

C � 0 � α C � α � 1 C � α � α

C � α � κ C � κ � β

C � α � β

p � α , C � p � α C � (α ∧ β) � α C � (α ∧ β) � β

C � κ � α C � κ � β

C � κ � (α ∧ β)

Fig. 5. Constraints: annotations and inequalities.

The annotation of type variables with finite sets of labels is not the only constraint

we have to take into account in the type system: we also have to deal with constraints

on degrees, that take the form of a set of inequalities p � α where p is a degree

variable and α is a degree expression, built from degrees by using the conjunction

(that is, the meet) operation ∧. We denote by α, β, κ . . . ∈ DExp these expressions.

The meet operation is used to represent conjunction of constraints; namely, p � α∧β
is equivalent to p � α & p � β. Notice that constraints on degrees of this kind are

obviously satisfiable, e.g. assigning uniformly 0 to the degree variables. In order to

give a simple form to typing rules, we group the two kinds of constraints – type

variables annotations t :: L and inequalities p � α – into a single component, called a

constraint, denoted by C . This is a pair of a mapping Ctyp from a finite set dom(Ctyp)

of type variables into annotations (finite subsets ofL), and of a mapping Cdeg from

a finite set dom(Cdeg) of degree variables into degree expressions. As usual, we

write t :: L,C for the constraint C updated by the assignment of annotation L to

t (so that a series of annoted type variables, Q = t1 :: L1, . . . , tn :: Ln is regarded as

a constraint), and similarly for p � α, C . This notation is extended to C,C ′ in the

obvious way. The constraint system, given in figure 5, allows us to infer judgements

of the form C � σ :: L, as well as C � α � β, meaning that this inequality is a

consequence of C . As one can see, the only constraints on types are that in 〈ρ, � : τ〉,
the type ρ must not contain the label �, and that one may only quantify over type

variables which do not still appear in the context. Notice that if C � σ :: L and σ

is not a record type, then L = ∅. Given a set A of assertions of the form σ :: L or

α � β, we denote by C � A the fact that all the assertions of A are provable from

the constraint C .

As usual, we need the notion of an instance of a type scheme, obtained by

substituting not only types for type variables, but also degrees for degree variables.

Then a type and degree substitution S is a mapping from type variables to types, and

from degree variables to degrees (not degree expressions), which is the identity, except

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

274 G. Boudol

for a finite set dom(S) of variables. We write S = { ti �→τi | i ∈ I } ∪ { pj �→aj | j ∈ J }
if S(ti) = τi, S(pj) = aj , and S is the identity otherwise. If X is a set of (type and

degree) variables, and S is a substitution, then S �X is the substitution that coincides

with S on X, and is the identity otherwise. We denote by S(σ) the result of applying

the (capture-free) substitution S to the type scheme σ, and similarly for S(α). The

composition of substitutions is denoted S′S, with S′S(t) = S′(S(t)). In most cases, we

need to ensure that applying a substitution to a type scheme results in a well-formed

type. For instance, applying {t �→θ} to 〈t, � : τ〉 yields a syntax error if θ is not a

record type, and a non well-formed type if θ is a record type that contains the label

�. Given two constraints C0 and C1, we then define Sub(C0, C1) as follows:

S ∈Sub(C0, C1) ⇔def dom(S) ⊆ dom(C0) & C1 � S(C0)

where S(C) = {S(t) :: L | t :: L ∈ C } ∪ {S(p) � S(α) | p � α ∈ C }. Then it is easy to

see, by induction on σ, that the following holds.

Lemma 3.1

If C0 � σ :: L and S ∈Sub(C0, C1) then C1 � S(σ) :: L.

Then, for instance, the standard relation of being a generic instance (see Damas

& Milner (1982)) is relative to some constraint: we write C � σ � σ′ if σ = (∀Q.τ)
and σ′ = (∀Q′.S(τ)) for some S ∈ Sub(Q,C ∪ Q′).

The typing judgements have the form C ; Γγ �M : τ, where C is a constraint, τ is

a type(1), and Γγ is a typing context. This is a pair of two maps Γ and γ, respectively

from a finite set of variables and locations to type schemes (for variables) and types

(for locations), and from a finite set of variables to degree expressions. The idea

is that with a variable x we associate an assumption about the fact that it will

or will not occur in a dangerous – w.r.t. recursion – position. This assumption is

the safeness degree of the variable in the context – 0 standing for “dangerous”,

i.e. potentially unsafe. We call Γ a type assumption and γ a degree assumption (or

sometimes a degree assignment). We assume that Γ and γ assign type schemes and

degree expressions to the same variables, that is dom(γ) = dom(Γ) ∩X. Denoting a

pair (σ, α) by σα, we will write the typing context Γγ as

u1 : τ1, . . . , uk : τk, x1 : σα1

1 , . . . , xn : σαnn

if Γ = {u1 �→τ1, . . . , uk �→τk, x1 �→σ1, . . . , xn �→σn} and γ = {x1 �→α1, . . . , xn �→αn}. We

use the following predicate on degree assumptions:

let X be a set of variables. Then C � δ � γ on X if and only if

C � δ(x) � γ(x) for all x ∈X.

In the type system, we abbreviate λx(if x∈ fv(M) then α else 1) into αM . As usual,

we let δ ∧ γ denote the function defined pointwise, by (δ ∧ γ)(x) = δ(x) ∧ γ(x). We

also abusively write 1 for λx.1, and similarly for 0. In the typing axioms, we have

1 To simplify the presentation we do not include the usual rules of instantiation and generalization (see
Damas & Milner (1982)), but they would easily be shown to be admissible if judgements C ; Γγ �M : σ
were allowed, and therefore we will use them in the examples.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 275

C ; Γγ �M : τ C � δ � γ on fv(M)

C ; Γδ �M : τ

C � x : σ,Γ C � σ � τ

C ; x : σ0,Γ1 � x : τ

C ; x : θa,Γγ �M : τ

C ; Γ1 � λxM : (θa → τ)

C ; Γγ �M : θa → τ C ; Γγ � N : θ

C ; Γ0M ∧ δ � (MN) : τ
(1)

Q,C ; Γγ � N : θ C ; x : (∀Q.θ)α,Γγ �M : τ

C ; Γδ � (let x = N in M) : τ
(2)

Q,C ; x : θ1,Γγ � N : θ C ; x : (∀Q.θ)α,Γγ �M : τ

C ; Γδ � (let rec x = N in M) : τ
(2)

(1) where

δ(x) =

{
a if N = x

(aN ∧ γ)(x) otherwise

(2) where t ∈ dom(Q) ⇒ t �∈ dom(C) and Q is empty if N is not pure, and

δ =

{
αN ∧ γ if M is not pure

γ otherwise

Fig. 6. The type system (functional fragment).

to check that the types involved in the judgement are acceptable. This is done by

means of a proof system for judgements of the form C � Γ, which is actually trivial:

C � ∅

C � σ :: ∅ C � Γ

C � x : σ,Γ

Now let us comment on some of the rules that are presented in figures 6 and 7.

The first one is a “degree weakening” rule, stating that “optimistic” assumptions,

assigning for instance degree 1 to some variables, can always be safely downgraded.

The intuition about degrees is that a variable is safe, and therefore may be assigned

degree 1, basically when it occurs within a value, that is guarded by a λ-abstraction,

and more generally when its specific value is not needed during the computation

(see Corollary 4.10). This explains the typing axiom C ; x : σ0,Γ1 � x : τ: a value

for x must be fetched, say, from the environment, to evaluate the expression

x, and therefore x has degree 0. On the other hand, any other variable is not

concerned with the evaluation of x, hence may be assigned degree 1. More generally,

in all typing axioms we make such “optimistic” degree assumptions, wich can

always be weakened, regarding the variables that do not occur in the typed

expression.

In the rule for abstraction of x, we assume that the degree of x does not contain

the ∧ operation, but this is not a restriction, since we may always add a fresh

constraint p � α and use the weakening rule. The rule for abstraction promotes

the typing context to a definitely safe one (Γ1), since all the variables occurring in

the abstraction value are protected from being evaluated by the λ. Conversely, the

variables occurring in the function part of an application are potentially dangerous,

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

276 G. Boudol

like for instance x in (λy.xy)V . Then they are all downgraded to having the degree

0. Regarding the argument, we must be more careful: applying a function of

type θ1 → τ that does not put its argument in danger, like λfλx(fx) for instance

(see below for the typing of this expression), we may decide that its free variables

are protected. However, this is only true if they are protected in the argument

itself. Then applying a function of type θa → τ places the argument in a position

where the variables have a degree which is, at best, a or the degree they have in the

argument. This is where we use the ∧ operation(2). Nevertheless, we are able to make

a special case when the argument is a variable x (whose degree is 0): anticipating

that the function M is an abstraction λyM ′, thus typed using an assumption about

y, we may consider that the degree of x in (Mx) is the one of y in M ′, that is a,

instead of a ∧ 0 = 0 (see Lemma 4.5). This is important for our purpose, where

we should not always reject (let rec x = Gx in M), see Section 6. One could

probably extend this specific treatment of the argument to the case where it is a

value, but this does not seem to be a good idea, because then we could not predict

how the recursive variables are used (see Corollary 4.10). Let us see an example.

Since
...

C � α � β C � α � 1

C � α � β ∧ 1

the term λfλx(fx) has the following typing, where C = t :: ∅, t′ :: ∅, q � p (omitting

the proof of C � f : (tp → t′), x : t):

...

C ; f : (tp → t′)0, x : t1 � f : (tp → t′)

C ; f : (tp → t′)0, x : t0 � f : (tp → t′)

...

C ; f : (tp → t′)1, x : t0 � x : t

C ; f : (tp → t′)0, x : t0 � x : t

C ; f : (tp → t′)0∧1, x : t1∧p � (fx) : t′

C ; f : (tp → t′)0, x : tq � (fx) : t′

C ; f : (tp → t′)1 � λx(fx) : tq → t′

C; � λfλx(fx) : (tp → t′)1 → tq → t′

q � p; � λfλx(fx) : (∀t :: ∅, t′ :: ∅.(tp → t′)1 → tq → t′)

In the examples that follow, we shall often omit the use of the degree weakening

rule, when it amounts to use obvious inequalities like α � α∧ 1. To see why we need

the meet operation, the reader may try to type f(gx), where the degree of x depends

on the nature of both f and g. As we said in the introduction, we call protective

2 For simplicity, our presentation of the type system is “additive”, in the sense that the components of
a binary construct share the same typing context. However, we may have to use the degree weakening
rule, hence the meet, to keep to this pattern.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 277

a function which has a type of the form θ1 → τ. Notice however that this is not

necessarily the most general type of the function. For instance, the term K = λxλy x

has, as we shall see, most general type tp0 → t
q
1 → t0 (without any constraint), which

can be instantiated into τ1 → θa → τ. One may also observe that η-expansion is of

no help in building protective functions: indeed, it is easy to see that if λx(Mx) has

type θa → τ, then M has the same type. Moreover, one cannot generally η-expand

recursive variables, because they may not have a functional type.

One may notice that in the rule for the let construct, we use the “value

polymorphism” approach of SML (Milner et al., 1997) (also proposed by Wright

(1995)), to solve the difficulties in polymorphic typing due to imperative features. The

reason why we make a special case when M is pure will be explained in Section 6.

The rule for the let rec construct is the only one involving a real (i.e. possibly

unsatisfiable) constraint on degrees, namely 1 � α. It is exemplified by the following

typing of the fixpoint combinator, where Γ = {f �→(t1 → t), x �→t}, γ = {f �→0, x �→0}
and δ = {f �→0, x �→1}:

...

t :: ∅ ; Γγ � f : (t1 → t)

...

t :: ∅ ; Γγ � x : t

t :: ∅ ; Γδ � fx : t

...

t :: ∅ ; Γγ � x : t

t :: ∅ ; f : (t1 → t)0 � (let rec x = fx in x) : t

t :: ∅; � fix : (t1 → t)0 → t

Notice that, as in ML, (let rec f = λxN in M) is always allowed, provided that M

and N have appropriate typings. For instance, the call-by-value fixpoint combinator

Y = (let rec y = λf.f(λx.yfx) in y)

has the following typing:

t :: ∅, t′ :: ∅, p � q; � Y : ((tp → t′)r → tq → t′)0 → tq → t′

An example of a program from the “functional ML” fragment of the language that

is rejected by our type system – as any other faulty expression, as we shall see –,

is (let rec x = F(xV) in x) where F is the combinator λzλy y. Observe that this

expression would be typable – provided that V has some type – with a “standard”

typing rule for let rec expressions, that is omitting the constraint on the degree

of the recursive variable, but that it is an irreducible expression which is not a

value. Conversely, types are, as usual, only approximations, and some expressions

are rejected that actually do not cause any trouble. For instance, assigning degree 0

to variables that appear in a function position, that is at the left of an application,

is sometimes overly pessimistic, as in (let rec x = (Fx)V in · · ·) where x �∈ fv(V) for

instance. Some other examples are given below (see the comments on the proof of

Proposition 4.6).

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

278 G. Boudol

C � u : τ,Γ

C ; u : τ,Γ1 � u : τ ref

C � Γ C � τ :: ∅

C ; Γ1 � ref : τ0 → τ ref

C � Γ C � τ :: ∅

C ; Γ1 � ! : (τ ref)0 → τ

C � Γ C � τ :: ∅

C ; Γ1 � set : (τ ref)0 → τ0 → unit

C � Γ

C ; Γ1 � () : unit

C � Γ

C ; Γ1 � 〈〉 : 〈〉

C ; Γγ �M : ρ C ; Γγ � N : τ C � ρ :: {�}

C ; Γγ � 〈M, � = N〉 : 〈ρ, � : τ〉

C ; Γγ �M : 〈ρ, � : τ〉

C ; Γγ � (M.�) : τ

C ; Γγ �M : 〈ρ, � : τ〉

C ; Γγ � (M\�) : ρ

C � Γ

C ; Γ � ε

C ; u : τ,Γγ � V : τ C ; u : τ,Γ � S

C ; u : τ,Γ � u .. V ; S

C ; Γ � S C ; Γγ �M : τ

C ; Γ � [S |M] : τ

Fig. 7. The type system (continued).

The functional core of the language concentrates all the subtleties of the use

of degrees – the rest of the type system is quite trivial, and in particular there is

not much choice in the typing of the record constructs: as we said, the extension

operation 〈M, � = N〉 is strict, and thus requires that M is a record not containing

the label �, and similarly the strict restriction operation (M\�) requires � to be

present in M. Then there is no ambiguity in typing these operations. We must point

out that, in the typing rules for records, we implicitly use the type equality relation

=T. Admittedly, having to check the well-formedness of record types complicates the

system, in a way that has nothing to do with the problem of typing safe recursion,

but we think that solving this problem is only worth if this has some application,

and that an interesting one is in modelling object-oriented constructions.

To conclude this section, we show that in a typable expression, recursive variables

can only be “passed around”, as arguments of protective functions – unless they are

embedded within abstractions. To this end, we first need a technical result, showing

that evaluation contexts are generally not “protective”.

Lemma 3.2

Let N be an expression which is not a variable. If C ;Γγ � N : τ implies C � γ(x) � 0,

and if C ′ ; ∆δ � E[N] : θ with x �∈ capt(E), then C ′ � δ(x) � 0.

Proof

By induction on E. This is trivial for E = . Otherwise, we have E = E′[F] where F is

a frame (see Remark 2.1). Then one can check, by cases on F, that C ′′ ;Σξ � F[N] : τ′

implies C ′′ � ξ(x) � 0. The hypothesis that N is not a variable is used in the case

where F = (V). �

Corollary 3.3

If (let rec x = E[x] in M) is typable, then E = E′[(V)] where V is a protective

function.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 279

Proof

If (let rec x = E[x] in M) is typable, then E[x] is typable in a typing context where

the degree of x is 1. This implies E �= . If E = E′[F], then the previous lemma,

where we let N = F[x], shows that we can only have F = (V). Moreover, the

degree of x in typing (Vx) must be 1, and therefore V is protective. �

4 Type safety

In this section we prove our first technical result, asserting that typable programs

cannot “go wrong”, that is they do not entail any run-time error. A first step towards

this property is the following.

Lemma 4.1

The faulty expressions are not typable.

Proof

The type system is compositional, and therefore a term is typable only if all its

subterms are typable. Then it is enough to check that the “basic” faulty expressions,

as defined by the clauses (i)–(vi) of Definition 2.5 are not typable. The cases of (i)

and (iv)–(vi) are immediate. Regarding (ii), one first notices that if C ; Γγ � N : τ

where N is either (xV), or (! x), or (set x), or else (x.�) or (x\�), then C � γ(x) � 0.

Then, by Lemma 3.2, C ; Γγ � H[x] : τ implies C � γ(x) � 0 if x �∈ capt(H). Then

(let rec x = H[x] in M) is not typable, since this would imply C � 1 � 0, which is

impossible, for C is consistent. The proof is similar in the case (iii). �

Then we have the standard “type preservation” – or “subject reduction” –

property. To establish this property, we need some preliminary results. First we

observe that if C ; Γγ � M : τ is provable, then C � Γ and C � τ :: ∅. The following

weakening property is standard.

Lemma 4.2 (Weakening)

(i) If C ; Γγ � M : τ then for any x and σ such that C � σ :: ∅ the judgement

C ; Γγ, x : σα �M : τ is provable, with a proof having the same structure as the

one of C ; Γγ �M : τ.

(ii) If C ; Γγ � M : τ then for any u and θ such that C � θ :: ∅ the judgement

C ; Γγ, u : θ � M : τ is provable, with a proof having the same structure as the

one of C ; Γγ �M : τ.

(iii) If C ; Γγ �M : τ and C ′ is a constraint such that dom(C ′) ∩ dom(C) = ∅, then

C ′, C ; Γγ � M : τ is provable, with a proof having the same structure as the

one of C ; Γγ �M : τ.

We omit the similar statements regarding the judgements C ; Γ � S and C ; Γ �
[S | M] : τ. Then, given a substitution S ∈ Sub(C0, C1), a typing context Γγ and a

type τ such that C0 � Γ and C0 � τ :: ∅, we denote by S(Γγ � M : τ) the statement

∆δ �M : S(τ) where ∆ = S◦Γ and δ = S◦γ. We have the standard result that typing

is compatible with type (and degree) substitution (see Damas & Milner (1982)).

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

280 G. Boudol

Lemma 4.3

If C ; Γγ �M : τ and S∈Sub(C,C ′) then C ′ ; S(Γγ �M : τ) is provable, with a proof

having the same structure as the one of C ; Γγ �M : τ.

Proof

By induction on the inference of C ; Γγ �M : τ, straightforward. �

The next properties are kind of converse of the weakening ones.

Lemma 4.4

(i) If C ;x : σα,Γγ �M : τ and x �∈ fv(M) then C ;Γγ �M : τ is provable, with a proof

having the same structure as the one of C ; x : σα,Γγ �M : τ.

(ii) If C ; u : θ,Γγ �M : τ and u does not occur in M then C ; Γγ �M : τ is provable,

with a proof having the same structure as the one of C ; u : θ,Γγ �M : τ.

(iii) If C ; u : θ,Γ � S and u does not occur in S then C ; Γ � S is provable, with a

proof having the same structure as the one of C ; u : θ,Γ � S .

(iv) If C ; u : θ,Γ � [S | M] : τ and u does not occur in S nor in M then C ; Γ �
[S | M] : τ is provable, with a proof having the same structure as the one of

C ; u : θ,Γ � [S |M] : τ.

(v) If t :: L,C ; Γγ � M : τ and t does not occur free in Γ or τ then C ; Γγ � M : τ is

provable, with a proof having the same structure as the one of t :: L,C ; Γγ �M : τ.

The proof, by induction on the inference of the typing judgements, is trivial. As

usual regarding type safety, a crucial property to show is a “substitution lemma”,

relating typing and substitution. As a special case, we first show.

Lemma 4.5

C ; x : σα,Γγ �M : τ & y �∈ dom(Γ)⇒ C ; y : σα,Γγ � {y �→x}M : τ.

Proof

By induction on the inference of C ; x : σα,Γγ �M : τ, trivial. �

Now we establish our crucial proposition.

Proposition 4.6

If Q is a type constraint such that dom(Q)∩ dom(Ctyp) = ∅, and N is pure, then the

following rule is admissible:

Q,C ; Γγ � N : θ C ; x : (∀C ′.θ)α,Γδ �M : τ

C ; Γψ � {x �→N}M : τ

where

ψ =

{
αN ∧ γ ∧ δ if M is not pure

γ ∧ δ otherwise.

Proof

First we observe that, if x �∈ fv(M), then {x �→N}M = M and C ; Γδ � M : τ by

Lemma 4.4, and the proposition is easily established in this case, by using the degree

weakening rule. Therefore we assume x ∈ fv(M) for the rest of the proof.

We proceed by induction on the inference of C ; x : (∀Q.θ)α , Γδ � M : τ, and by

case on the last rule used to infer this sequent. This rule can only be either the degree

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 281

weakening rule, or a rule depending on the structure ofM. In the first case, we simply

use the induction hypothesis, and the degree weakening rule to conclude. Then we

assume for the rest of the proof that the last rule is not the degree weakening rule;

that is, we proceed by induction on the structure of M.

• If M = x, we have C � (∀Q.θ) � τ, that is τ = S(θ) for some S ∈ Sub(Q,C),

hence also S∈Sub(C ′, C) where C ′ = Q,C . By Lemma 4.3 we have C;Γγ � N : τ,

since S is the identity for the variables occurring in Γ, which are included into

dom(C). We conclude using the degree weakening rule.

• If M = λzM ′ then we have C ; x : (∀Q.θ)β, z : τa0,Γ
κ � M ′ : τ1 for some β and

κ, with α = 1, δ = λy.1 and τ = τa0 → τ1. We may assume that z �∈ dom(Γ),

hence z �∈ fv(N). Then by Lemma 4.2 we also have Q,C ; z : τa0,Γ
γ � N : θ,

and therefore C ; (z : τ0,Γ)ξ � {x �→N}M ′ : τ1 by induction hypothesis, for some

ξ such that ξ(z) = a. Then C ; Γ1 � {x �→N}M : τ by the typing rule for

abstraction, and we conclude using the degree weakening rule.

• If M = (M0M1) then there exist a, τ0 and Σκ such that C ; Σκ � M0 : τa0 → τ

and C ; Σκ �M1 : τ0, with x : (∀Q.θ)α,Γδ = Σ0M0
∧ξ where

ξ(y) =

{
a if M1 = y

(aM1
∧ κ)(y) otherwise

We have Σκ = x : (∀Q.θ)β,Γκ′ where κ′ is the restriction of κ to dom(Γ) and

β = κ(x). By Lemmas 4.4(i) and 4.2(i), the judgement C ;x : (∀Q.θ)β0 ,Γκ
′ �M0 : τa0 →

τ where β0 = β if x ∈ fv(M0), and β0 = 1 otherwise, is provable, with a proof

having the same structure as the one of C ; Σκ � M0 : τa0 → τ, and similarly for

C ; x : (∀Q.θ)β1 ,Γκ
′ � M1 : τ0 with β1 = β if x ∈ fv(M1), and β1 = 1 otherwise.

Then, by induction hypothesis C ; Γψ0 � M ′0 : τa0 → τ and C ; Γψ1 � M ′1 : τ0 where

M ′i = {x �→N}Mi and

ψi =

{
βiN ∧ γ ∧ κ′ if Mi is not pure

γ ∧ κ′ otherwise

Then

C ; Γ
0M′

0
∧π � {x �→N}M : τ

by the degree weakening rule and the rule for typing application, where

π(y) =

{
a if M ′1 = y

(aM ′1 ∧ ψ0 ∧ ψ1)(y) otherwise

We notice that, since M is not pure, we have ψ = αN ∧ γ ∧ δ. Then to conclude in

this case, we have to check that

C � (0M ′0 ∧ π)(y) � (αN ∧ γ ∧ δ)(y) for y ∈ fv({x �→N}M) (∗)

We examine the two possible cases in the typing rule for application, that is M1 is a

variable (x or something else), or not.

1. If M1 is a variable z, then ψ1 = γ ∧ κ′ since M1 is pure.

1.1. If z = x, we have M ′1 = N. We again distinguish two cases:

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

282 G. Boudol

1.1.1. If x �∈ fv(M0) then M ′0 = M0, and β0 = 1, therefore C � ψ0 = γ∧κ′. Moreover

C � α = a in this case. We have

C � π � aN ∧ γ ∧ κ′

and

C � δ(y) = (0M0
∧ κ′)(y)

for y �= x, hence the inequality (∗) is clearly true in this case.

1.1.2. If x∈ fv(M0) then C � α = 0, and therefore the inequality (∗) obviously holds

for y ∈ fv(N). It also holds for y ∈ fv(M ′0)− fv(N) since C � δ(y) = 0 in this case.

1.2. If z �= x, we have M ′1 = z. Notice that, since we assumed x ∈ fv(M), we have

x ∈ fv(M0) in this case, hence C � α = 0. Therefore, the inequality (∗) obviously

holds for y ∈ fv(N). It also holds for y ∈ fv(M0) − {x}, since C � δ(y) = 0 in this

case. Finally, for y ∈ {z} − (fv(M0) ∪ fv(N) we have C � (0M ′0 ∧ π)(y) = π(y) = a and

C � δ(y) = (0M0
∧ ξ)(y) = ξ(y) = a, whence (∗) in this case.

2. Otherwise, M1 is not a variable. Then ξ = aM1
∧ κ and π = aM ′1 ∧ ψ0 ∧ ψ1. We

have

C � α =

{
0 if x ∈ fv(M0)

a ∧ β otherwise

since x ∈ fv(M). We distinguish again two cases:

2.1. If x ∈ fv(M0) then (∗) is true for y ∈ fv(N). It also holds for y ∈ fv(M0) since

C � δ(y) = 0 in this case. Finally if y ∈ fv(M1)− (fv(M0)∪ fv(N)) then y �= x, and we

have

C � (0M ′0 ∧ π)(y) = π(y)

= a ∧ (ψ0 ∧ ψ1)(y)

= a ∧ (γ ∧ κ′)(y) for C � ψi(y) = (γ ∧ κ′)(y)
= (γ ∧ δ)(y) for C � δ(y) = ξ(y) = a ∧ κ′(y)
= (αN ∧ γ ∧ δ)(y)

2.2. If x �∈ fv(M0) we have M ′0 = M0 and x∈ fv(M1) (for we assumed that x is free

in M). If y ∈ fv(M0) then C � δ(y) = 0, and the inequality (∗) is true in this case.

Otherwise, if y ∈ fv(N)− fv(M0), we have

C � (0M ′0 ∧ π)(y) = π(y)

= a ∧ (ψ0 ∧ ψ1)(y)

� a ∧ β ∧ (γ ∧ κ′)(y) for C � ψi � βN ∧ γ ∧ κ′

� a ∧ β ∧ (γ ∧ δ)(y) for C � δ(y) = ξ(y) � κ′(y)

= (αN ∧ γ ∧ δ)(y)

Finally, if y ∈ fv(M1)− (fv(M0) ∪ fv(N)) we conclude exactly as in the previous case.

• If M = (let z = M0 in M1) then x : (∀Q.θ)α,Γδ = Σξ with Q′, C ; Σκ � M0 : θ′,

where the constraint Q′ is empty if M0 is not pure, and C ; z : (∀Q′.θ′)β,Σκ � M1 : τ

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 283

and

ξ =

{
βM0
∧ κ if M1 is not pure

κ otherwise

We may assume that z �∈ dom(Γ) (and z �= x), hence also z �∈ fv(N), so that, by

Lemma 4.2, Q,C ; z : (∀Q′.θ′)β,Γγ � N : θ and also Q′, Q, C ; Γγ � N : θ by the same

lemma. We have Σκ = x : (∀Q.θ)α′ ,Γκ′ where α′ = κ(x) and κ′ is the restriction of κ

to dom(Γ). Then, by induction hypothesis

Q′, C ; Γψ0 � {x �→N}M0 : θ′

and

C ; z : (∀Q′.θ′)β,Γψ1 � {x �→N}M1 : τ

where

ψi =

{
α′N ∧ γ ∧ κ′ if Mi is not pure

γ ∧ κ′ otherwise

Let M ′i = {x �→N}Mi. Since N is pure, by Lemma 2.2(i), if M ′0 is not pure, then M0

is not pure. Then by the degree weakening rule, and the rule for the let construct,

we have C ; Γπ � {x �→N}M : τ where

π =

{
βM ′0 ∧ ψ0 ∧ ψ1 if M ′1 is not pure

ψ0 ∧ ψ1 otherwise

We distinguish two cases, according as to whether M ′1 is pure or not:

1. If M ′1 is not pure then, by the Lemma 2.2(i), M1 is not pure (for N is pure), and

therefore M is not pure. Then we have, observing that δ is the restriction of ξ to

dom(Γ):

C � ψ = αN ∧ γ ∧ δ
= αN ∧ γ ∧ βM0

∧ κ′ for C � δ = βM0
∧ κ′

=
(
βM0

(x) ∧ α′
)
N
∧ γ ∧ βM0

∧ κ′ for C � α = ξ(x) = βM0
(x) ∧ α′

= βM0
(x)N ∧ βM0

∧ α′N ∧ γ ∧ κ′

= βM ′0 ∧ α
′
N ∧ γ ∧ κ′

and

C � π = βM ′0 ∧ ψ0 ∧ ψ1

= βM ′0 ∧ ψ0 ∧ α′N ∧ γ ∧ κ′

= βM ′0 ∧ α
′
N ∧ γ ∧ κ′ for C � ψ0 � α′N ∧ γ ∧ κ′

= ψ

and we are done in this case.

2. If M ′1 is pure, then M1 is pure, and therefore ξ = κ, hence α = α′ and δ = κ′, and

also ψ1 = γ∧κ′ and π = ψ0 ∧ψ1. There are two cases: if M0 is pure, then M is pure,

and therefore ψ = γ ∧ δ = γ ∧ κ′. Then we have C � π = γ ∧ κ′ = ψ since ψ0 = ψ1 in

this case. If M0 is not pure, then M is not pure, hence ψ = αN ∧ γ ∧ δ = αN ∧ γ ∧ κ′.
Since ψ0 = αN ∧ γ ∧ κ′ in this case, we have C � π = ψ0 ∧ ψ1 = ψ.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

284 G. Boudol

• The case of (let rec y = M0 in M1) is similar, and all the other ones are easier.

�

From the proof of this result, one can see that, apart from the cases where two

typing contexts have to meet, there are only two occasions where we had to use

the degree weakening rule: in cases 1.1.1 and 2.2 of M = (M0M1). The first one

corresponds to N = y and M1 = x with x �∈ fv(M0). Indeed, there are examples of

terms of the form (let x = y in M0x), which reduces into {x �→y}(M0x), for which

y is safe for recursion, while the type systems says it is unsafe. For instance, the

expression

(let rec y = (let x = y in Fx) in y)

where F = λxy y, is not accepted by the type system, because the degree of y in

(let x = y in Fx) is 0, while the reduced expression (let rec y = Fy in y) is accepted.

One could make a special case for N when it is a variable in the typing rule for

the let construct (and have a similar distinction in the statement of Proposition 4.6),

thus slightly enlarging the set of typable expressions. However, the proof would then

be slightly more complicated, while we would not gain very much. In the other case

(2.2), we have x �∈ fv(M0), M1 is not a variable, and one (or both) of M0 and M1

is pure. Here the problem is that some variable of N may be downgraded, while

it is safe for recursion, because x has degree 0 in M1. For instance, if M0 = F,

M1 = (let x′ = F in x) and N = λz y, the expression

(let rec y = (let x = λzy in F(let x′ = F in x)) in y)

which reduces to (let rec y = {x �→N}M in y), is rejected by the type system, while

the latter one is accepted. However, it is unclear how one could improve the type

system in this case.

To establish the “subject reduction” property, we also need a “replacement

lemma” (see Wright & Felleisen (1994)) and a form of weakening involving generic

instantiation of type schemes.

Lemma 4.7

Let M be an expression which is not pure. If C ; Γγ � E[M] : τ is provable, with

a sub-proof of C ′ ; ∆δ � M : θ at the occurrence E of M, let N be such that

C ′ ; ∆δ � N : θ. Then C ; Γγ � E[N] : τ.

Proof

By induction on the inference of C ; Γγ � E[M] : τ. In the case where E = (VE′) and

E′[N] is a variable, we have to use the degree weakening rule, since E′[M] cannot

be a variable. �

Lemma 4.8

If C ; x : ζα,Γγ �M : τ and C � σ � ζ then C ; x : σα,Γγ �M : τ.

Proof

This is a standard result (see Damas & Milner (1982). �

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 285

Proposition 4.9 (Type Preservation)

(i) C ; Γγ �M : τ & M
∗→ N ⇒ C ; Γγ � N : τ,

(ii) if C ; Γ � [S | M] : τ with u ∈ dom(Γ) ⇒ u ∈ dom(S) and [S | M]
∗→ [S ′ | N]

then C ; ∆ � [S | N] : τ for some ∆.

Proof

(i) It is enough to prove this for M → N. We proceed by induction on the proof

of M → N, and then by induction on the inference of C ; Γγ � M : τ, and by case

on the last rule used to infer this sequent. The case where this rule is the degree

weakening is trivial, and is omitted.

• If M = (λxM ′)V and N = {x �→V }M ′, then the proof of C ; Γγ � M : τ has the

following shape:

...

C ; x : θa,Γδ �M ′ : τ

C ; Γ1 � λxM ′ : θa → τ

...

C ; Γγ � λxM ′ : θa → τ

...

C ; Γγ � V : θ

C ; Γ0λxM′ ∧ξ �M : τ

with

ξ(y) =

{
a if V = y

(aV ∧ γ)(y) otherwise

Then there are two cases:

1. If V is a variable z which does not occur free in λxM ′, then Γγ = z : σα,∆γ
′

with C � σ � θ. Then we also have Γδ = z : σβ,∆δ
′
, hence C ; x : θa,∆δ

′ � M ′ : τ by

Lemma 4.4(i). Therefore C ; z : θa,∆δ
′ � N : τ by Lemma 4.5, hence C ; z : σa,∆δ

′ �
N : τ by Lemma 4.8. By Lemmas 4.4 and 4.2, we may assume that δ′(y) = 1 for

y �∈ fv(M ′)− {z}, and we are done in this case since C � 0λxM ′ ∧ ξ � δ′ on fv(λxM ′).

2. Now assume that V is not a variable, or is a variable which occurs free in λxM ′.

By the Proposition 4.6 we have C ; Γψ � N : τ where

ψ =

{
aV ∧ γ ∧ δ if M ′ is not pure

γ ∧ δ otherwise

We obviously have C � ψ(y) � (0λxM ′ ∧ξ)(y) for y ∈ fv(λxM ′), while if y �∈ fv(λxM ′),

we have ξ(y) = (aV ∧ γ)(y). In this case we may assume (using Lemmas 4.4 and 4.2

that δ(y) = 1, and therefore C � ψ(y) � ξ(y). Then we conclude using the degree

weakening rule.

• The case where M = (let x = V in M ′) and N = {x �→V }M ′ is an immediate

consequence of the Proposition 4.6. If M = (let rec x = V in M ′) and N =

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

286 G. Boudol

{x �→(let rec x = V in V)}M ′, we have

...

C ′, C ; x : θ1,Γγ � V : θ

...

C ; x : (∀C ′.θ)α,Γγ �M ′ : τ

C ; Γδ � (let rec x = V in M ′) : τ

where

δ =

{
αV ∧ γ if M ′ is not pure

γ otherwise

and therefore

...

C ′, C ; x : θ1,Γγ � V : θ

...

C ′, C ; x : θ1,Γγ � V : θ

C ′, C ; Γγ � (let rec x = V in V) : θ

by the rule for the let rec construct. Then C ; Γδ � N : τ by the Proposition 4.6.

All the other cases are straightforward. For the reductions E[M] → E[M ′] with

M →M ′, we proceed by induction on E, using the induction hypothesis. In the case

where E = (VE′) and E′[M ′] is a variable, we have to use the degree weakening

rule, since E′[M] cannot be a variable. In the case where E = (let x = E′ in N) or

E = (let rec x = E′ in N), and E′[M] is pure, we use the Lemma 2.2(ii).

(ii) Again it is enough to prove this for [S | M] → [S ′ | N]. We proceed by

induction on the proof of this reduction. We have C ; Γ � S and C ; Γγ � M : τ. If

M → N, then we use the previous point. If M = E[(ref V)] with S ′ = (u .. V ; S),

N = E[u] and u does not occur in S or E[V] (and fv(V) ∩ capt(E) = ∅), then we

may assume, by Lemma 4.4, that u �∈ dom(Γ). In the proof of C ; Γγ �M : τ there is

a sub-proof regarding (ref V), of the form

...

C � Σ

C ; Σ1 � ref : θ0 → θ ref

...

C ; Σξ � ref : θ0 → θ ref

...

C ; Σξ � V : θ

C ; Σκ � (ref V) : θ ref

...

C ; Σδ � (ref V) : θ ref

with dom(Γ) = dom(Σ)− capt(E). Since u �∈ dom(Γ), by weakening there is a proof

of C ; u : θ,Γγ � M : τ having the same structure as the proof of C ; Γγ � M : τ. In

particular, we have a sub-proof of C ;u : θ,Σδ � (ref V) : θ ref with C ;u : θ,Σξ � V : θ,

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 287

and therefore C ;u : θ,Σ � S ′. Obviously, C ;u : θ,Σξ � u : θ, hence C ;u : θ,Γγ � E[u] : τ

by Lemma 4.7, and we let ∆ = u : θ,Σ in this case. The other cases of global reduction

are similar. �

An immediate corollary of this result and of the Corollary 3.3 is that one never

needs the value of a recursive variable while evaluating the body of a typable

recursive definition.

Corollary 4.10

If (let rec x = N in M) is typable and N
∗→ E[x], then E = E′[(V)], where V is a

protective function.

This result is exploited in Boudol & Zimmer (2002) to design a provably correct

abstract machine for call-by-value recursion. Now combining the type preservation

property with Corollary 2.7 and Lemma 4.1, we get:

Theorem 4.11 (Type Safety)

For any closed configuration [S | M], if it is typable, i.e. C ; Γ � [S | M] : τ for

some C , Γ and τ, and if its evaluation terminates on [S ′ | N], then N is a value

(and not a faulty expression) of type τ.

5 Type assignment

In this section we prove that the standard result about typability in ML, namely that

one can compute a principal type for any typable program, extends to our language.

Regarding the record calculus, this was established by Jategaonkar & Mitchell

(1993), though with a different view of row variables. Then the main novelty here

is that we deal with syntactically unrestricted recursion, and a type system which

includes a new ingredient, the degrees. Nevertheless, since our approach regarding

records is slightly different from that of Jategaonkar & Mitchell (1993), we present

the type assignment algorithm in full detail.

The data for the type assignment algorithm are a term M, a constraint C , and a

type assumption Γ for some variables, and the algorithm, if it does not fail, yields a

type τ, a degree assignment γ, a constraint C ′ and a substitution S∈Sub(C,C ′) such

that C ′ ; S(Γ)γ � M : τ is a valid typing. As usual, type assignment involves solving

verification conditions. Here we have not only to solve type equations, by means of

unification, but also degree inequalities. Then our verification conditions are of the

form (Q. A ; E) where

• Q is a sequence of existential quantifications ∃t over type variables, the scope

of which is A ; E;

• A is a set of annotation assertions σ :: L and of degree inequalities of the form

a � α;

• E is a set of type equations τ = θ (to be solved), and of degree equations, of

the form a = b or α = 1.

Notice that the degree equations that we have to deal with are quite trivial to solve

(recall that a and b are either constants, 0 or 1, or variables, but do not involve the

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

288 G. Boudol

∧ operation). We shall only deal with verification conditions (Q. A ;E) satisfying the

requirement that the type variables occurring in the equations of E also occur in the

annotation assertions of A. We use existential quantification to deal with the “fresh

variables” that the algorithm may introduce (see Jouannaud & Kirchner (1991)).

Let us denote by fv(E), and similarly var(Q), the set of (type and degree) variables

occurring in E (resp. in Q).

Definition 5.1

A solution of the verification condition (Q. A ; E) is a pair (C,S) such that there

exists S′ with S = S′ �(fv(E)− var(Q)) and

(i) C � S′(A);

(ii) τ = τ′ ∈ E ⇒ C � S′(τ) :: ∅, C � S′(τ′) :: ∅ and S′(τ) =T S′(τ′);

(iii) α = β ∈ E ⇒ � S′(α) = S′(β).

A solution (C,S) is more general than (C ′,S′) if there exists a substitution S′′ ∈
Sub(C,C ′) such that S′ = S′′S.

As one can see, if (C,S) is a solution of (Q. A ; E), then S is the identity for the

variables that do not occur free in this verification condition. As usual (see Martelli

& Montanari (1982) and Jouannaud & Kirchner (1991)), solving (Q. A ; E) consists

in transforming it into a “solved form”.

Definition 5.2

A verification condition (Q. A ; E) is a solved form if A is a constraint in the

sense of the type system, that is A = { th :: Lh | h ∈ H } ∪ { pk � αk | k ∈ K }, and

E = { t′i = τi | i ∈ I } ∪ { qj = aj | j ∈ J } with:

(i) the type variables t′i only occur in E as the left members of the equations

t′i = τi;

(ii) the degree variables qj only occur in A and E as the left members of the

equations qj = aj;

(iii) { t′i | i ∈ I } ⊆ { th | h ∈H } and A � τi :: A(t′i) for all i.

We shall use the notation (Q. C ; S) for solved forms. Such a solved form has an

obvious solution, namely (C,S) where S = S′ �(fv(S) − var(Q)), with S′ = { t′i �→τi |
i∈I }∪{ qj �→aj | j∈J }. We can check that S∈Sub(C0, C) where C0 = { t′i :: ∅ | i∈I },
using the following lemma.

Lemma 5.3

C � σ :: L & L′ ⊆ L ⇒ C � σ :: L′.

(The proof, by induction on the inference of C � σ :: L, is trivial.)

It is easy to see that the “canonical solution” S – as just described – of a solved

form (Q. C ; S) is also a most general solution, because any other solution S′ is such

that S′ = S′′S where S′′(t) = S′(t) except for t ∈ { t′i | i ∈ I } and similarly for S′(p).

To show that S′′ is indeed an acceptable substitution, we need to use the following

lemma.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 289

t :: L0 , t :: L1 , A � t :: L0 ∪ L1 , A (1)

unit :: ∅ , A � A (2)

(θa → τ) :: ∅ , A � θ :: ∅ , τ :: ∅ , A (3)

τ ref :: ∅ , A � τ :: ∅ , A (4)

〈〉 :: L , A � A (5)

〈ρ, � : τ〉 :: L , A � ρ :: (L ∪ {�}) , τ :: ∅ , A (� �∈ L) (6)

σ :: ∅ �∗ C

(∀t :: L.σ) :: ∅ , A � C\t , A
C(t) ⊆ L, t �∈ A (7)

Fig. 8. Decomposition of annotation assertions.

Lemma 5.4

If C � S(τ) :: L then there exists C ′ such that dom(C ′) = fv(τ) with C ′ � τ :: L and

C � S(t) :: C ′(t) for any t ∈ fv(τ).

(Again, the proof is straightforward.)

Now we define the transformations of verification conditions. First, we have a

set of transformations to decompose – if this does not fail – a set of annotation

assertions A into a constraint C . These transformations A � A′ are described in

figure 8, where we do not include the rule that decomposing annotation assertions

holds up to α-conversion of type schemes. In this figure, C\t denotes the restriction

of C to variables different from t, that is C\t = C �(dom(C)− {t}). In the last rule,

�∗ is the reflexive and transitive closure of �. The following lemma asserts the

correctness of this decomposition process.

Lemma 5.5

C � A if and only if there exists C ′ such that A �∗ C ′ and C � C ′.

Proof

For the ⇐ direction, we prove that A �∗ A′ and C � A′ implies C � A, by induction

on the definition of A �∗ A′. Conversely, we show that C � σ :: L implies σ :: L �∗ C ′

for some C ′ ⊆ C (which means that dom(C ′) ⊆ dom(C) and C ′(t) ⊆ C(t) for any

t). We conclude using the fact that if C � A and C ′ � A′ then C ∪ C ′ � A,A′
where C ∪ C ′ is the constraint given by dom(C ∪ C ′) = dom(C) ∪ dom(C ′), and

(C ∪ C ′)(t) = C(t) ∪ C ′(t), where by convention C(t) = ∅ if t �∈ dom(C). �

Lemma 5.6

For any substitution S, if A � A′ and C � S(A) then C � S(A′).

The proof, by induction on A � A′, is easy (one uses the fact that if C � σ :: L

and C � σ :: L′ then C � σ :: L ∪ L′).
Now we show how to decompose verification conditions – we still use the

notation �. As usual (see Jouannaud & Kirchner (1991)), the intention is that

this decomposition either fails, meaning that the verification condition has no

solution, or terminate on a solved form, while preserving the set of solutions. The

decomposition relation, including decomposition of annotation assertions and of

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

290 G. Boudol

A � A′

(Q.A ; E) � (Q.A′ ; E)
(8)

(Q. p � α, p � β, A ; E) � (Q. p � α ∧ β, A ; E) (9)

(Q. 0 � α, A ; E) � (Q. A ; E) (10)

(Q. 1 � α, A ; E) � (Q. A ; α = 1, E) (11)

(Q. A ; (α ∧ β) = 1, E) � (Q. A ; α = 1, β = 1, E) (12)

(Q. A ; q = a, E) � (Q. {q �→a}A ; q = a, {q �→a}E) (13)

where q ∈ (fv(A) ∪ fv(E))− {a}

(Q. A ; e = e, E) � (Q. A ; E) (14)

(Q. A ; e = x, E) � (Q. A ; x = e, E) (e �∈ Var, x ∈Var) (15)

(Q. A ; θa0 → τ0 = θb1 → τ1, E) � (Q. A ; E ′, E) (16)

where E ′ = {θ0 = θ1, τ0 = τ1, a = b}

(Q. A ; τ0 ref = τ1 ref , E) � (Q. A ; τ0 = τ1, E) (17)

(Q. A ; 〈ρ0, � : τ0〉 = 〈ρ1, � : τ1〉, E) � (Q. A ; ρ0 = ρ1, τ0 = τ1, E) (18)

(Q. A ; 〈ρ0, �0 : τ0〉 = 〈ρ1, �1 : τ1〉, E) � (Q.∃r. A′ ; E ′, E) (19)

where A′ = r :: {�0, �1}, A

E ′ = {ρ0 = 〈r, �1 : τ1〉, ρ1 = 〈r, �0 : τ0〉}

if �0 �= �1, where r is fresh.

(Q. A ; t = τ, E) � (Q. A ; t = τ, {t �→τ}E) (20)

t ∈ fv(E)− fv(τ)

{ τ :: C(t) | t = τ ∈ S }, C �∗ C ′

(Q. C ; S) � (Q. C ′ ; S)
{ t = τ | t = τ ∈ S & C �� τ :: C(t) } �= ∅ (21)

Fig. 9. Decomposition of verification conditions.

type equations, is described in figure 9, where we use some loose notations (such as

τ = τ′, E for {τ = τ′} ∪ E) and a notion of “fresh” variable, meaning “not occurring

in the current context”. In clauses (14) and (15) we use the symbols e and x to

denote respectively either a type or degree expression, and either a type or degree

variable. In the last rule S denotes a set of equations satisfying the clause (i) of

Definition 5.2.

Proposition 5.7

(i) The decomposition � terminates.

(ii) If (Q. A ;E) � (Q′. A′ ;E ′) then the variables occurring free in (Q′. A′ ;E ′) also

occur in (Q. A ; E), and (Q. A ; E) and (Q′. A′ ; E ′) have the same solutions.

(iii) If (Q. A ; E) is irreducible with respect to �, then it has a solution if and only

if it is a solved form.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 291

Proof

For any type scheme σ, let #(σ) be the number of logical symbols occurring in σ.

Then, for instance, #(∀t :: L.σ) = #(σ) + 1, and so on. For any set A = {σh :: Lh |
h ∈ H } ∪ { ak � αk | k ∈ K } of annotation assertions and degree inequations, we

define its size |A| to be (m, n) where m =
∑
{#(σh) | h ∈H } and n is the number of

elements of H . Let � be the lexicographic ordering on tuples of integers (of a given

length). Then we have:

A � A′ ⇒ |A| > |A′|
This is easy to see, by induction on the definition of A � A′: rules (1, 2, 5) strictly

decrease the number n of annotation assertions, and do not increase the sum m of

the size of the type schemes, while rules (3, 4, 6) – and also (2, 5) – strictly decrease

the sum m of the size of the type schemes. Finally, for rule (7) we have |σ :: ∅| � |C|
by induction, and therefore |(∀t :: L.σ) :: ∅ , A| > |C\t , A|.

Now, for any type equation τ = τ′, let #(τ = τ′) = #(τ) + #(τ′), and similarly

#(α = β) = #(α) + #(β) = #(α � β) where the size of a degree expression is

the number of symbols occurring in it. Then we define the size |(Q. A ; E)|k of a

verification condition with respect to some integer k as follows:

|(Q.A ; E)|k = (n, n′, nk, . . . , n0, m, l, |A|)

where:

• n is the number of degree inequalities in A, that is the number of elements of

K ,

• n′ is the number of type variables which do not occur only once as the left-

hand side of some equation of E, but may occur in A (in particular, this

number is strictly positive if E contains an equation τ = t, or t = τ, E ′ and

t occurs elsewhere), plus the number of degree variables which do not occur

only once as the left-hand side of some equation of E,

• ni is the number of inequations of size i in A, plus the number of equations of

size i in E,

• m is the number of equations in E of the form e = x with e �∈ Var and

x ∈Var, and

• l is 0 if (A,E) is not a (C, S), and the number of equations t = τ of S such

that C �� τ :: C(t) otherwise.

It is easy to see that

(Q. A ; E) � (Q′. A′ ; E ′) ⇒ max{#(e = e′) | e = e′ ∈ E }
� max{#(e = e′) | e = e′ ∈ E ′ }

Now let k be such that k � max{#(e = e′) | e = e′ ∈ E }. We prove that

(Q. A ; E) � (Q′. A′ ; E ′) ⇒ |(Q. A ; E)|k > |(Q′. A′ ; E ′)|k

by induction on the definition of �. The rule (8) strictly decreases the size of the set

of annotation assertions, as we have seen, while not affecting the other components.

Rules (9), (10) and (11) strictly decrease n, that is the number of degree inequalities

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

292 G. Boudol

in A. Rules (12, 14, 16, 17, 18, 19) strictly decrease some ni (notice that (19) does

not decrease the sum of the size of the type equations). Rule (15) strictly decreases

the number m of equations of the form τ = t (and possibly also n), and rules (13)

and (20) strictly decrease n′. Finally, let us see that (21) strictly decreases l: since for

any equation t = τ of S the variable t does not occur in the right-hand side of an

equation of S , decomposing { τ :: C(t) | t = τ ∈ S }, C into C ′ cannot add any new

assertion about t, that is C ′(t) = C(t). By Lemma 5.5, we then have C ′ � τ :: C ′(t)

for any t = τ ∈ S . This concludes the proof of the point (i) of the proposition.

The point (ii) is almost trivial. Let us just see the case of rule (19). Let

S ∈ Sub(C0, C1) be a solution of (Q. A ; 〈ρ0, �0 : τ0〉 = 〈ρ1, �1 : τ1〉, E), and let C ′0
and S′ be as in Definition 5.1. Then r �∈ dom(C ′0) since r is fresh. Let C ′′0 =

r :: {�0, �1}, C ′0. Since S′〈ρ0, �0 : τ0〉 =T S′〈ρ1, �1 : τ1〉 we have S′(ρ0) =T 〈ρ, �1 : S′(τ1)〉
and S′(ρ1) =T 〈ρ, �0 : S′(τ0)〉. Let S′′ = S′ ∪ {r �→ ρ}. Since C1 � S′〈ρ0, �0 : τ0〉 :: ∅ and

C1 � S′〈ρ1, �1 : τ1〉 :: ∅, we have C1 � ρ :: {�0, �1}, and therefore S′′ ∈ Sub(C ′′0 , C1),

and C1 � S′′(A′) where A′ = r :: {�0, �1}, A. It is easy to see that the other

conditions for S ∈ Sub(C0, C1) to be a solution of (Q.∃r. A′ ; E ′, E) are met, where

E ′ = {ρ0 = 〈r, �1 : τ1〉, ρ1 = 〈r, �0 : τ0〉}. Conversely, if S ∈ Sub(C0, C1) is a solution

of (Q.∃r. A′ ; E ′, E), we have to check that C1 � S′〈ρ0, �0 : τ0〉 :: ∅ (again using S′ as

given in Definition 5.1), and similarly for 〈ρ1, �1 : τ1〉. We have

S′〈ρ0, �0 : τ0〉=T 〈S′(ρ0), �0 : S′(τ0)〉
=T 〈〈S′(r), �1 : S′(τ1)〉, �0 : S′(τ0)〉

Since C1 � S′(τi) :: ∅ and C1 � S′(r) :: {�0, �1}, we easily conclude.

Regarding the last point, we have seen that solved forms are solvable. Now if

(Q. A ; E) is irreducible with respect to �, but is not a solved form, then a case

analysis shows that (Q. A ;E) has no solution. This holds in particular if E contains

0 = 1 or 1 = 0. �

An immediate corollary is as follows.

Corollary 5.8

If a verification condition is solvable, then it has a most general solution.

We denote by Sol(Q. A ;E) the most general solution of the verification condition

(Q. A ;E), if it exists (in which case it is unique, up to a permutation of the variables).

Now, coming back to the issue of type inference, we describe the algorithm for

type assignment as a function Type(C,Γ,M) = (τ, γ, (C ′,S)), with the idea that

S ∈ Sub(C,C ′) and C ′ ; S(Γ)γ � M : τ. However, this will be true only if C � Γ. We

could report a failure otherwise, but we shall actually use the algorithm only in this

case. We assume here that M does not contain any location, although the algorithm

could easily be extended to cover this case too, and that Γ assigns some type to

each free variable of M (we should otherwise report a failure). The function Type is

defined up to α-conversion performed in Γ and M, and the type and degree variables

introduced by the algorithm are implicitly assumed to be fresh. In the definition

of the algorithm, we use the notation S\t for the substitution that coincides with

S, except for (S\t)(t) = t. We also abusively write S\C for the substitution that

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 293

coincides with S, except on dom(C), where it is the identity. We denote by C � Γ the

constraint defined as follows: (C � Γ)deg = Cdeg and (C � Γ)typ = Ctyp � fv(Γ). When

we write (C ′,S) =Sol(Q. A ;E) in the definition of Type(C,Γ,M), we mean that the

algorithm reports a failure (treated as an exception) in the case where Sol(Q. A ;E)

does not exist, and similarly when A �∗ C ′ is used.

• If Γ(x) = (∀C0.τ) with dom(C0) ∩ dom(C) = ∅,
then Type(C,Γ, x) = (τ, 0x, (C ∪ C0, id)).

• If Type({t :: ∅} ∪ C, {x : t} ∪ Γ,M) = (τ, γ, (C ′,S))

then Type(C,Γ, λxM) = (S(t)p → τ, 1, ({p � γ(x)} ∪ C ′,S\t)).
• If Type(C,Γ,M) = (τ0, γ0, (C0,S0))

and Type(C ′0,S0(Γ), N) = (τ1, γ1, (C1,S1)) where C ′0 = C0 � S0(Γ)

and (C ′,S) =Sol({t :: ∅} ∪ C1 ; {S1(τ0) = τ
p
1 → t})

then Type(C,Γ, (MN)) = (S(t), 0M ∧ S(δ), (C ′,SS1S0)) where

δ(x) =

{
p if N = x

p ∧ γ1(x) otherwise

• If Type(C,Γ, N) = (τ0, γ0, (C0,S0))

and C2 is C0\fv(S0(Γ)), if N is pure, and C2 = ∅ otherwise

and Type(C0 − C2, {x : (∀C2.τ0)} ∪ S0(Γ),M) = (τ1, γ1, (C1,S1))

then Type(C,Γ, (let x = N in M)) = (τ1, δ, (C1,S1S0)) where

δ =

{
γ1(x)N ∧ S1(γ0) ∧ γ1 if M is not pure

S1(γ0) ∧ γ1 otherwise

• If Type({t :: ∅} ∪ C, {x : t} ∪ Γ, N) = (τ0, γ0, (C0,S0))

and (C1,S1) =Sol(C0 ; {S0(t) = τ0, γ0(x) = 1})
and C2 is C1\fv(S1S0(Γ)), if N is pure, and C2 = ∅ otherwise

and Type(C1 − C2, {x : (∀C2.S1S0(t))} ∪ S1S0(Γ),M) = (τ, γ1, (C
′,S))

then Type(C,Γ, (let rec x = N in M)) = (τ, δ, (C ′,SS1S0)) where

δ =

{
γ1(x)N ∧ SS1(γ0) ∧ γ1 if M is not pure

SS1(γ0) ∧ γ1 otherwise

• Type(C,Γ, ref) = (t0 → t ref , 1, ({t :: ∅} ∪ C, id))

and Type(C,Γ, !) = ((t ref)0 → t, 1, ({t :: ∅} ∪ C, id))

and Type(C,Γ, set) = ((t ref)0 → t0 → unit, 1, ({t :: ∅} ∪ C, id))

and Type(C,Γ, ()) = (unit, 1, (C, id))

and Type(C,Γ, 〈〉) = (〈〉, 1, (C, id)).

• If Type(C,Γ,M) = (τ0, γ0, (C0,S0))

and Type(C ′0,S0(Γ), N) = (τ1, γ1, (C1,S1)) where C ′0 = C0 � S0(Γ)

and {τ0 :: {�}} ∪ C1 �∗ C ′

then Type(C,Γ, 〈M, � = N〉) = (〈τ0, � : τ1〉,S1(γ0) ∧ γ1, (C ′,S1S0)).

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

294 G. Boudol

• If Type(C,Γ,M) = (τ, γ, (C0,S0))

and (C ′,S) =Sol(∃r. {r :: {�}, t :: ∅} ∪ C0 ; {τ = 〈r, � : t〉})
then Type(C,Γ, (M.�)) = (S(t), γ, (C ′,SS0)).

• If Type(C,Γ,M) = (τ, γ, (C0,S0))

and (C ′,S) =Sol(∃t. {r :: {�}, t :: ∅} ∪ C0 ; {τ = 〈r, � : t〉})
then Type(C,Γ, (M\�)) = (S(r), γ, (C ′,SS0)).

One can check from this definition that the only serious degree equations that we

may have to solve have the form α = 1, and arise from the case of a let rec (in

the case of application, we may introduce a trivial equation p = α). To establish the

correctness of the algorithm, we first prove a preliminary lemma.

Lemma 5.9

If C � Γ and Type(C,Γ,M) = (τ, γ, (C ′,S)) then S ∈Sub(C � Γ, C ′) and C ′ � τ :: ∅.

Proof

By induction on M. Let us examine some cases:

• If M = x then Γ(x) = (∀C0.τ) with dom(C0) ∩ dom(C) = ∅, C ′ = C ∪ C0

and S = id. It is easy to see that C � (∀C0.τ) :: ∅ implies C0, C � τ :: ∅. Since

C ⊆ C ′, the fact that id ∈Sub(C � Γ, C ′) is obvious.

• If M = λxN, then C ′ = {p � δ(x)} ∪ C0, S = S0\t and τ = S0(t)
p → θ

where Type({t :: ∅}∪C, {x : t}∪Γ, N) = (θ, δ, (C0,S0)). By induction hypothesis

S0 ∈ Sub({t :: ∅} ∪ C � Γ, C0), hence obviously S ∈ Sub(C � Γ, C ′) and C0 �
S0(t) :: ∅. Since C0 � θ :: ∅ by induction hypothesis, we have C0 � τ :: ∅, hence

also C ′ � τ :: ∅.
• If M = (M ′N) then S = S′S1S0 and τ = S′(t) with

Type(C,Γ,M ′) = (τ0, γ0, (C0,S0))

Type(C ′0,S0(Γ), N) = (τ1, γ1, (C1,S1))

(C ′,S′) = Sol({t :: ∅} ∪ C1 ; {S1(τ0) = τ
p
1 → t})

where C ′0 = C0 � S0(Γ). By induction hypothesis S0 ∈ Sub(C � Γ, C0), hence

also S0 ∈ Sub(C � Γ, C ′0) and C ′0 � S0(Γ). Then by induction hypothesis

S1 ∈ Sub(C ′0, C1), therefore (by Lemma 3.1) S1S0 ∈ Sub(C � Γ, C1). We clearly

have

S′ ∈ Sub({t :: ∅} ∪ C1, C
′)

hence also S′\t ∈ Sub(C1, C
′), whence S ∈ Sub(C � Γ, C ′) (for t is fresh, and

therefore t �∈ fv(S1S0(C))) and C ′ � S′(t) :: ∅, that is C ′ � τ :: ∅.
• If M = (let rec x = N in M ′) then S = S′S1S0 with

Type({t :: ∅} ∪ C, {x : t} ∪ Γ, N) = (τ0, γ0, (C0,S0))

(C1,S1) = Sol(C0 ; {S0(t) = τ0, γ0(x) = 1})
Type(C1 − C2,∆,M

′) = (τ, γ1, (C
′,S′))

where ∆ = {x : (∀C2.S1S0(t))} ∪ S1S0(Γ) and C2 is C0\fv(S1S0(Γ)) if N is

pure, and C2 = ∅ otherwise. By induction hypothesis, S0 ∈ Sub({t :: ∅} ∪

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 295

(C � Γ), C0), and S1 ∈ Sub(C0, C1), therefore S1S0 ∈ Sub({t :: ∅} ∪ (C � Γ), C1),

from which it follows C1 � {x : S1S0(t)} ∪ S1S0(Γ), and therefore C1 − C2 � ∆.

By induction hypothesis C ′ � τ :: ∅, and S′ ∈ Sub((C1 − C2) � ∆, C ′). We have

C1 � S1S0(t) :: ∅ (see the clause (ii) of Definition 5.1), hence fv(S1S0(t)) ⊆
dom(C1). By definition of C2, we then have (C1 − C2) � ∆ = C1 � S1S0(Γ), and

therefore S ∈ Sub(C � Γ, C ′) since obviously S1S0 ∈ Sub(C � Γ, C1 � S1S0(Γ)).

�

One may observe from this proof that if we start the algorithm with (C,Γ,M) such

that C � Γ, then all the recursive calls to Type operate on arguments (C ′,Γ′,M ′)

such that C ′ � Γ′.

Proposition 5.10 (Soundness)

If Type(C,Γ,M) = (τ, γ, (C ′,S)) with C � Γ then C ′ ; S(Γ)γ �M : τ.

Proof

By induction on M. We examine only some cases.

• If M = x, we have Γ(x) = (∀C0.τ) with dom(C0) ∩ dom(C) = ∅, γ = 0x,

C ′ = C ∪ C0, and S = id. By the previous lemma we have C ′ � (∀C0.τ) � τ,

therefore C ′ ; S(Γ)γ � x : τ.

• If M = λxN then τ = S′(t)p → θ, γ = 1 and C ′ = {p � δ(x)} ∪ C0 where

Type({t :: ∅} ∪ C, {x : t} ∪ Γ, N) = (θ, δ, (C0,S
′)) and S = S′\t. Since t is fresh,

and in particular t �∈ fv(Γ), we have S(Γ) = S′(Γ). By induction hypothesis

C0 ; x : S′(t)δ(x),S(Γ)δ � N : θ, hence p � δ(x), C0 ; x : S′(t)δ(x),S(Γ)δ � N : θ by

Lemma 4.2(iii), whence C ′ ; S(Γ)δ � M : τ by the degree weakening rule, and

the typing rule for abstraction.

• If M = (M ′N) then τ = S′(t), γ = 0M ′ ∧ S′(δ) and S = S′S1S0 with

Type(C,Γ,M ′) = (τ0, γ0, (C0,S0))

Type(C ′0,S0(Γ), N) = (τ1, γ1, (C1,S1))

(C ′,S′) = Sol({t :: ∅} ∪ C1 ; {S1(τ0) = τ
p
1 → t})

where C ′0 = C0 � S0(Γ), and

δ(x) =

{
p if N = x

p ∧ γ1(x) otherwise

By induction hypothesis, C ′0 ; S0(Γ)γ0 �M ′ : τ0, and by Lemma 5.9, C ′0 � S0(Γ).

Then by induction hypothesis C1 ; S1S0(Γ)γ1 � N : τ1. We have

C1 ; S1S0(Γ)S1(γ0) �M ′ : S1(τ0)

by Lemmas 5.9 and 4.3, and since S′ ∈ Sub(C1, C
′) we have, by Lemma 4.3

again,

C ′ ; S(Γ)S
′S1(γ0) �M ′ : S′S1(τ0)

and

C ′ ; S(Γ)S
′(γ1) � N : S′(τ1)

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

296 G. Boudol

Since S′S1(τ0) = S′(τ1)
S′(p) → τ, we conclude using the degree weakening rule,

and the typing rule for application.

• If M = (let rec x = N in M ′) then S = S′S1S0 and

γ =

{
γ1(x)N ∧ S′S1(γ0) ∧ γ1 if M ′ is not pure

S′S1(γ0) ∧ γ1 otherwise

with

Type({t :: ∅} ∪ C, {x : t} ∪ Γ, N) = (τ0, γ0, (C0,S0))

(C1,S1) = Sol(C0 ; {S0(t) = τ0, γ0(x) = 1})
Type(C1 − C2,∆,M

′) = (τ, γ1, (C
′,S′))

where ∆ = {x : (∀C2.S1S0(t))} ∪S1S0(Γ) and C2 is C1\fv(S1S0(Γ)), if N is pure,

and C2 = ∅ otherwise. Then C0 ; (x : S0(t),S0(Γ))γ0 � N : τ0, by induction

hypothesis, and since S1 ∈ Sub(C0, C1) with S1S0(t) = S1(τ0) = θ and

S1(γ0(x)) = 1, we have C1 ; x : θ1,S1S0(Γ)S1(γ0) � N : θ. By Lemma 5.9 we

have C1 − C2 � ∆, and therefore S′ ∈ Sub((C1 − C2) � ∆, C ′) by Lemma 5.9

again. In particular, S′ is the identity on dom(C2), and therefore we have

C ′ ; x : (∀C2.S
′(θ))γ1(x),S(Γ)γ1 �M ′ : τ

by induction hypothesis. Since obviously S′ ∈ Sub(C1 � ∆′, C ′ ∪ C2) where

∆′ = {x : θ} ∪ S1S0(Γ), we have

C2, C
′ ; x : S′(θ)1,S(Γ)S

′(S1(γ0)) � N : S′(θ)

by Lemmas 4.4 and 4.3 (and possibly Lemma 4.2 if dom(C ′) ∩ dom(C2) �= ∅).
We conclude using the degree weakening rule, and the typing rule for the

let rec construct.

�

Proposition 5.11 (Completeness)

Let Γ and M be such that C ′ ; S(Γ)δ � M : τ for some type τ, degree assignment δ

and substitution S ∈Sub(C,C ′) with C � Γ and C � Γ = C . Then Type(C,Γ,M) =

(θ, γ, (C0,S0)), and there exists a substitution S′ ∈ Sub(C0, C
′) such that S = S′S0,

τ = S′(θ) and C ′ � δ � S′(γ).

Proof

By induction on the inference of C ′ ;S(Γ)δ �M : τ, and by case on the last rule used

to infer this sequent. The case where this rule is degree weakening is trivial, and

is omitted. Then the proof actually proceeds by induction on M. We only examine

some cases:

• If M= x then S(Γ)δ = x : σ0,Γ with C ′ � σ � τ, that is σ= (∀C1.τ1) with

τ= S1(τ1) for S1 ∈ Sub(C1, C
′). We may assume that dom(C1) ∩ (dom(C) ∪

dom(C ′)) = ∅, and therefore Γ(x) = (∀C1.τ0) with τ1 = S(τ0). Then Type

(C,Γ,M) = (τ0, 0x, (C ∪ C1, id)). We may let S′= S1 ∪ S in this case.

• If M= λxN then τ= τd0 → τ1 and δ= 1 with C ′ ; x : τd0,S(Γ)δ
′ � N : τ1 for some

δ′. If we let ∆= {x : t} ∪ Γ where t is fresh, and S1 = {t �→τ0} ∪ S, then by

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 297

induction hypothesis Type({t :: ∅} ∪ C,∆, N) = (θ, γ, (C0,S0)) and there exists

S′′ ∈Sub(C0, C
′) such that S1 = S′′S0, τ1 = S′′(θ) and C ′ � {x �→d} ∪ δ′ � S′′(γ).

In particular τ0 = S′′(S0(t)) and C ′ � d � S′′(γ(x)). We have

Type(C,Γ,M) = (S0(t)
p → θ, 1, ({p � γ(x)} ∪ C0,S0\t))

We let S′ = {p �→d} ∪ S′′ in this case.

• If M = (M ′N) then C ′ ; S(Γ)δ
′ � M ′ : θa → τ and C ′ ; S(Γ)δ

′ � N : θ with

δ = 0M ′ ∧ δ′′ where

δ′′(x) =

{
a if N = x

a ∧ δ′(x) otherwise

Then by induction hypothesis Type(C,Γ,M ′) = (τ0, γ0, (C0,S0)) and there exists

S′0 ∈ Sub(C0, C
′) such that S = S′0S0, θ

a → τ = S′0(τ0) and C ′ � δ′ �
S′0(γ0). By Lemma 5.9 C0 � S0(C), and therefore by induction hypothesis

Type(C ′0,S0(Γ), N) = (τ1, γ1, (C1,S1)) where C ′0 = C0 � S0(Γ), and there exists

S′1 ∈ Sub(C1, C
′) such that S′0 = S′1S1, θ = S′1(τ1) and C ′ � δ′ � S′1(γ1). Then

the verification condition ({t :: ∅} ∪ C1 ; {S1(τ0) = τ
p
1 → t}) has a solution. Let

(C ′′,S′′) be its most general solution, so that {t �→τ} ∪ S′1 = S′′1S
′′. Then

Type(C,Γ, (M ′N)) = (S′′(t), 0M ′ ∧ S′′(γ), (C ′′,S′′S1S0))

where

γ(x) =

{
p if N = x

p ∧ γ1(x) otherwise

We have S = S′′1S
′′S1S0, S′′1S

′′(t) = τ and S′′1S
′′(p) = a, and it is easy to check

that C ′ � δ � S′′1(0M ′ ∧ S′′(γ)).

• If M = (let rec x = N in M ′) then we have C ′′, C ′ ; x : θ1,S(Γ)δ
′ � N : θ and

C ′ ; x : (∀C ′′.θ)α,S(Γ)δ
′ �M ′ : τ, where t ∈ dom(C ′′) ⇒ t �∈ dom(C ′) and C ′′ is

empty if N is not pure, and

δ =

{
αN ∧ δ′ if M is not pure

δ′ otherwise

By induction hypothesis

Type({t :: ∅} ∪ C, {x : t} ∪ Γ, N) = (τ0, γ0, (C0,S0))

and there exists S′0 ∈ Sub(C0, C
′) such that {t �→θ} ∪ S = S′0S0, θ = S′0(τ0),

C ′ � 1 � S′0(γ0(x)) and C ′ � δ′ � S′0(γ0). Then (C0 ; {S0(t) = τ0, γ0(x) = 1})
has a solution. Let (C1,S1) be its most general solution, so that S′0 = S′1S1,

and let C2 be C1\fv(S1S0(Γ)), if N is pure, and C2 = ∅ otherwise. We have

C ′ � (∀C2.S1S0(t)) � (∀C ′′.θ), hence C ′ ; x : (∀C2.S1S0(t))
α,S(Γ)δ

′ � M ′ : τ by

Lemma 4.8. Then by induction hypothesis

Type(C1 − C2, {x : (∀C2.S1S0(t))} ∪ S1S0(Γ),M) = (τ1, γ1, (C
′,S′))

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

298 G. Boudol

and there exists S′′ such that S′1 = S′′S′, τ = S′′(τ1), C
′ � α � S′′(γ1(x)) and

C ′ � δ′ � S′′(γ1). Finally we have Type(C,Γ,M) = (τ1, γ, (C
′,S′S1S0)) where

γ =

{
γ1(x)N ∧ S′S1(γ0) ∧ γ1 if M is not pure

S′S1(γ0) ∧ γ1 otherwise

It is easy to check that C ′ � δ � S′′(γ).

�

Finally, combining the soundness and completeness properties, we get our second

main result.

Theorem 5.12 (Type Assignment of a Principal Type)

If there is no C such that C � Γ, or if C � Γ and Type(C,Γ,M) fails, then for

any degree assignment γ, the expression M is not typable in the context C ; Γγ .

If Γ is closed, that is fv(Γ) = ∅, and C ; Γδ � M : τ for some C , δ and τ, then

Type(∅,Γ,M) succeeds, returning (θ, γ, (C0, id)), so that C0 ; Γγ � M : θ, and there

exists S ∈Sub(C0, C) such that τ = S(θ) and C � δ � S(γ).

One may observe that, thanks to Lemma 5.5, there is a C such that C � Γ

if and only if there exists C such that C(Γ) �∗ C where C(Γ) is the set of

annotation assertions to validate for Γ to be acceptable, that is C(x1 : σ1, . . . , xn : σn) =

{σ1 :: ∅, . . . , σn :: ∅}.

6 Object-oriented programming

In this section, we illustrate the expressive power of our calculus, as regards object-

orientation, both from an operational and from a typing point of view. To this

end, we will introduce a few derived constructs. Our approach to object-orientation

is mixin-based. The notion of a “mixin” has been introduced in object-oriented

programming languages of the 1980s, mainly in languages based on Lisp. In Bracha

& Cook (1990), it has been advocated as the “building block” for inheritance, and

has recently received some attention (see, for instance, Ancona & Zucca (1998), Bono

et al. (1999b) and Flatt et al. (1998)). Roughly speaking, a mixin is a class definition

parameterized over its superclass (there is some similarity with the parameterized

classes of Eiffel (Meyer, 1986) and the “virtual classes” of Beta (Madsen & Møller

Pedersen, 1989)). Let us introduce some informal terminology:

• An object is the fixpoint (fix Gen) of a generator (Cook & Palsberg, 1989).

• A generator is a function of a “self” parameter, returning a record of fields

and methods. Then a typical generator value is thus

λs〈· · · fields · · ·methods · · ·〉

like the empty generator λs〈〉, and an object is therefore a recursive record, as

in Cardelli (1984), Cook et al. (1994), Snyder (1986a) and Wand (1994). Notice

that for a generator to be able to generate some object, the type of self (that

is, s) should be unifiable with the type of the record returned by the generator,

and moreover the generator must be a protective function.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 299

• A field is like any ordinary field in a record, either mutable or not. In an object

generator, a field is not supposed to contain the self parameter.

• A method is a field in a record, whose value is a “thunk”, that is a function of a

dummy parameter (just to freeze evaluation at this point). A method explicitly

depends upon two parameters, super and self , representing respectively the

current object as a member of the superclass, and as a member of the current

class, as far as the ownership of methods is concerned (these parameters are

not keywords; rather, they are bound names, subject to α-conversion). We use

a special syntax for invoking a method � of an object, different from selection,

namely (M⇐ �) (just to unfreeze evaluation).

• A mixin is a function mapping generators to generators, usually by extending

and/or modifying the record returned by its argument. A typical mixin value

is thus λg λs〈gs, . . .〉, and inheritance is basically mixin composition, that is

M = λgM ′′(M ′ g) if M inherits M ′, with modification (which is a mixin) M ′′.

In the methods introduced by a mixin, the super parameter is to be interpreted

as (g s), the “generic object” (where self is not yet bound) of the superclass,

while the self parameter is obviously interpreted as s.

• A class is a function taking as argument a series of “instance parameters” and

returning a mixin(3). A typical class value is thus

λx1 . . . xn.λg λs〈gs, . . . fields . . .methods . . .〉

An object instance of such a class C is the fixpoint of the generator obtained

by applying the class to initial values of the instance parameters, usually

determining the initial state of the object, and to the empty generator, that is:

new(C N1 · · ·Nn) = fix(C N1 · · ·Nn (λs〈〉))

If the class, or more appropriately the parameterized mixin C has no instance,

because the type of self is not unifiable with the type of the record returned

by the generator, we say that the class is abstract. To inherit a class, one has

to “extract” from it the mixin it returns. This is usually done by applying the

class to formal parameters, i.e. (C y1 · · · yn), which are instance parameters of

the subclass, but one may more generally inherit the class as (C N1 · · ·Nn).

We must again point out the fact that such an approach to object-oriented

programming constructs would not be possible without having extended recursive

definitions to allow defining non-functional recursive values. Indeed, we have

new(C N1 · · ·Nn)
∗→ (let rec x = (λs〈· · ·〉)x in x)

and we do not know of any call-by-value language where such a let rec is allowed.

Nevertheless, and although this section is devoted to demonstrate, by means of

examples, the increase in expressiveness we gain by considering such a non-standard

3 This notion of a class is slightly non-standard, since there are some mixins that one would not
normally call “classes”. Indeed, the name “mixin” is sometimes used only for classes that are not
intended to be instantiated into objects.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

300 G. Boudol

M, N · · · | (M⇐ �) method invocation

V , W · · · | new | mixin(T)

T mixins

| var � = N | cst � = N field definition

| meth �(y, x) = M | meth �(y, x)←M method definition/override

| without � | rename � as �′ restriction, renaming

| inherit M | (T ,T ′) inheritance

Fig. 10. Mixin constructs.

[[M⇐ �]] = ([[M]].�)()

[[new]] = λm(fix(mλs〈〉))
[[mixin(T)]] = [[T]]

[[var � = N]] = λgλs〈gs, � = ref [[N]]〉
[[cst � = N]] = λgλs〈gs, � = [[N]]〉

[[meth �(y, x) = M]] = λgλs(let z = gs in 〈z, � = λ.((λyλx[[M]])z s)〉)
[[meth �(y, x)←M]] = λgλs(let z = gs in 〈z\�, � = λ.((λyλx[[M]])z s)〉)

[[without �]] = λgλs((gs)\�)
[[rename � as �′]] = λgλs(let z = gs in 〈z\�, �′ = z.�〉)

[[inherit M]] = λgλs(([[M]]λs(g s))s)

[[T ,T ′]] = λgλs(([[T ′]]λs(([[T]]λs(gs))s))s)

Fig. 11. Interpretation.

fixpoint, we shall not pay very much attention to degrees here: they just let everything

go smoothly.

Having thus informally described our model for objects and inheritance, we now

introduce some corresponding syntax to define mixins and objects, extending the

language as indicated in figure 10. We could also add a notation for field override,

but this can actually be written (without �, var � = N ′) or (without �, cst � = N ′).

We use the same notation for method override than for overriding a field in a

record, although these are not exactly the same operations. The interpretation of

the extended language into the core language is given in figure 11, by means of

a translation [[·]] which is an isomorphism as regards the core constructs. In this

figure, we use λ.M to denote a thunk, that is an abstraction over a variable which

does not occur in M. In the translation of mixins, the variables g, s and z are

supposed to be fresh. Then one can see that, in particular, a field has no knowledge

of the self parameter, since s does not occur in [[N]], whereas the super and self

parameters of a method are instantiated into s and z, with z = gs, respectively.

We have adopted a sophisticated interpretation of inherit M and (T ,T ′), involving

η-expansion, to avoid using these constructs with arguments of inappropriate type.

However, one should understand inherit M simply as λg([[M]]g) (or even [[M]], but

notice that a mixin has to be a value), and similarly (T ,T ′) is to be understood as

λg([[T ′]]([[T]]g)), that is [[T ′]] ◦ [[T]]. Then η-expansion is only used to ensure that

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 301

these constructs have types of the form (θa0 → τ0)
b → θc1 → τ1, and not just θd → τ.

We shall come back to this point below.

Regarding the derived typing of the extended language, we first observe that,

since it is a thunk, a method in a mixin always has a type of the form (tp → τ)

(with no constraint on p), and that when invoking this method, the type variable t

will be instantiated into unit(4). Then we may introduce the notation 〈ρ,meth � : τ〉,
standing for 〈ρ, � : unitp → τ〉, and one can see that a derived typing for method

invocation is – assuming that γ(x) = 1 for x �∈ fv(M):

C ; Γγ � [[M]] : 〈ρ,meth � : τ〉

C ; Γ0M � (M⇐ �) : τ

Regarding the combinator new that is intended to instantiate a class, we have

C ; Γγ � new : ((θp → 〈〉)q → τ1 → τ)0 → τ

The derived typing of the mixin constructs is given in figure 12, which we now

comment. A first observation is that the type of a mixin is generally quite big.

Although this is clearly very important from a pragmatic point of view, we shall not

in this paper attempt to introduce meaningful abbreviations regarding these types –

except for the type of methods – since our purpose is mainly to experiment with a

preliminary language design.

Thanks to the sophisticated interpretation of inherit M and (T ,T ′), a mixin has

a type of the form (θa0 → τ0)
b → θc1 → τ1 . Moreover, apart from pathological uses

of inherit M, we generally have – this will be the case for all the examples below

– θ0 = θ1 so that this type, denoted θ, is the type of self , (θa → τ0) is the type of

the generator argument (associated with the superclass), τ0 is the type of the super

parameter, and τ1 is the type of the value returned by the mixin. In the examples

that we shall examine, θ and τ1 are “open” record types, that is 〈t, �1 : ϑ1, . . . , �n : ϑn〉.
In most models of typed objects, the latter usually is a “fixed” record type, that is

〈�′1 : ϑ′1, . . . , �
′
n : ϑ′n〉, taken as representing the type, or the interface of the class. In

our model, a class – being a mixin – depends on a superclass whose value is only

fixed at object creation time, and this explains the “open” type. We must also point

out that, in most models of typed objects, except that of Wand (1994) that we follow

(see also Eifrig et al. (1995b)), the type of self is supposed to be a subtype of the

type of the class. In particular, self is generally supposed to support all the methods

offered by the class. Since we are inferring types of variables from their usage in

expressions, this will generally not be the case here, and therefore the type of self

is a useful information to know about the type of a mixin. Notice that for a class

to have some instance, one must be able to solve the equation θ = τ1, as required

in the type of new. We could at compile time declare the class to be abstract if

this equation has no solution. On the other hand, except for pathological uses of

inherit M (e.g. with M = λxλy y), a mixin is always a protective function of self

4 In the implementation, the dummy parameter of a method is forced to have type unit, and therefore
any method has a type of the form (unitp → τ).

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

302 G. Boudol

C ; Γγ � [[N]] : τ C � ρ :: {�} C � c � a

C ; Γ1 � var � = N : (θa → ρ)b → θc → 〈ρ, � : τ ref〉

C ; Γγ � [[N]] : τ C � ρ :: {�} C � c � a

C ; Γ1 � cst � = N : (θa → ρ)b → θc → 〈ρ, � : τ〉

C ; y : ρa
′
, x : θb

′
,Γγ � [[M]] : τ C � ρ :: {�} C � c � a

C ; Γ1 � meth �(y, x) = M : (θa → ρ)b → θc → 〈ρ,meth � : τ〉

C ; y : 〈ρ, � : τ′〉a′ , x : θb
′
,Γγ � [[M]] : τ C � ρ :: {�} C � c � a

C ; Γ1 � meth �(y, x)←M : (θa → 〈ρ, � : τ′〉)b → θc → 〈ρ,meth � : τ〉

C � ρ :: {�} C � c � a

C ; Γ1 � without � : (θa → 〈ρ, � : τ〉)b → θc → ρ

C � ρ :: {�, �′} C � c � a

C ; Γ1 � rename � as �′ : (θa → 〈ρ, � : τ〉)b → θc → 〈ρ, �′ : τ〉

C ; Γγ � [[M]] : (θa0 → τ0)
b → θc1 → τ1 C � a � a′, c′ � c

C ; Γ1 � inherit M : (θa
′

0 → τ0)
b′ → θc

′
1 → τ1

C ; Γγ � [[T]] : (θa0 → τ0)
b → θc1 → τ1

C ; Γγ � [[T ′]] : (θa
′

1 → τ1)
b′ → θc

′
2 → τ2

C � c′′ � c′, a′ � c, a � a′′

C ; Γ1 � (T ,T ′) : (θa
′′

0 → τ0)
b′′ → θc

′′
2 → τ2

Fig. 12. Typing the mixins.

(provided that the super-generator is protective too, which is obviously the case

of the “universal” generator λs〈〉), since the self parameter is only used in method

bodies, which are values. Therefore, if we only use as arguments of inherit functions

that are protective with respect to their second argument, we do not end up with

an unsafe recursion when trying to create an object instance of a class. To avoid

any pathological use of inherit, we could also have considered inherit(M), for each

expression M, as a new primitive value, with (inherit(M)V)→ (MV) and

C ; Γγ �M : (θa → τ)b → θ1 → τ

C ; Γγ � inherit(M) : (θa → τ)b → θ1 → τ

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 303

As a last comment about the typing of mixins, we can now explain why we made

two cases in the typing rule for (let x = N in M), according as to whether M is pure

or not: observe that in the translations of meth �(y, x) = M ′, meth �(y, x)←M ′

and rename � as �′, we have such a (let x = N in M) construct where M is pure.

Then, although z has degree 0 in these expressions, we can still assume that the self

parameter s is protected – provided that g is protective, whence C � c � a in the

derived rules – and this would not hold without a specific case for M pure in the

typing rule for the let construct. For this reason, a first version of our type system,

presented in Boudol (2001), was unable to accept objects instances of a class where

the meth �(y, x)←M or rename � as �′ constructs were used.

Now let us see examples illustrating the use of these derived constructs. Obviously,

we do not claim that the examples we propose are interesting programs by

themselves; they are just meant to give an idea of the flexibility of the approach.

They are all variations around the standard example in discussing models of objects,

namely the “point”. We start by rewriting in our syntax the class of points that

we gave in Section 2 – using the standard notation for assignment, that is M .. N

instead of setMN:

let point = λxmixin (

var pos = x,

meth move(z, s) = λd(s.pos .. !s.pos + d)

)

in · · ·

One can see that, up to some βv-conversions, the translation of the mixin defining

the points is as follows:

λxλgλs〈gs, pos = ref x,

move = λ.λd(s.pos .. !s.pos + d)〉

which is very similar to our definition of the point class in Section 2, except for

the g parameter, and the record gs that this mixin extends. Then, again up to some

βv-conversions, the expression (point 0)λs〈〉 evaluates into

λs〈pos = u,

move = λ.λd(s.pos .. !s.pos + d)〉

where u is a location whose value in the store is 0, and therefore the object

fix((point 0)λs〈〉), that is new(point 0), is the recursive record

(let rec s = 〈pos = u,move = λ.λd(s.pos .. !s.pos + d)〉 in s)

Before we examine the typing of such an object, we notice that, from an operational

point of view, our representation of objects allows some operations that would not

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

304 G. Boudol

be available using a self-application semantics, like

(let p = (new(point 0))\pos in (p⇐move)42)

Regarding the typing, one can see that, abbreviating (∀t :: ∅.σ) into (∀t.σ), the

(polymorphic) type of point is – assuming that + is of type int0 → int0 → int:

r′ � r; � point :

∀t0.∀t1 :: {pos}.∀t2 :: {pos,move}.t0p →
(ρr → t2)

q →
ρr
′ →

〈t2, pos : t0 ref ,meth move : int0 → unit〉

where ρ is the type of self , namely ρ = 〈t1, pos : int ref〉, and therefore we have:

� (point 0)λs〈〉 : 〈t1, pos : int ref〉r′ →
〈pos : int ref ,meth move : int0 → unit〉

We finally get the expected type for the point object:

� new(point 0) : 〈pos : int ref ,meth move : int0 → unit〉

It is worth noting (cf. Wand (1994)) that the type of self only retains what is required

of the current object from its usage in the definition of the class, namely the presence

of a pos field with an int ref type. In particular, the type 〈t1, pos : int ref〉 of self

is not a subtype of the “interface” of the point class, that we may represent with

〈pos : t0 ref ,meth move : int0 → unit〉 – this is the type of λxλs(point x(λs〈〉)s). This

allows us to make use of some non-standard forms of code reuse, like for instance

inheritance by restriction:

immobilePoint = λxmixin (

inherit(point x),

without move

)

Here we inherit a point object, with a formal initial position x, and we decide to

introduce a new kind of points, which we cannot move. The translation of this class

is, again with some optimisation:

λxλgλs〈gs, pos = ref x〉

Then we can create an object instance of that class, because the type of self ,

which is still 〈t1, pos : int ref〉, may be unified with the type of the record returned

by the class. This particular example may not look especially interesting – we

shall see later another example of the use of restriction. Some similar examples of

excluding methods, like for instance building a class of stacks from a given class of

dequeues, were given long ago by Snyder (1986a, 1986b). Clearly, allowing such a

reuse mechanism reinforces the fact that “inheritance is not subtyping” (Cook et al.,

1994).

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 305

The fact that the type of self in the point class does not contain any reference to

the move method can be exploited in another way: we may redefine this method

with a type which is unrelated (except for what it requires of self) to the one it

has in the point class. For instance, one may decide to modify the move method,

so that it now takes one further argument, which is a unit of measure. Then

we write, assuming a function f giving the conversion factor into the default

unit:

uPoint = λxmixin (

inherit(point x),

meth move(z, s)← λdλy(s.pos .. !s.pos + d ∗ (f y))

)

The type of self in this class is the same as in point, whereas the (abbreviated)

type of move is now int0 → ϑ → unit where ϑ is the type of measure units. This

is an example of inheritance by method override (or redefinition). Usually, in this

kind of inheritance, the redefined method is required to have the same type as the

overriden method, or a subtype of it. Let us see now an example of the use of the

super parameter in methods. We decide to create a new kind of points, similar to

the previous one, but using the unit of measure as an instance parameter, fixing the

scale for its movements:

scaledPoint = λxλymixin (

inherit(uPoint (x ∗ (f y))),

meth move(z, s)← λd(z⇐move d y)

)

Here we inherit the uPoint class with an argument which is not just an instance

parameter, as in the previous examples, but a compound value. Notice that while

we used, in methods, the record selection syntax M.� when accessing the field of

an object, we must obviously use the derived construct M⇐ � to invoke a method

of an object – namely, in this example, invoking the previous version of the move

method, attached to the superclass. The next example uses the very common form

of inheritance by extension, consisting in adding new fields or methods. A method

to fix a new position of a point is introduced:

resetablePoint = λxmixin (

inherit(point x),

meth reset(z, s) = λx(s.pos .. x)

)

We can now give another example of inheritance by restriction, similar to the one

of stacks from dequeues in Snyder (1986a): we may decide to restrict the use of the

reset method to put the point back to its initial position, and to remove access to

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

306 G. Boudol

this method:

clearablePoint = λxmixin (

inherit(resetablePoint x),

meth clear(z, s) = (z⇐ reset)x,

without reset

)

A feature which we might wish to have is the ability to perform some given procedure

at each object creation from a class. For instance, we may wish to have a counter

incremented, or some warning printed each time an object is created. The simplest

way to do that is to prefix the definition of the class with the appropriate procedure,

as follows:

let iPoint = let n = ref 0

in let init = λx (n .. !n+ 1) ; print string ”new point number ”;

print int !n ; print string ” at ” ; print int x;

print newline();

in λx (init x) ; (point x)

in · · ·

We could also incorporate the initialisation procedure as a method in the class, thus

gaining the ability to invoke other methods. In this case, to create an object we

would use the function:

newInit = λm(let o = newm in o⇐ init ; o\init)

All the previously introduced classes are typable, and objects may be created from

them. Up to now, the form of inheritance that we have used is quite standard in that

we always specified the inherited superclass – some kind of point – while adding,

modifying or removing some of its ingredients. However, mixins are really means to

transform classes, getting new ones by “applying” the mixin to various superclasses,

thus reusing the transformation. Here is a more mixin-oriented example: coloring

an object. We define the coloring mixin as follows:

let coloring = λcmixin (

var color = c,

meth paint(z, s) = λy(s.color .. y)

)

in · · ·

Then, in the scope of this declaration, we can use inheritance by composition to get

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 307

a colored version of a variety of classes, for instance:

colorPoint = λxλcmixin (

inherit(point x),

inherit(coloring c)

)

colorRectangle = λxλyλcmixin (

inherit(coloring c),

inherit(rectangle x y)

)

The colorPoint for instance is typable, because we may unify the types that the

self parameter has in the point and coloring classes, which are, respectively,

〈t1, pos : int ref〉 and 〈t′1, color : t′0 ref〉. Notice that the polymorphism associated

with the let-construct, and more specifically the polymorphism offered by Wand’s

row variables is crucial here for the inheritance mechanism to work properly, where

one usually employs some form of subtyping (see Bruce et al. (1997) and Fischer

& Mitchell (1995)). This kind of polymorphism allows us in particular to reuse

the coloring mixin in various contexts. Obviously, the type system would reject a

composition of mixins making incompatible requirements about the type of self ,

like for instance having a common field with different (i.e. non-unifiable) types.

Although we do not use a subtype relation, it is obviously possible to write explicit

coercion functions, like for instance:

colorless = λx(x\color\paint)

Notice that (colorless x) is the “same” object as x, in the sense that they share the

same state, apart from what regards the color. Alternatively, one can use pattern-

matching (see Jategaonkar & Mitchell (1993)) to “extract a sub-object”:

asPoint = λx〈pos = x.pos,move = x.move〉

To get a less structural view of subtyping, we could also attach this function as a

method of the point class, writing it as: meth asPoint(z, s) = 〈pos = s.pos,move =

s.move〉. Again, (asPoint x) is, as a point, the “same” object as x. We cannot use

a similar technique to make a copy of a point, since it is not possible to break

the (recursive) binding of self in the move method. We should instead use another

function, namely:

copyAsPoint = λx new(point(!x.pos))

Since a mixin is a class transformer, it may introduce some new ingredients – fields

or methods – while relying on the fact that some other ingredients will be provided

by the superclass – these could be called “virtual”. This shows up in the type of self

(or super), and therefore the type system will reject any attempt to create an object

instance of such an abstract class. An example is:

resetPos = mixin(meth reset(z, s) = λx(s.pos .. x))

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

308 G. Boudol

This mixin can be reused (inherited), but not instantiated, since typing (new resetPos)

would involve solving the equation 〈t1, pos : t0 ref〉 = 〈meth reset : t0 → unit〉, which

is impossible. This mixin is intended to be used in combination with another one

that introduces a pos field. To illustrate the use of the renaming facility, we elaborate

on the last example: we redefine the reset method so that it updates not only the

position, but also the color of an object (of some superclass), while keeping the

possibility of updating the position only.

resetPosColor = mixin (

rename reset as resetPos,

meth reset(z, s) = λxλc(z⇐ resetPos x ; z⇐ paint c)

)

Notice that it would be wrong – and the type system would complain – using

overriding to define the reset method here, because after renaming it into resetPos,

it is no longer present. The next kind of point illustrates a form of multiple

inheritance:

richPoint = λxλcmixin (

inherit(resetablePoint x),

inherit(coloring c),

inherit resetPosColor

· · ·)

We have omitted some parentheses here, and it should indeed be possible to prove

that inheritance by composition is associative, with respect to some observational

semantics. The order in which the components are introduced in the inheritance

chain is also sometimes irrelevant: we could commute inherit(resetablePoint x) and

inherit(coloring c) in the example without affecting the result, but the type system

rejects inconsistencies – definition of methods (or fields) already present or required –

that would arise if we had written one of these two ingredients after inheriting

resetPosColor. Then multiple inheritance is restricted here to a linear pattern where

the ingredients are introduced from left to right, and can be used or overriden

subsequently, but not re-introduced. Typically, inheriting twice the same class, either

directly or indirectly, is forbidden, if this class introduces some new fields or methods

which are not removed or renamed.

An issue that we have not discussed is that of the visibility of the ingredients of

a class. In our previous examples, one can always “externally” update the state of a

point p, that is, its position, simply by executing a statement p.pos .. · · · However,

in some cases we would like to forbid such a manipulation (see Fischer & Mitchell

(1995) for some examples). In many object-oriented programming languages, the

visibility of the fields, and of some of the methods of a class is, implicitly or

explicitly, restricted to inheriting classes and/or to objects instances of the same

class. In this paper, we do not investigate this issue, leaving this for further work,

but we merely notice that one may always use the let construct to achieve state

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 309

encapsulation, as in

secretPoint = λx let pos = ref x

in mixin (

meth move(z, s) = λd(pos .. !pos + d))

meth get(z, s) = !pos

)

for instance. This approach, where the fields are strictly private to objects – but

may be given access to by means of methods – is the one advocated by Snyder

(1986a, 1986b). We could indeed have adopted a strict interpretation of fields (this

can actually be done simply by removing the related constructs), but we think in

some cases it may be worth having more opportunities for inheritance.

A feature we would like to add to our language is the ability to return, or send

self . For instance, we may wish to attach the colorless function as a method of the

coloring mixin, writing it as

meth colorless(z, s) = s\color\paint

Another typical example is a method for cloning an object, that we could define(5)

using recursive classes, as in Cook et al. (1994):

let rec clonablePoint = λxmixin (

inherit(point x),

meth clone(z, s) = new(clonablePoint(!s.pos))

)

However, to be able to type this class, and instances of the coloring mixin extended

with the colorless method, we must extend the type language with recursive record

types µt.ρ. This is also necessary for typing a “subject/observer” interaction, where

a subject notifies itself to an observer, as in:

let subject = λomixin (meth notify(z, s) = λy.y o s)

in let window = λxλomixin (

inherit(point x),

inherit(subject o),

meth move(z, s)← λd(z⇐move d;

s⇐ notify(λo.o⇐moved)),

meth draw(z, s) = · · ·
)

in let manager = mixin (meth moved(z, s) = λw.w⇐ draw)

in let m = new manager

in new (window 42m)

5 This is just an example. We do not claim that this is the right way to do clones.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

310 G. Boudol

which, assuming that the code for the draw method is of type unit, has a type

Window satisfying the equation:

Window = 〈pos : int ref

meth move : int→ unit

meth notify : Manager→ Window→ unit

meth draw : unit〉

Manager = 〈meth moved : Window→ unit〉

Notice that one could modify the notify method, so that it transmits a restricted

view of the current object, like for instance:

meth notify(z, s)← λy.z⇐ notify y o (s\pos\move)

Sending objects, including self , to other objects is a natural way of programming

in a higher-order, functional language, and therefore adding recursive record types

is a natural extension to consider, which does not interfere with the typing of

safe recursion. It would be interesting to see how our model, thus extended with

recursive types, supports programming of various patterns that have emerged from

object-oriented programming practice (cf. Gamma et al. (1994)).

7 Related work

The issue of imposing restrictions on recursive definitions to ensure that they define

something is not at all a new one: many examples of notions of “contractive” or

“guarded” recursive definitions may be found, for instance in formal language theory

(Greibach’s normal form of context-free grammars), process calculi or co-inductive

types theories. In a language like ML, recursion is usually restricted to the form

(let rec f = λxN in M), but as we discussed in the introduction, this does not

suit our purpose. This has been recently generalized to deal with recursive modules

by Crary et al. (1999), who use a “valuability” predicate, drawing upon Moggi’s

existence predicate. However, this again does not suit our purpose: for one thing, we

wish to accept recursive expressions with evaluation that yields some computational

effects. Moreover, to create objects instance of a class, we need to accept expressions

like (let rec x = (Gx) in M), as we have pointed out, and this – hence in particular

our fixpoint combinator fix = λf(let rec x = fx in x) – is rejected by the valuability

system of Crary et al. (1999). As far as I can see, no obvious solution to this specific

problem emerges from the literature.

The type system that I introduced in this paper has been extended and used to

deal with recursive modules by Hirschowitz & Leroy (2002). Their extension is quite

natural: considering that putting a variable underneath an abstraction increments its

degree, whereas its degree is decremented when it occurs within a function applied

to some argument, one may easily imagine that degrees could be integers, rather

than booleans. One may even add ∞ as a degree, for a variable that does not occur

free in an expression. This is what is done in Hirschowitz & Leroy (2002), and for

instance (let rec x = (Fx)F in · · ·) is accepted in such a system. One probably even

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 311

could axiomatize the properties of an abstract notion of degree, generalizing what

has been done here and in Hirschowitz & Leroy (2002). I have not followed this

way here, because one of the main purposes was to generalize the type assignment

algorithm of ML, without having to handle complex constraints on degrees. I recall

that the only constraints to be solved here regarding degrees have the form α = 1,

which, when α is a constructed degree α0 ∧ α1, reduces to α0 = 1 and α1 = 1.

Regarding the modelling of objects, the literature is quite rich – we have mentioned

a bit of it in the introduction. We did not formally compare our model to other

ones, but it should be clear that, as far as objects (not mixins) are concerned, what

we propose is very close to Reddy’s denotational semantics of classes and objects

(Reddy, 1988), and to the cyclic record semantics (see Abadi & Cardelli (1996), with

the difference that we do not have to use assignment to model method override).

Reddy did not deal with types however (nor with operational semantics), while

this is our main concern. The mixin-based constructs we proposed are very close

to the ones introduced by Bracha in the design of Jigsaw (Bracha, 1992); they

are here integrated, by means of a formal interpretation, into an implicitly typed

language. As we said in the introduction, most of the proposed models that include

the main features of object-oriented programming use higher-order type theories, for

which a type assignment algorithm is not available. Palsberg has explored the type

inference problem for fragments of Abadi and Cardelli’s object calculi (Palsberg,

1995; Palsberg & Jim, 1997), but these calculi do not have the principal type

property. As a matter of fact, with the exception of OCaml
6, none of the object

models we have cited supports principal type inference à la ML.

The OCaml’s model (Rémy & Vouillon, 1998) integrates a class-based object

layer into the ML language. The operational semantics is self-application, that is,

the current object is substituted for self in the body of the method which is invoked.

However, methods are not functions of self (but nonetheless regarded as values), as

in Abadi and Cardelli’s calculi for instance: self is a “special variable” that occurs

free in the methods, as in the recursive record semantics of objects. As a consequence,

typing is similar to the one of Wand’s model, with specific type constructions for

classes and objects, though class types are not arrow types, but depend upon the

type of self given by the typing context. This is not exactly the model of the OCaml

language (Leroy et al., 2000) however, in which a class body begins with a statement

object(s), which is a binding for a self parameter. This is needed if one has to

program with nested classes for instance. The semantics of this specific binder is not

formally described; a class body is a value, but when an instance object is created,

the scope of this binder is opened to evaluation (more precisely, the state part of

the object is evaluated, but not the method part).

Apart from the fact that OCaml is, as a programming language, obviously much

more elaborate than the preliminary design we proposed, there are some differences,

and also strong similarities between the two models. Indeed, we do not claim our

object model is by itself original: as we said, it is very close to the one of Jigsaw

6 Also obviously Wand’s model, which is however not expressive enough. The OML language of Reppy
& Riecke (1996) also supports principal typing, but not inheritance.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

312 G. Boudol

(Bracha, 1992), and was also strongly inspired by the one of OCaml. For instance,

although in OCaml classes are not first class, and there is no explicit “mixin”

facility, the inheritance mechanism is very close to the one we have adopted – with

a difference regarding how to use super, however. Also, we may use a restriction

operation over classes, which is absent from OCaml. Another difference is that we

do not require fields to be private to objects. In this paper, we have favoured an

object encoding approach, rather than an object calculus approach – which is the

one of OCaml – with the idea that this, in particular, should provide us with firm

foundations for the typing of object-oriented constructs (cf. McQueen (2002)). One

can see, for instance, that in OCaml, although the type system is very close to

Wand’s one, the typing of some constructions is not as general as it could be. For

instance, method overriding is invariant, as far as types are concerned, and in the

typing of classes, the type of self is required to extend the record type of methods,

and this prohibits reusing classes by restricting their set of methods.

Encoding objects as recursive records obviously relies on some record calculus.

One could in principle use standard, “fixed” records, as in Eifrig et al. (1995a) for

instance, but this is not quite compatible with the idea of reusing code, since in

inheriting from a class, one would have to explicitly include the method list of

the superclass (as it is done also in Abadi & Cardelli (1996)). Various calculi of

records that are “extensible” in some sense have been studied, starting with Wand’s

(1987) (some initial difficulties with principal typing were later solved (Jategaonakar

& Mitchell, 1993; Ohori & Buneman, 1994; Rémy, 1994b; Wand, 1994)). For

instance, various forms of record concatenation, symmetric or asymmetric, have

been considered (Harper & Pierce, 1991; Rémy, 1994c; Wand, 1991). In this paper,

we have chosen to use, mainly for a simplicity reason, a strict version of Cardelli &

Mitchell’s (1994) calculus, with a simpler typing however, where we express negative

information by means of simple “annotations” rather than using subtyping and

bounded quantification. Our record calculus is equivalent to the one of Jategaonkar

& Mitchell (1993), who use a form of pattern-matching. There are some limitations

with our choice: for instance, we only allow a limited form of (linear) multiple

inheritance, but multiple inheritance is well-known to be difficult to manage (see

Snyder (1986b), for instance). Also, one must be aware of the names of methods of

the superclass when inheriting from it, in order to decide whether to use extension

or over-riding. However, the type system warns the designer of the heir class about

unintentional conflicts.

8 Conclusion

In this paper, we have adapted and extended Wand’s typed model of classes and

objects to an imperative setting, where the state of an object is a collection of mutable

values. Our main achievement is the design of a type system which accepts safe let rec

declarations of recursive values of any type (i.e. not just functional recursive values),

while retaining the ability to construct a principal type for a typable term. The type

assignment algorithm, as well as an interpreter of the language presented in this

paper (including the mixin constructs, plus booleans, integers, recursive record types,

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 313

etc.), have been implemented by Pascal Zimmer. The first experiments he has made

confirm that, since the equations on degree expressions that we have to handle are

very easy to solve, the task of building a principal type is not more complicated

than in the standard case.

We believe that our type system does not impose any new restriction on the

underlying language, where recursion is limited to (let rec f = λxN in M): it

should not be difficult to show that a term of this language is typable, without

using degrees, if and only if it is typable, with the “same” type, in our system, thus

showing that our typing is a conservative extension of the usual one, if we forget

about degrees. We also believe that our system can be extended to include more

types, since only the core functional fragment is concerned with the technicalities

arising from the degrees. Another issue to investigate is whether our approach may

be applied to other situations where programming with recursive non-functional

values could help – as I said above, this has already been done by Hirschowitz and

Leroy regarding recursive modules. For instance, it should be easy to adapt our

type system to call-by-value functional languages like Scheme, as a static analysis

for the let rec construct, keeping only the “degree” aspect, that is dealing with

pseudo-types given by δ • | (δa → δ). Another interesting topic is the question

of how to implement the non-standard let rec construct considered here. Regarding

this question, we refer to Boudol & Zimmer (2002), where an abstract machine is

designed which implements correctly the functional core of our calculus.

Acknowledgements

The implementation done by Pascal Zimmer was of invaluable help to me. In

particular, it allowed me to realise that previous versions of the type system were

not powerful enough to accept the object-oriented constructs I had in mind, and to

type-check the examples presented in the paper. I am also grateful to the referees

for their comments and suggestions, which allowed me to improve the presentation

of the paper, especially regarding the proofs in Section 4.

This work partially supported by the CTI “Objets Migrants: Modélisation et

Vérification”, France Télécom R&D, and by EU within the FET Global Computing

initiative, project MIKADO IST-2001-32222.

References

Abadi, M. (1994) Baby Modula-3 and a theory of objects. J. Functional Program. 4(2), 249–283.

Abadi, M. and Cardelli, L. (1996) A Theory of Objects. Springer-Verlag.

Ancona, D. and Zucca, E. (1998) A theory of mixin modules: basic and derived operators.

Math. Struct. Comput. Sci. 8, 401–446.

Bono, V., Patel, A., Shmatikov, V. and Mitchell, J. (1999a) A core calculus of classes and

objects. MFPS’99, Electronic Notes in Computer Science 20. Springer-Verlag.

Bono, V., Patel, A., Shmatikov, V. and Mitchell, J. (1999b) A core calculus of classes and

mixins. ECOOP’99, Lecture Notes in Computer Science 1628, pp. 43–66. Springer-Verlag.

Boudol, G. (2001) The recursive record semantics of objects revisited (extended abstract).

ESOP 2001, Lecture Notes in Computer Science 2028, pp. 269–283. Springer-Verlag.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

314 G. Boudol

Boudol, G. and Zimmer, P. (2002) Recursion in the call-by-value lambda-calculus. Submitted.

Bracha, G. and Cook, W. (1990) Mixin-based inheritance. ECOOP/OOPSLA’90, pp. 303–311.

Bracha, G. (1992) The Programming Language Jigsaw: Mixins, Modularity and Multiple

Inheritance. PhD Thesis, The University of Utah.

Bruce, K. (1993) Safe type checking in a statically-typed object-oriented programming

language. POPL’93, pp. 285–298.

Bruce, K., Petersen, L. and Fiech, A. (1997) Subtyping is not a good “match” for object-

oriented languages. ECOOP’97: Lecture Notes in Computer Science 1241, pp. 104–127.

Springer-Verlag.

Cardelli, L. (1984) A semantics of multiple inheritance. Semantics of Data Types: Lecture

Notes in Computer Science 173, pp. 51–67. (Also published in Infor. & Computation, 76

(1988).)

Cardelli, L. and Mitchell, J. (1994) Operations on records. In: Gunter, C. and Mitchell, M

(editors), Theoretical Aspects of Object-Oriented Programming, pp. 295–350. MIT Press.

Cook, W. and Palsberg, J. (1989) A denotational semantics of inheritance and its correctness.

OOPSLA’89, ACM SIGPLAN Notices, 24(10), 433–443.

Cook, W., Hill, W. and Canning, P. (1994) Inheritance is not subtyping. In: Gunter, C. and

Mitchell, M (editors), Theoretical Aspects of Object-Oriented Programming, pp. 497–517.

MIT Press.

Crary, K., Harper, R. and Puri, S. (1999) What is a recursive module? PLDI’99, pp. 50–63.

Damas, L. and Milner, R. (1982) Principal type-schemes for functional programs. POPL’82,

pp. 207–212.

Eifrig, J., Smith, S., Trifonov, V. and Zwarico, A. (1995a) An interpretation of typed OOP in

a langage with state. LISP & Symbolic Comput. 8, 357–397.

Eifrig, J., Smith, S. and Trifonov, V. (1995b) Sound polymorphic type inference for objects.

OOPSLA’95, ACM SIGPLAN Notices, 30(10), 169–184.

Fisher, K. (1996) Types Systems for Object-Oriented Programming Languages. PhD Thesis,

Stanford University.

Fisher, K., Honsell, F. and Mitchell, J. (1993) A lambda calculus of objects and method

specialization. LICS’93, pp. 26–38.

Fisher, K. and Mitchell, J. (1995) The development of type systems for object-oriented

languages. Theory & Practice of Object Systems, 1(3), 189–220.

Flatt, M., Krishnamurthi, S. and Felleisen, M. (1998) Classes and Mixins. POPL’98,

pp. 171–183.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994) Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Gunter, C. and Mitchell, J. (1994) Theoretical Aspects of Object-Oriented Programming. MIT

Press.

Harper, R. and Pierce, B. (1991) A record calculus based on symmetric concatenation.

POPL’91, pp. 131–142.

Hirschowitz, T. and Leroy, X. (2002) Mixin modules in a call-by-value setting. ESOP’02:

Lecture Notes in Computer Science 2305, pp. 6–20. Springer-Verlag.

Jategaonkar, L. and Mitchell, J. (1993) Type inference with extended pattern matching and

subtypes. Fundamenta Informaticae, 19, 127–166.

Jouannaud, J.-P. and Kirchner, Cl. (1991) Solving Equations in Abstract Algebras: A Rule-

Based Survey of Unification. In: Lassez, J.-L. and Plotkin, G. (editors), Computational

Logic, Essays in Honor of A. Robinson, pp. 257–321. MIT Press.

Kamin, S. (1988) Inheritance in Smalltalk-80: a denotational definition. POPL’88, pp. 80–87.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

Recursive record semantics of objects 315

Leroy, X., Doligez, D., Garrigue, J., Rémy, D. and Vouillon, J. (2000) The Objective Caml

System, release 3.00. Documentation and user’s manual, available http://caml.inria.fr

(regularly updated).

Madsen, O. and Møller Pedersen, B. (1989) Virtual Classes: A powerful mechanism in object-

oriented programming. OOPSLA’89, ACM SIGPLAN Notices, 24(10), 397–406.

Martelli, A. and Montanari, U. (1982) An efficient unification algorithm. ACM TOPLAS,

4(2), 258–282.

MacQueen, D. (2002) Should ML be object-oriented? Formal Aspects Comput. 13(3–5), 214–

232.

Meyer, B. (1986) Genericity versus inheritance. OOPSLA’86, ACM SIGPLAN Notices, 21(11),

391–405.

Milner, R. (1978) A theory of type polymorphism in programming. J. Comput. & System Sci.

17, 348–375.

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1997) The Definition of Standard ML

(revised). MIT Press.

Ohori, A. and Buneman, P. (1994) Static type inference for parametric classes. In: Gunter, C.

and Mitchell, M (editors), Theoretical Aspects of Object-Oriented Programming, pp. 121–147.

MIT Press.

Palsberg, J. (1995) Efficient inference of object types. Infor. & Computation, 123(2), 198–209.

Palsberg, J. and Jim, T. (1997) Type inference with simple selftypes is NP-complete. Nordic J.

Comput. 4(3), 259–286.

Pierce, B. and Turner, D. (1994) Simple type-theoretic foundations for object-oriented

programming. J. Functional Program. 4(2), 207–247.

Reddy, U. (1988) Objects as closures: abstract semantics of object-oriented languages. ACM

Symposium on LISP and Functional Programming, pp. 289–297.

Rémy, D. (1994a) Programming with ML-ART: an extension to ML with abstract and record

types. TACS’94: Lecture Notes in Computer Science 789, pp. 321–346. Springer-Verlag.

Rémy, D. (1994b) Type inference for records in a natural extension of ML. In: Gunter, C.

and Mitchell, M. (editors), Theoretical Aspects of Object-Oriented Programming, pp. 67–95.

MIT Press.

Rémy, R. (1994c) Typing record concatenation for free. In: Gunter, C. and Mitchell, M.

(editors), Theoretical Aspects of Object-Oriented Programming, pp. 351–372. MIT Press.

Rémy, D. and Vouillon, J. (1998) Objective ML: an effective object-oriented extension of ML.

Theory & Practice of Objects Syst. 4(1), 27–50.

Reppy, J. and Riecke, J. (1996) Simple objects for Standard ML. PLDI’96, pp. 171–180.

Snyder, A. (1986a) CommonObjects: an overview. ACM SIGPLAN Notices, 21(10), 19–28.

Snyder, A. (1986b) Encapsulation and inheritance in object-oriented programming languages.

OOPSLA’86, ACM SIGPLAN Notices, 21(11), 38–45.

Taivalsaari, A. (1996) On the notion of inheritance. ACM Comput. Surv. 28(3), 438–479.

Wand, M. (1987) Complete type inference for simple objects. LICS’87, pp. 37–44.

Wand, W. (1991) Type inference for record concatenation and multiple inheritance. Infor. &

Computation, 93(1), 1–15.

Wand, M. (1994) Type inference for objects with instance variables and inheritance. In:

Gunter, C. and Mitchell, M (editors), Theoretical Aspects of Object-Oriented Programming,

pp. 97–120. MIT Press.

Wright, A. (1995) Simple imperative polymorphism. LISP & Symbolic Comput. 8, 343–355.

Wright, A. and Felleisen, M. (1994) A syntactic approach to type soundness. Infor. &

Computation, 115(1), 38–94.

https://doi.org/10.1017/S0956796803004775 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004775

