WEAKLY NON-ASSOCIATIVE ALGEBRAS AND THE KADOMTSEV–PETVIASHVILI HIERARCHY

ARISTOPHANES DIMAKIS

Department of Financial and Management Engineering, University of the Aegean, 31 Fostini Str., GR-82100 Chios, Greece e-mail: dimakis@aegean.gr

and FOLKERT MÜLLER-HOISSEN

Max-Planck-Institute for Dynamics and Self-Organization, Bunsenstrasse 10, D-37073 Göttingen, Germany e-mail: folkert.mueller-hoissen@ds.mpg.de

Abstract. On any 'weakly non-associative' algebra there is a universal family of compatible ordinary differential equations (provided that differentiability with respect to parameters can be defined), any solution of which yields a solution of the Kadomtsev–Petviashvili (KP) hierarchy with dependent variable in an associative sub-algebra, the middle nucleus.

2000 Mathematics Subject Classification. 37K10 17Axx.

1. Introduction. As explained in the following, the Kadomtsev–Petviashvili (KP) hierarchy (see e.g. [2, 10]) emerges from a simple algebraic problem on non-associative algebras. Let f freely generate a non-associative algebra \tilde{A} over a commutative ring \mathcal{R} with identity element (see e.g. [11] for the algebraic structures used in this work). A derivation of \tilde{A} is determined by its action on the generator. A family of derivations is then obtained by choosing their action on f as a non-linear homogeneous expression in f. The simplest choice is $\delta_1(f) = f^2$. This extends to \tilde{A} via the derivation rule. For the second derivation we should choose $\delta_2(f) = \kappa_1 f f^2 - \kappa_2 f^2 f$ with $\kappa_1, \kappa_2 \in \mathcal{R}$, since $f f^2$ and $f^2 f$ are the only independent monomials cubic in f. Then

$$[\delta_1, \delta_2](f) = (\kappa_1 - \kappa_2)f^2f^2 - (\kappa_1 + \kappa_2)(f, f^2, f),$$
(1)

where (a, b, c) := (ab) c - a(bc) is the *associator*. Setting $\kappa_1 = \kappa_2 = 1$ and passing over to $\mathbb{A} = \tilde{\mathbb{A}}/\mathcal{I}$ with the ideal generated by $\{(a, bc, d) | a, b, c, d \in \tilde{\mathbb{A}}\}$, which is preserved by the derivations δ_1 and δ_2 , the latter *commute* on \mathbb{A} , and we can look for further commuting derivations. In fact,

$$\delta_3(f) := f(ff^2) - ff^2 f - f^2 f^2 + (f^2 f) f$$
⁽²⁾

defines another derivation which commutes with the first two. This construction can be continued ad infinitum, and the underlying general building law will be presented in Section 3. The derivations δ_n are subject to algebraic identities. A direct calculation reveals

that

50

$$\delta_1 \left(4 \,\delta_3(f) - \delta_1^3(f) + 6 \,(\delta_1(f))^2 \right) - 3 \,\delta_2^2(f) + 6 \,[\delta_2(f), \delta_1(f)] \equiv 0. \tag{3}$$

Formally replacing δ_n by the partial derivative ∂_{t_n} with respect to a variable t_n , (3) becomes the potential KP equation (for -f, according to our convention). Elements $\delta_{n_1} \cdots \delta_{n_k}(f)$, where $n_1, \ldots, n_k = 1, 2, \ldots$ and $k = 1, 2, \ldots$, satisfy more identities of this kind, and the whole KP hierarchy emerges in this way.

If A is taken over a commutative ring of smooth functions of independent variables t_1, t_2, \ldots , we may consider the hierarchy of first-order ordinary differential equations

$$f_{t_n} := \partial_{t_n}(f) = \delta_n(f), \qquad n = 1, 2, \dots$$
(4)

The first equation $f_{t_1} = f^2$, which is the only one that would survive in case of associativity, is the equation of a 'non-associative top' [8]. It has the form of a (non-associative) 'quadratic dynamical system' as considered in [9], for example. Since (4) turns the identity (3) into the potential KP equation (for -f), it follows that any solution of (4) also solves the latter. More generally, we demonstrate that this holds for any algebra \mathbb{A} which is 'weakly non-associative' (WNA), and this yields solutions of the whole KP hierarchy, with dependent variable in an associative (and typically non-commutative) sub-algebra. The KP hierarchy appears in many areas of mathematics and physics, and the above result further adds to its ubiquitousness.

In Section 2 we define and characterize WNA algebras. Section 3 introduces a sequence of derived products in such algebras, which mainly serves as a preparation for the construction of a hierarchy of derivations, i.e. a sequence of commuting derivations δ_n , $n = 1, 2, \ldots$, for a sub-class of WNA algebras. Section 4 contains a major result of this work, namely the proof that the derivations δ_n satisfy a sequence of algebraic identities which are in correspondence with the equations of the KP hierarchy (as outlined above). In Section 5 we derive some properties and consequences of the 'non-associative hierarchy' (4). Section 6 treats a class of examples, and Section 7 contains further remarks. A preliminary account of results reported here appeared in our preprint [5], which the reader may consult as a supplement, in particular for some proofs omitted in the following.

2. Weakly non-associative algebras. Let \mathbb{A} be a non-associative (and typically non-commutative) algebra over a unital commutative ring \mathcal{R} . The *middle nucleus* (see e.g. [12])

$$\mathbb{A}' := \{ b \in \mathbb{A} \mid (a, b, c) = 0 \quad \forall a, c \in \mathbb{A} \}$$
(5)

is then an *associative* sub-algebra. If \mathbb{A} has an identity element, then it belongs to \mathbb{A}' .

DEFINITION 2.1. A is called WNA if $\mathbb{A}^2 \subset \mathbb{A}'$, i.e.

$$(a, bc, d) = 0, \qquad \forall a, b, c, d \in \mathbb{A}.$$
(6)

If \mathbb{A} is WNA, then \mathbb{A}' is a two-sided ideal in \mathbb{A} , and the quotient algebra \mathbb{A}/\mathbb{A}' is nilpotent of index 2. If \mathbb{A} is any non-associative algebra and \mathcal{I} the two-sided ideal in \mathbb{A} generated by (a, bc, d) for all $a, b, c, d \in \mathbb{A}$, then \mathbb{A}/\mathcal{I} is a WNA algebra. The WNA condition (6) can also be expressed as $L_a L_b = L_{ab}$ or $R_a R_b = R_{ba}$ for all $a \in \mathbb{A}$ and $b \in \mathbb{A}'$, where L_a and R_a denote, respectively, left and right multiplication by $a \in \mathbb{A}$. The following result characterizes WNA algebras and provides examples. PROPOSITION 2.1. (1) Let \mathcal{A} be an associative algebra over \mathcal{R} , L_i , $R_i : \mathcal{A} \to \mathcal{A}$, i = 1, ..., N, linear maps such that $[L_i, R_i] = 0$,

$$L_i(ab) = L_i(a) b, \qquad R_i(ab) = a R_i(b), \qquad \forall a, b \in \mathcal{A}$$
(7)

and $g_{ij} \in A$, i, j = 1, ..., N. For $\boldsymbol{\alpha} = (\alpha_1, ..., \alpha_N)$, $\boldsymbol{\beta} = (\beta_1, ..., \beta_N) \in \mathcal{R}^N$, let us define

$$g(\boldsymbol{\alpha},\boldsymbol{\beta}) := \sum_{i,j=1}^{N} \alpha_i \beta_j g_{ij}, \qquad L_{\boldsymbol{\alpha}} := \sum_{i=1}^{N} \alpha_i L_i, \qquad R_{\boldsymbol{\beta}} := \sum_{i=1}^{N} \beta_i R_i.$$
(8)

The augmented algebra $\mathbb{A} := (\bigoplus_{i=1}^{N} \mathcal{R}) \oplus \mathcal{A}$ becomes WNA when supplied with the product

 $(\boldsymbol{\alpha}, a)(\boldsymbol{\beta}, b) := (\mathbf{0}, g(\boldsymbol{\alpha}, \boldsymbol{\beta}) + L_{\boldsymbol{\alpha}}(b) + R_{\boldsymbol{\beta}}(a) + ab).$ (9)

If, in addition, the equations

$$L_{\beta}L_{\alpha}(a) = g(\boldsymbol{\beta}, \boldsymbol{\alpha}) a, \ R_{\beta}R_{\alpha}(a) = a g(\boldsymbol{\alpha}, \boldsymbol{\beta}), R_{\boldsymbol{\gamma}}(g(\boldsymbol{\beta}, \boldsymbol{\alpha})) = L_{\boldsymbol{\beta}}(g(\boldsymbol{\alpha}, \boldsymbol{\gamma})), \ R_{\boldsymbol{\alpha}}(a) b = a L_{\boldsymbol{\alpha}}(b),$$
(10)

for all $a, b \in A$, $\beta, \gamma \in \mathbb{R}^N$, imply $\alpha = 0$, then $\mathbb{A}' = A$, and \mathbb{A}/\mathbb{A}' is N-dimensional. (2) Any WNA algebra \mathbb{A} , for which \mathbb{A}/\mathbb{A}' is finite-dimensional, is isomorphic to a WNA algebra of the type described in (1).

Proof. One easily verifies that the construction in (1) satisfies (6). Defining $f_i := (0, ..., 1, 0, ..., 0, 0)$ (with identity of \mathcal{R} at the *i*th position), (10) implies that $[f_i] \in \mathbb{A}/\mathbb{A}'$, i = 1, ..., N, are independent. Conversely, let \mathbb{A} be WNA and $f_i \in \mathbb{A}$, i = 1, ..., N, such that $[f_i]$, i = 1, ..., N, freely generate \mathbb{A}/\mathbb{A}' . Then $g_{ij} := f_i f_j \in \mathbb{A}'$, and $L_i(a) := f_i a$ and $R_i(a) := af_i$ define linear maps $\mathbb{A}' \to \mathbb{A}'$. The WNA property implies $[L_i, R_j] = 0$ and (7) with $\mathcal{A} := \mathbb{A}'$. Since $[f_i]$, i = 1, ..., N, are independent, (10) holds. Furthermore, $\iota(a) := (\mathbf{0}, a)$ for all $a \in \mathbb{A}'$, and $\iota(f_i) := (0, ..., 1, 0, ..., 0, 0)$ (with identity at the *i*th position), i = 1, ..., N, determines an isomorphism $\iota : \mathbb{A} \to (\bigoplus_{i=1}^N \mathcal{R}) \oplus \mathbb{A}'$, where the target is supplied with the product (9).

In the following, $\mathbb{A}(f)$ denotes the sub-algebra of a WNA algebra \mathbb{A} generated by an element f.

PROPOSITION 2.2. $\mathbb{A}(f)$ is spanned by f and products of the elements $L_f^n R_f^m(f^2)$, $m, n = 0, 1, 2, \dots$

EXAMPLE: free WNA algebra. Let $\mathcal{A}_{\text{free}}$ be the *free associative* algebra over \mathcal{R} , generated by elements $c_{m,n}$, $m, n = 0, 1, \ldots$. We define linear maps $L, R : \mathcal{A}_{\text{free}} \to \mathcal{A}_{\text{free}}$ by $L(c_{m,n}) := c_{m+1,n}$, $R(c_{m,n}) := c_{m,n+1}$ and L(ab) = L(a) b, R(ab) = a R(b). As a consequence, $c_{m,n} = L^m R^n(c_{0,0})$. The *free WNA algebra* $\mathbb{A}_{\text{free}}(f)$ over \mathcal{R} is then defined as the algebra $\mathcal{A}_{\text{free}}$ augmented with an element f, such that $ff = c_{0,0}, fa = L(a), af = R(a)$. It is easily seen that $f \notin \mathbb{A}_{\text{free}}(f)'$; thus $\mathbb{A}_{\text{free}}(f)' = \mathcal{A}_{\text{free}}$, and f generates $\mathbb{A}_{\text{free}}(f)$. Any other WNA algebra $\mathbb{A}(f')$ over \mathcal{R} , with a single generator, is the homomorphic image of $\mathbb{A}_{\text{free}}(f)$ by the linear map given by $f \mapsto f'$ and $c_{m,n} \mapsto L_{f'}^m R_{f'}^n(f'^2)$ (cf. proposition 2.2). The derivations defined in Section 1 are well defined on $\mathbb{A}_{\text{free}}(f)$, and the reader can check the identity (3).

3. A sequence of products and derivations of WNA algebras. Let \mathbb{A} be any (non-associative) algebra. With respect to a fixed element $f \in \mathbb{A}$ we define a sequence of products \circ_n , n = 1, 2, ..., in \mathbb{A} recursively by $a \circ_1 b := ab$ and

$$a \circ_{n+1} b := a(f \circ_n b) - (af) \circ_n b, \qquad n = 1, 2, \dots$$
 (11)

If $f \in \mathbb{A}'$, then $a \circ_n b = 0$ for n > 1. Some properties of these products are stated below. We omit the proofs which are straightforward using induction.

PROPOSITION 3.1. Let \mathbb{A} be a WNA algebra. Then the products \circ_n only depend on the equivalence class $[f] \in \mathbb{A}/\mathbb{A}'$ and, for all $m, n \in \mathbb{N}$ and $a, c \in \mathbb{A}$, satisfy the identities

$$(a \circ_n b) \circ_m c = a \circ_n (b \circ_m c) \qquad if \quad b \in \mathbb{A}', \tag{12}$$

$$a \circ_{m+n} c = a \circ_m (f \circ_n c) - (a \circ_m f) \circ_n c.$$
⁽¹³⁾

Next we note a general property of derivations of WNA algebras and construct a family of commuting derivations for a special class of WNA algebras.

PROPOSITION 3.2. Any derivation δ of a WNA algebra \mathbb{A} with the property $\delta(\mathbb{A}) \subset \mathbb{A}'$ is also a derivation with respect to any of the products \circ_n , $n \in \mathbb{N}$.

Proof. By induction. The induction step can be formulated as follows:

$$\begin{split} \delta(a \circ_{n+1} b) &= \delta(a (f \circ_n b) - (af) \circ_n b) \\ &= \delta(a) (f \circ_n b) + a (\delta(f) \circ_n b) + a (f \circ_n \delta(b)) - (\delta(a)f) \circ_n b - (a\delta(f)) \circ_n b - (af) \circ_n \delta(b) \\ &= \delta(a) (f \circ_n b) + a (f \circ_n \delta(b)) - (\delta(a)f) \circ_n b - (af) \circ_n \delta(b) = \delta(a) \circ_{n+1} b + a \circ_{n+1} \delta(b), \end{split}$$

where we used the definition (11) and also (12).

52

DEFINITION 3.1. We call $\mathbb{A}(f) \delta$ -compatible if it admits derivations δ_n , n = 1, 2, ..., such that

$$\delta_n(f) \equiv f \circ_n f, \qquad n = 1, 2, \dots$$
 (14)

 \square

For n = 1, 2, 3, (14) reproduces the derivations considered in Section 1. Clearly, $\mathbb{A}_{\text{free}}(f)$ is δ -compatible. If \mathcal{I} is a two-sided ideal in $\mathbb{A}_{\text{free}}(f)$ with the property $\delta_n(\mathcal{I}) \subset \mathcal{I}$, n = 1, 2, ..., then the derivations δ_n , n = 1, 2, ..., of $\mathbb{A}_{\text{free}}(f)$ project to derivations of $\mathbb{A}_{\text{free}}(f)/\mathcal{I}$, which is then also δ -compatible.

PROPOSITION 3.3. If $\mathbb{A}(f)$ is δ -compatible, the derivations δ_n , n = 1, 2, ..., commute on $\mathbb{A}(f)$.

Proof. (13) implies
$$f \circ_m \delta_n(f) - \delta_m(f) \circ_n f = \delta_{m+n}(f) = f \circ_n \delta_m(f) - \delta_n(f) \circ_m f$$
.
Hence $\delta_m \delta_n(f) = \delta_m(f \circ_n f) = \delta_m(f) \circ_n f + f \circ_n \delta_m(f) = \delta_n(f) \circ_m f + f \circ_m \delta_n(f) = \delta_n \delta_m(f)$.

4. KP identities. In this section we consider a δ -compatible sub-algebra $\mathbb{A}(f)$ of a WNA algebra \mathbb{A} , derive identities for the elements $\delta_{n_1} \cdots \delta_{n_r}(f)$ and establish a correspondence with the equations of the (potential) KP hierarchy. Since, according to propositions 3.2 and 3.3, the δ_n are commuting derivations of $\mathbb{A}(f)$ with respect to all products \circ_k , the formal power series $\exp(\sum_{n>1}(\lambda^n/n)\delta_n)$ with an indeterminate λ defines

a homomorphism. Here \mathcal{R} has to be extended to the ring $\mathcal{R}[[\lambda]]$ of formal power series in λ . On $\mathbb{A}(f)$ we can now define an *algebraic analogue* of a *Miwa shift* [13],

$$a_{\pm[\lambda]} := \exp\left(\pm \sum_{n \ge 1} \frac{\lambda^n}{n} \,\delta_n\right) a \,. \tag{15}$$

Lemma 4.1.

$$h(\lambda) := \sum_{n \ge 0} \lambda^n L_f^n(f) = f_{[\lambda]}, \qquad e(\lambda) := \sum_{n \ge 0} \lambda^n R_f^n(f) = f_{-[-\lambda]}.$$
(16)

Proof. Setting $h_n := L_f^n(f)$ and using (13), one first proves by induction

$$\delta_n(f) = h_n - \sum_{k=1}^{n-1} \delta_k(f) h_{n-1-k}$$

and with its help, again by induction,

$$n h_n = \sum_{k=1}^n \delta_k(h_{n-k}), \qquad n = 1, 2, \dots.$$

In terms of $h(\lambda)$, this can be expressed as

$$rac{d}{d\lambda}h(\lambda)=\delta_{\lambda}(h(\lambda))\,,\qquad \delta_{\lambda}:=\sum_{n\geq 1}\lambda^{n-1}\delta_n\,,$$

which integrates to (note that h(0) = f)

$$h(\lambda) = \exp\left(\sum_{n\geq 1} \frac{\lambda^n}{n} \delta_n\right) f = f_{[\lambda]}.$$

The second formula in (16) can be verified in a similar way.

In terms of the elementary Schur polynomials \mathbf{p}_n and $\tilde{\delta} := (\delta_1, \delta_2/2, \delta_3/3, ...)$, (16) reads

$$L_{f}^{n}(f) = \mathbf{p}_{n}(\tilde{\delta})(f), \qquad R_{f}^{n}(f) = (-1)^{n} \mathbf{p}_{n}(-\tilde{\delta})(f), \qquad n = 1, 2, \dots$$
 (17)

THEOREM 4.1.

$$-\delta_1(f_{[\lambda_1]} - f_{[\lambda_2]}) = (\lambda_1^{-1} - \lambda_2^{-1} + f_{[\lambda_1]} - f_{[\lambda_2]})(f_{[\lambda_1] + [\lambda_2]} - f_{[\lambda_1]} - f_{[\lambda_2]} + f) + [f_{[\lambda_1]} - f_{,f_{[\lambda_2]}} - f].$$
(18)

Proof. The trivial identities $L_f^{n+1}(f) = f L_f^n(f)$ are combined into $h(\lambda) = f + \lambda f h(\lambda)$. By use of (16) and $\delta_1(f) = f^2$, this leads to

$$(\lambda^{-1} - f)(f_{[\lambda]} - f) = \delta_1(f) .$$
(19)

We rename λ to λ_1 . After application of an algebraic Miwa shift with λ_2 and subtraction of the original equation, anti-symmetrization in λ_1 , λ_2 eliminates terms not in \mathbb{A}' and leads to (18).

COROLLARY 4.1.

$$\sum_{i,j,k=1}^{3} \varepsilon_{ijk} \left(\lambda_i^{-1} - f_{[\lambda_k]} + f \right) (f_{[\lambda_i]} - f)_{[\lambda_k]} = 0,$$
(20)

where ε_{ijk} is totally anti-symmetric with $\varepsilon_{123} = 1$.

Proof. This follows by adding (18) three times with cyclically permuted indeterminates $\lambda_1, \lambda_2, \lambda_3$.

It is important to note that all terms appearing in (18) and (20) lie in the associative sub-algebra $\mathbb{A}(f)'$. (Hence the bare *f*'s appear only spuriously and actually drop out.) The first non-trivial identity which results from expanding these functional equations in powers of the indeterminates is (3), which has the form of the potential KP equation. In fact, formally replacing δ_n by the partial derivative ∂_{t_n} with respect to a variable t_n , n = 1, 2, ..., equation (20) becomes a functional representation of the potential KP hierarchy [1, 4], and the equivalent formula (18) is turned into a non-commutative version of the differential Fay identity (cf. [4]).

REMARK. In the proof of theorem 4.1, one arrives at the same result by starting alternatively from the identities $R_f^{n+1}(f) = R_f^n(f)f$, which translate into

$$(f_{-[\lambda]} - f)(\lambda^{-1} + f) = -\delta_1(f).$$
(21)

5. From a non-associative hierarchy of ODEs to the KP hierarchy. In this section, \mathbb{A} denotes a WNA algebra with the property that its elements are (infinitely often) differentiable with respect to variables $\mathbf{t} = (t_1, t_2, ...)$. The ordinary differential equations

$$f_{t_n} = f \circ_n f, \qquad n = 1, 2, \dots$$
 (22)

then constitute a 'non-associative hierarchy' according to the following proposition. We shall assume that $f \notin \mathbb{A}'$, since otherwise (22) would reduce to a single equation. In the following, \mathbb{K} stands for \mathbb{R} or \mathbb{C} and $\mathbb{A}(f, \mathbb{K})$ denotes the WNA algebra generated in \mathbb{A} by $f \in \mathbb{A}$ with coefficients in \mathbb{K} .

PROPOSITION 5.1. (1) The flows (22) commute. (2) For any solution f of (22), $A(f, \mathbb{K})$ is δ -compatible.

Proof. Since (22) implies $f_{t_n} \in \mathbb{A}'$, it follows (cf. the proof of proposition 3.2) that the flow derivatives ∂_{t_n} act as derivations of the products \circ_m in $\mathbb{A}(f)$. The commutativity of the flows can now be checked directly as follows, by use of (13):

$$(f_{t_m})_{t_n} = (f \circ_m f)_{t_n} = f_{t_n} \circ_m f + f \circ_m f_{t_n} = (f \circ_n f) \circ_m f + f \circ_m (f \circ_n f)$$

= $f \circ_n (f \circ_m f) - f \circ_{m+n} f + (f \circ_m f) \circ_n f + f \circ_{m+n} f$
= $(f \circ_m f) \circ_n f + f \circ_n (f \circ_m f) = (f_{t_n})_{t_m}$.

Since ∂_{t_n} in particular extends as a derivation to $\mathbb{A}(f, \mathbb{K})$, (22) guarantees the consistency of extending $\delta_n(f) := f \circ_n f$ to $\mathbb{A}(f, \mathbb{K})$ via the derivation property. \Box

Now we formulate the main result of this work.

54

THEOREM 5.1. If f solves (22), then $u := -f_{t_1} \in \mathbb{A}'$ solves the KP hierarchy in \mathbb{A}' .

Proof. Since $\mathbb{A}(f, \mathbb{K})$ is δ -compatible by proposition 5.1, the identity (20) holds. As a consequence of (22), the algebraic Miwa shifts can be replaced by the usual ones satisfying $f_{[\lambda]}(\mathbf{t}) = f(\mathbf{t} + [\lambda])$ with $[\lambda] := (\lambda, \lambda^2/2, \lambda^3/3, ...)$. This results in a well-known functional representation of the potential KP hierarchy [1, 4], which means that *u* solves the KP hierarchy.

We refer to [6, 7] for exact solutions of the matrix KP hierarchy obtained with the help of this theorem. The following proposition provides us with a formal solution of the initial value problem for (22) for a subclass of WNA algebras.

PROPOSITION 5.2. Let \mathbb{A} be a WNA algebra over $\mathbb{K}[[\mathbf{t}]]$ and $f_0 \in \mathbb{A}$ constant, $f_0 \notin \mathbb{A}'$, generating a δ -compatible sub-algebra $\mathbb{A}(f_0, \mathbb{K})$. Then

$$f := S(f_0)$$
 with $S := \exp\left(\sum_{n \ge 1} t_n \,\delta_n\right)$ (23)

(where the δ_n are defined in terms of f_0) solves the non-associative hierarchy (22).

Proof. Since the δ_n are commuting derivations with respect to all the products \circ_m , m = 1, 2, ..., the linear operator S on $A(f_0, \mathbb{K})$ is an automorphism with respect to all these products (which are defined via (11) in terms of f_0). Hence

$$f_{t_n} = \partial_{t_n} \mathcal{S}(f_0) = \mathcal{S}(\delta_n(f_0)) = \mathcal{S}(f_0 \circ_n f_0) = \mathcal{S}(f_0) \circ_n \mathcal{S}(f_0) = f \circ_n f .$$

Since $\delta_n(f) \in \mathbb{A}(f_0)'$, we have $f - f_0 \in \mathbb{A}(f_0)'$; hence $[f] = [f_0] \in \mathbb{A}(f_0)/\mathbb{A}(f_0)'$. The products \circ_n (and then also the derivations δ_n) are thus equivalently defined in terms of f (proposition 3.1). This proves our assertion.

The solution given by proposition 5.2 has the property

$$f = v - \phi$$
 with constant v and $\phi \in \mathbb{A}'$. (24)

Inserting this decomposition in (22), turns it into the Riccati-type hierarchy

$$\phi_{t_n} = -\nu \circ_n \nu + \nu \circ_n \phi + \phi \circ_n \nu - \phi \circ_n \phi, \qquad n = 1, 2, \dots$$
(25)

If ϕ solves (25), then also the potential KP hierarchy. Splitting off a constant term in (24) is natural from the point of view that the potential ϕ is obtained from the proper KP variable *u* by integration with respect to t_1 , so ν plays the role of a constant of integration.

6. A simplified case and a class of solutions of the KP hierarchy. Let (\mathcal{A}, \circ) be any associative algebra over \mathcal{R} , and L, R commuting linear maps such that $L(a \circ b) = L(a) \circ b$ and $R(a \circ b) = a \circ R(b)$ for all $a, b \in \mathcal{A}$. We write La := L(a) and aR := R(a), for short. A new associative product in \mathcal{A} is then given by

$$a \circ_1 b := (aR) \circ b - a \circ (Lb) . \tag{26}$$

Augmenting (\mathcal{A}, \circ_1) with an element ν such that $\nu \circ_1 \nu := 0$, $\nu \circ_1 a := La$, $a \circ_1 \nu := -aR$, we obtain a WNA algebra (\mathcal{A}, \circ_1) with $\mathcal{A}' = \mathcal{A}$. Restricted to \mathcal{A}' , we have $L_{\nu} = L$ and $R_{\nu} = -R$. For the products (11), defined with respect to ν , one easily proves by induction

that

$$\nu \circ_n \nu = 0, \qquad \nu \circ_n a = L^n a, \qquad a \circ_n \nu = -aR^n, a \circ_n b = \sum_{k=0}^{n-1} (-1)^k (R^k_{\nu} a) \circ_1 L^{n-k-1}_{\nu} b = (aR^n) \circ b - a \circ L^n b,$$
(27)

for all $a, b \in A$. The telescoping sum in (27) is a consequence of (26). Now (25) simplifies to

$$\phi_{t_n} = L^n \phi - \phi R^n + \phi \circ L^n \phi - \phi R^n \circ \phi, \qquad n = 1, 2, \dots$$
(28)

According to our general results, *any* solution of (28) is a solution of the potential KP hierarchy in (\mathcal{A}, \circ_1) .

Now we choose $\mathcal{A} = \mathcal{A}_{\text{free}}$ (see the example in Section 2) and $\mathcal{R} = \mathbb{K}[[\mathbf{t}, \epsilon]]$. Then

$$\delta_n(c_{r,s}) := L^n c_{r,s} - c_{r,s} R^n = c_{r+n,s} - c_{r,s+n}, \qquad n = 1, 2, \dots,$$
(29)

determines derivations δ_n . They extend to (\mathbb{A}, \circ_1) by setting $\delta_n(\nu) = 0$ and are derivations with respect to all products \circ_n (proposition 3.2). For $c := c_{0,0}$ we find

$$\delta_n(c^{\circ m}) = \nu \circ_n c^{\circ m} + c^{\circ m} \circ_n \nu - \sum_{k=1}^{m-1} c^{\circ k} \circ_n c^{\circ (m-k)},$$
(30)

where $c^{\circ n}$ denotes the *n*th power of *c* using the product \circ . This implies

$$\delta_n(f_0) = f_0 \circ_n f_0$$
, where $f_0 := \nu - \phi_0$, $\phi_0 := \sum_{n \ge 1} \epsilon^n c^{\circ n}$. (31)

By proposition 5.2 and theorem 5.1,

$$\phi = \mathcal{S}(\phi_0) = \sum_{n \ge 1} \epsilon^n \, \mathcal{S}(c)^{\circ n} \quad \text{with} \quad \mathcal{S}(c) = e^{\xi(\mathbf{t},L)} \, c \, e^{-\xi(\mathbf{t},R)} \,, \tag{32}$$

where $\xi(\mathbf{t}, L) := \sum_{n \ge 1} t_n L^n$, solves the potential KP hierarchy in $(\mathcal{A}_{\text{free}}, \circ_1)$. Any homomorphism ρ that commutes with the partial derivatives ∂_{t_n} induces a corresponding solution in $\rho(\mathcal{A}_{\text{free}})$ (see also [5]).

7. Further remarks. Another possibility to derive from (19), respectively (21), an equation in \mathbb{A}' , is via a decomposition (24), assuming in addition that v a = 0, respectively a v = 0, for all $a \in \mathbb{A}'$. Then (22) implies $(\lambda^{-1} + \phi)(\phi_{\lambda} - \phi) = -\partial_{t_1}(\phi)$, respectively $(\phi_{-[\lambda]} - \phi)(\lambda^{-1} - \phi) = \partial_{t_1}(\phi)$. These are functional representations of (non-commutative) *Burgers hierarchies*. The simplest equations derived from them are $\phi_{t_2} + \phi_{t_1t_1} + 2\phi\phi_{t_1} = 0$, respectively $\phi_{t_2} - \phi_{t_1t_1} - 2\phi_{t_1}\phi = 0$.

Further examples and some applications of WNA algebras in the context of KP hierarchies appeared in [3, 6, 7]. There is a WNA algebra such that (22) reproduces the Gelfand–Dickey–Sato formulation of the (potential) KP hierarchy [6]. The free WNA algebra described in Section 2 has a representation in terms of the algebra of quasi-symmetric functions, which therefore also exhibits KP identities. This will be elaborated elsewhere.

ACKNOWLEDGEMENT. This work was presented at the ISLAND 3 meeting on Islay, Scotland, in 2007. F M-H would like to thank the organizers for the invitation and financial support.

REFERENCES

1. L. V. Bogdanov and B. G. Konopelchenko, Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies, *J. Math. Phys.* **39** (1998), 4701–4728.

2. L. A. Dickey, *Soliton equations and Hamiltonian systems* (World Scientific, Singapore, 2003).

3. A. Dimakis and F. Müller-Hoissen, A new approach to deformation equations of noncommutative KP hierarchies, *J. Phys. A: Math. Theor.* **40** (2007), 7573–7596.

4. A. Dimakis and F. Müller-Hoissen, Functional representations of integrable hierarchies, J. Phys. A: Math. Gen. 39 (2006), 9169–9186.

5. A. Dimakis and F. Müller-Hoissen, Nonassociativity and integrable hierarchies, nlin.SI/0601001.

6. A. Dimakis and F. Müller-Hoissen, Weakly nonassociative algebras, Riccati and KP hierarchies, nlin.SI/0701010, in *Generalized Lie Theory in Mathematics, Physics and Beyond* (Silvestrov S., Paal E., Abramov V. and Stolin A., Editors) (Springer, 2008) 9–27.

7. A. Dimakis and F. Müller-Hoissen, With a Cole-Hopf transformation to solutions of the noncommutative KP hierarchy in terms of Wronski matrices, *J. Phys. A: Math. Theor.* **40** (2007), F321–F329.

8. I. Z. Golubchik, V. V. Sokolov and S. I. Svinolupov, A new class of nonassociative algebras and a generalized factorization method, *ESI preprint* **53** (1993). ftp://ftp.esi.ac.at/pub/Preprints/esi053.pdf.

9. M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras, *J. Diff. Equations* 117 (1995), 67–126.

10. B. A. Kupershmidt, *Mathematical surveys and monographs: KP or mKP*, vol. 78 of (American Math. Society, Providence, RI, USA, 2000).

11. E. N. Kuz'min and I. P Shestakov, Non-associative structures, in *Algebra VI* (Kostrikin A. I. and Shafarevich I. R., Editors) (Springer, Berlin, 1995) 197–280.

12. H. O. Pflugfelder, *Quasigroups and loops*, vol. 7 (Heldermann, Berlin, 1990).

13. M. Sato and Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, in *Nonlinear partial differential equations in applied science*, vol. 5 (Fujita H., Lax P. D. and Strang G., Editors) (North-Holland, Amsterdam, 1982) 259–271.