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1. Introduction. As explained in the following, the Kadomtsev–Petviashvili (KP)
hierarchy (see e.g. [2, 10]) emerges from a simple algebraic problem on non-associative
algebras. Let f freely generate a non-associative algebra �̃ over a commutative ring R with
identity element (see e.g. [11] for the algebraic structures used in this work). A derivation
of �̃ is determined by its action on the generator. A family of derivations is then obtained
by choosing their action on f as a non-linear homogeneous expression in f . The simplest
choice is δ1(f ) = f 2. This extends to �̃ via the derivation rule. For the second derivation
we should choose δ2(f ) = κ1 ff 2 − κ2 f 2f with κ1, κ2 ∈ R, since ff 2 and f 2f are the only
independent monomials cubic in f . Then

[δ1, δ2](f ) = (κ1 − κ2) f 2f 2 − (κ1 + κ2) (f, f 2, f ) , (1)

where (a, b, c) := (ab) c − a (bc) is the associator. Setting κ1 = κ2 = 1 and passing over
to � = �̃/I with the ideal generated by {(a, bc, d)| a, b, c, d ∈ �̃}, which is preserved by
the derivations δ1 and δ2, the latter commute on �, and we can look for further commuting
derivations. In fact,

δ3(f ) := f (ff 2) − ff 2f − f 2f 2 + (f 2f )f (2)

defines another derivation which commutes with the first two. This construction can be
continued ad infinitum, and the underlying general building law will be presented in
Section 3. The derivations δn are subject to algebraic identities. A direct calculation reveals
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that

δ1
(
4 δ3(f ) − δ3

1(f ) + 6 (δ1(f ))2) − 3 δ2
2(f ) + 6 [δ2(f ), δ1(f )] ≡ 0. (3)

Formally replacing δn by the partial derivative ∂tn with respect to a variable tn, (3) becomes
the potential KP equation (for −f , according to our convention). Elements δn1 · · · δnk (f ),
where n1, . . . , nk = 1, 2, . . . and k = 1, 2, . . . , satisfy more identities of this kind, and the
whole KP hierarchy emerges in this way.

If � is taken over a commutative ring of smooth functions of independent variables
t1, t2, . . . , we may consider the hierarchy of first-order ordinary differential equations

ftn := ∂tn (f ) = δn(f ), n = 1, 2, . . . . (4)

The first equation ft1 = f 2, which is the only one that would survive in case of associativity,
is the equation of a ‘non-associative top’ [8]. It has the form of a (non-associative)
‘quadratic dynamical system’ as considered in [9], for example. Since (4) turns the identity
(3) into the potential KP equation (for −f ), it follows that any solution of (4) also solves
the latter. More generally, we demonstrate that this holds for any algebra � which is
‘weakly non-associative’ (WNA), and this yields solutions of the whole KP hierarchy, with
dependent variable in an associative (and typically non-commutative) sub-algebra. The KP
hierarchy appears in many areas of mathematics and physics, and the above result further
adds to its ubiquitousness.

In Section 2 we define and characterize WNA algebras. Section 3 introduces a
sequence of derived products in such algebras, which mainly serves as a preparation for
the construction of a hierarchy of derivations, i.e. a sequence of commuting derivations
δn, n = 1, 2, . . . , for a sub-class of WNA algebras. Section 4 contains a major result
of this work, namely the proof that the derivations δn satisfy a sequence of algebraic
identities which are in correspondence with the equations of the KP hierarchy (as outlined
above). In Section 5 we derive some properties and consequences of the ‘non-associative
hierarchy’ (4). Section 6 treats a class of examples, and Section 7 contains further remarks.
A preliminary account of results reported here appeared in our preprint [5], which the
reader may consult as a supplement, in particular for some proofs omitted in the following.

2. Weakly non-associative algebras. Let � be a non-associative (and typically non-
commutative) algebra over a unital commutative ring R. The middle nucleus (see e.g. [12])

�′ := {b ∈ � | (a, b, c) = 0 ∀a, c ∈ �} (5)

is then an associative sub-algebra. If � has an identity element, then it belongs to �′.

DEFINITION 2.1. � is called WNA if �2 ⊂ �′, i.e.

(a, bc, d) = 0, ∀a, b, c, d ∈ �. (6)

If � is WNA, then �′ is a two-sided ideal in �, and the quotient algebra �/�′ is
nilpotent of index 2. If � is any non-associative algebra and I the two-sided ideal in
� generated by (a, bc, d) for all a, b, c, d ∈ �, then �/I is a WNA algebra. The WNA
condition (6) can also be expressed as La Lb = Lab or Ra Rb = Rba for all a ∈ � and
b ∈ �′, where La and Ra denote, respectively, left and right multiplication by a ∈ �. The
following result characterizes WNA algebras and provides examples.
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PROPOSITION 2.1. (1) Let A be an associative algebra over R, Li, Ri : A → A,
i = 1, . . . , N, linear maps such that [Li, Rj] = 0,

Li(ab) = Li(a) b , Ri(ab) = a Ri(b), ∀a, b ∈ A (7)

and gij ∈ �, i, j = 1, . . . , N. For α = (α1, . . . , αN),β = (β1, . . . , βN) ∈ RN , let us define

g(α,β) :=
N∑

i,j=1

αiβj gij , Lα :=
N∑

i=1

αi Li , Rβ :=
N∑

i=1

βi Ri. (8)

The augmented algebra � := (
⊕N

i=1 R) ⊕ A becomes WNA when supplied with the
product

(α, a)(β, b) := (0, g(α,β) + Lα(b) + Rβ(a) + ab). (9)

If, in addition, the equations

LβLα(a) = g(β,α) a, RβRα(a) = a g(α,β),

Rγ (g(β,α)) = Lβ(g(α, γ )), Rα(a) b = a Lα(b), (10)

for all a, b ∈ A, β, γ ∈ RN , imply α = 0, then �′ = A, and �/�′ is N-dimensional.
(2) Any WNA algebra �, for which �/�′ is finite-dimensional, is isomorphic to a WNA
algebra of the type described in (1).

Proof. One easily verifies that the construction in (1) satisfies (6). Defining fi :=
(0, . . . , 1, 0, . . . , 0, 0) (with identity of R at the ith position), (10) implies that [fi] ∈ �/�′,
i = 1, . . . , N, are independent. Conversely, let � be WNA and fi ∈ �, i = 1, . . . , N, such
that [fi], i = 1, . . . , N, freely generate �/�′. Then gij := fifj ∈ �′, and Li(a) := fi a and
Ri(a) := a fi define linear maps �′ → �′. The WNA property implies [Li, Rj] = 0 and
(7) with A := �′. Since [fi], i = 1, . . . , N, are independent, (10) holds. Furthermore,
ι(a) := (0, a) for all a ∈ �′, and ι(fi) := (0, . . . , 1, 0, . . . , 0, 0) (with identity at the ith
position), i = 1, . . . , N, determines an isomorphism ι : � → (

⊕N
i=1 R) ⊕ �′, where the

target is supplied with the product (9). �

In the following, �(f ) denotes the sub-algebra of a WNA algebra � generated by an
element f .

PROPOSITION 2.2. �(f ) is spanned by f and products of the elements Ln
f Rm

f (f 2),
m, n = 0, 1, 2, . . . .

EXAMPLE: free WNA algebra. Let Afree be the free associative algebra over R,
generated by elements cm,n, m, n = 0, 1, . . . . We define linear maps L, R : Afree →
Afree by L(cm,n) := cm+1,n, R(cm,n) := cm,n+1 and L(ab) = L(a) b, R(ab) = a R(b). As a
consequence, cm,n = LmRn(c0,0). The free WNA algebra �free(f ) over R is then defined as
the algebra Afree augmented with an element f , such that ff = c0,0, f a = L(a), a f = R(a).
It is easily seen that f 
∈ �free(f )′; thus �free(f )′ = Afree, and f generates �free(f ). Any
other WNA algebra �(f ′) over R, with a single generator, is the homomorphic image of
�free(f ) by the linear map given by f �→ f ′ and cm,n �→ Lm

f ′ Rn
f ′(f ′2) (cf. proposition 2.2).

The derivations defined in Section 1 are well defined on �free(f ), and the reader can check
the identity (3). �
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3. A sequence of products and derivations of WNA algebras. Let � be any
(non-associative) algebra. With respect to a fixed element f ∈ � we define a sequence
of products ◦n, n = 1, 2, . . . , in � recursively by a ◦1 b := a b and

a ◦n+1 b := a (f ◦n b) − (a f ) ◦n b, n = 1, 2, . . . . (11)

If f ∈ �′, then a ◦n b = 0 for n > 1. Some properties of these products are stated below.
We omit the proofs which are straightforward using induction.

PROPOSITION 3.1. Let � be a WNA algebra. Then the products ◦n only depend on the
equivalence class [f ] ∈ �/�′ and, for all m, n ∈ � and a, c ∈ �, satisfy the identities

(a ◦n b) ◦m c = a ◦n (b ◦m c) if b ∈ �′, (12)

a ◦m+n c = a ◦m (f ◦n c) − (a ◦m f ) ◦n c. (13)

Next we note a general property of derivations of WNA algebras and construct a family
of commuting derivations for a special class of WNA algebras.

PROPOSITION 3.2. Any derivation δ of a WNA algebra � with the property δ(�) ⊂ �′

is also a derivation with respect to any of the products ◦n, n ∈ �.

Proof. By induction. The induction step can be formulated as follows:

δ(a ◦n+1 b) = δ(a (f ◦n b) − (a f ) ◦n b)

= δ(a) (f ◦n b) + a (δ(f ) ◦n b) + a (f ◦n δ(b)) − (δ(a) f ) ◦n b − (a δ(f )) ◦n b − (a f ) ◦n δ(b)

= δ(a) (f ◦n b) + a (f ◦n δ(b)) − (δ(a) f ) ◦n b − (a f ) ◦n δ(b) = δ(a) ◦n+1 b + a ◦n+1 δ(b) ,

where we used the definition (11) and also (12). �

DEFINITION 3.1. We call �(f ) δ-compatible if it admits derivations δn, n = 1, 2, . . . ,
such that

δn(f ) ≡ f ◦n f, n = 1, 2, . . . . (14)

For n = 1, 2, 3, (14) reproduces the derivations considered in Section 1. Clearly,
�free(f ) is δ-compatible. If I is a two-sided ideal in �free(f ) with the property δn(I) ⊂ I,
n = 1, 2, . . . , then the derivations δn, n = 1, 2, . . . , of �free(f ) project to derivations of
�free(f )/I, which is then also δ-compatible.

PROPOSITION 3.3. If �(f ) is δ-compatible, the derivations δn, n = 1, 2, . . . , commute
on �(f ).

Proof. (13) implies f ◦m δn(f ) − δm(f ) ◦n f = δm+n(f ) = f ◦n δm(f ) − δn(f ) ◦m f .
Hence δmδn(f ) = δm(f ◦n f ) = δm(f ) ◦n f + f ◦n δm(f ) = δn(f ) ◦m f + f ◦m δn(f ) = δnδm(f ).

�

4. KP identities. In this section we consider a δ-compatible sub-algebra �(f )
of a WNA algebra �, derive identities for the elements δn1 · · · δnr (f ) and establish a
correspondence with the equations of the (potential) KP hierarchy. Since, according to
propositions 3.2 and 3.3, the δn are commuting derivations of �(f ) with respect to all
products ◦k, the formal power series exp(

∑
n≥1(λn/n) δn) with an indeterminate λ defines
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a homomorphism. Here R has to be extended to the ring R[[λ]] of formal power series in
λ. On �(f ) we can now define an algebraic analogue of a Miwa shift [13],

a±[λ] := exp
(

±
∑
n≥1

λn

n
δn

)
a . (15)

LEMMA 4.1.

h(λ) :=
∑
n≥0

λn Ln
f (f ) = f[λ] , e(λ) :=

∑
n≥0

λn Rn
f (f ) = f−[−λ] . (16)

Proof. Setting hn := Ln
f (f ) and using (13), one first proves by induction

δn(f ) = hn −
n−1∑
k=1

δk(f ) hn−1−k

and with its help, again by induction,

n hn =
n∑

k=1

δk(hn−k) , n = 1, 2, . . . .

In terms of h(λ), this can be expressed as

d
dλ

h(λ) = δλ(h(λ)) , δλ :=
∑
n≥1

λn−1δn ,

which integrates to (note that h(0) = f )

h(λ) = exp
(∑

n≥1

λn

n
δn

)
f = f[λ] .

The second formula in (16) can be verified in a similar way. �

In terms of the elementary Schur polynomials pn and δ̃ := (δ1, δ2/2, δ3/3, . . . ), (16)
reads

Ln
f (f ) = pn(δ̃)(f ) , Rn

f (f ) = (−1)npn(−δ̃)(f ) , n = 1, 2, . . . . (17)

THEOREM 4.1.

−δ1(f[λ1] − f[λ2]) = (λ−1
1 − λ−1

2 + f[λ1] − f[λ2]) (f[λ1]+[λ2] − f[λ1] − f[λ2] + f )

+ [f[λ1] − f, f[λ2] − f ]. (18)

Proof. The trivial identities Ln+1
f (f ) = f Ln

f (f ) are combined into h(λ) = f + λ f h(λ).
By use of (16) and δ1(f ) = f 2, this leads to

(λ−1 − f )(f[λ] − f ) = δ1(f ) . (19)

We rename λ to λ1. After application of an algebraic Miwa shift with λ2 and subtraction of
the original equation, anti-symmetrization in λ1, λ2 eliminates terms not in �′ and leads to
(18). �
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COROLLARY 4.1.

3∑
i,j,k=1

εijk
(
λ−1

i − f[λk] + f
)

(f[λi ] − f )[λk] = 0, (20)

where εijk is totally anti-symmetric with ε123 = 1.

Proof. This follows by adding (18) three times with cyclically permuted indeterminates
λ1, λ2, λ3. �

It is important to note that all terms appearing in (18) and (20) lie in the associative
sub-algebra �(f )′. (Hence the bare f ’s appear only spuriously and actually drop out.) The
first non-trivial identity which results from expanding these functional equations in powers
of the indeterminates is (3), which has the form of the potential KP equation. In fact,
formally replacing δn by the partial derivative ∂tn with respect to a variable tn, n = 1, 2, . . . ,
equation (20) becomes a functional representation of the potential KP hierarchy [1, 4], and
the equivalent formula (18) is turned into a non-commutative version of the differential
Fay identity (cf. [4]).

REMARK. In the proof of theorem 4.1, one arrives at the same result by starting
alternatively from the identities Rn+1

f (f ) = Rn
f (f ) f , which translate into

(f−[λ] − f )(λ−1 + f ) = −δ1(f ) . (21)

5. From a non-associative hierarchy of ODEs to the KP hierarchy. In this
section, � denotes a WNA algebra with the property that its elements are (infinitely often)
differentiable with respect to variables t = (t1, t2, . . . ). The ordinary differential equations

ftn = f ◦n f, n = 1, 2, . . . (22)

then constitute a ‘non-associative hierarchy’ according to the following proposition. We
shall assume that f 
∈ �′, since otherwise (22) would reduce to a single equation. In the
following, � stands for � or � and �(f, �) denotes the WNA algebra generated in � by
f ∈ � with coefficients in �.

PROPOSITION 5.1.
(1) The flows (22) commute.
(2) For any solution f of (22), �(f, �) is δ-compatible.

Proof. Since (22) implies ftn ∈ �′, it follows (cf. the proof of proposition 3.2) that the
flow derivatives ∂tn act as derivations of the products ◦m in �(f ). The commutativity of the
flows can now be checked directly as follows, by use of (13):

(ftm )tn = (f ◦m f )tn = ftn ◦m f + f ◦m ftn = (f ◦n f ) ◦m f + f ◦m (f ◦n f )

= f ◦n (f ◦m f ) − f ◦m+n f + (f ◦m f ) ◦n f + f ◦m+n f

= (f ◦m f ) ◦n f + f ◦n (f ◦m f ) = (ftn )tm .

Since ∂tn in particular extends as a derivation to �(f, �), (22) guarantees the consistency
of extending δn(f ) := f ◦n f to �(f, �) via the derivation property. �

Now we formulate the main result of this work.
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THEOREM 5.1. If f solves (22), then u := −ft1 ∈ �′ solves the KP hierarchy in �′.

Proof. Since �(f, �) is δ-compatible by proposition 5.1, the identity (20) holds. As
a consequence of (22), the algebraic Miwa shifts can be replaced by the usual ones
satisfying f[λ](t) = f (t + [λ]) with [λ] := (λ, λ2/2, λ3/3, . . . ). This results in a well-known
functional representation of the potential KP hierarchy [1, 4], which means that u solves
the KP hierarchy. �

We refer to [6, 7] for exact solutions of the matrix KP hierarchy obtained with the help
of this theorem. The following proposition provides us with a formal solution of the initial
value problem for (22) for a subclass of WNA algebras.

PROPOSITION 5.2. Let � be a WNA algebra over �[[t]] and f0 ∈ � constant, f0 
∈ �′,
generating a δ-compatible sub-algebra �(f0, �). Then

f := S(f0) with S := exp
( ∑

n≥1

tn δn

)
(23)

(where the δn are defined in terms of f0) solves the non-associative hierarchy (22).

Proof. Since the δn are commuting derivations with respect to all the products ◦m,
m = 1, 2, . . . , the linear operator S on �(f0, �) is an automorphism with respect to all
these products (which are defined via (11) in terms of f0). Hence

ftn = ∂tnS(f0) = S(δn(f0)) = S(f0 ◦n f0) = S(f0) ◦n S(f0) = f ◦n f .

Since δn(f ) ∈ �(f0)′, we have f − f0 ∈ �(f0)′; hence [f ] = [f0] ∈ �(f0)/�(f0)′. The
products ◦n (and then also the derivations δn) are thus equivalently defined in terms of
f (proposition 3.1). This proves our assertion. �

The solution given by proposition 5.2 has the property

f = ν − φ with constant ν and φ ∈ �′ . (24)

Inserting this decomposition in (22), turns it into the Riccati-type hierarchy

φtn = −ν ◦n ν + ν ◦n φ + φ ◦n ν − φ ◦n φ , n = 1, 2, . . . . (25)

If φ solves (25), then also the potential KP hierarchy. Splitting off a constant term in (24) is
natural from the point of view that the potential φ is obtained from the proper KP variable
u by integration with respect to t1, so ν plays the role of a constant of integration.

6. A simplified case and a class of solutions of the KP hierarchy. Let (A, ◦) be
any associative algebra over R, and L, R commuting linear maps such that L(a ◦ b) =
L(a) ◦ b and R(a ◦ b) = a ◦ R(b) for all a, b ∈ A. We write La := L(a) and aR := R(a),
for short. A new associative product in A is then given by

a ◦1 b := (aR) ◦ b − a ◦ (Lb) . (26)

Augmenting (A, ◦1) with an element ν such that ν ◦1 ν := 0, ν ◦1 a := La, a ◦1 ν := −aR,
we obtain a WNA algebra (�, ◦1) with �′ = A. Restricted to �′, we have Lν = L and
Rν = −R. For the products (11), defined with respect to ν, one easily proves by induction
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that

ν ◦n ν = 0 , ν ◦n a = Lna , a ◦n ν = −aRn ,

a ◦n b =
n−1∑
k=0

(−1)k (
Rk

νa
) ◦1 Ln−k−1

ν b = (aRn) ◦ b − a ◦ Lnb , (27)

for all a, b ∈ A. The telescoping sum in (27) is a consequence of (26). Now (25) simplifies
to

φtn = Lnφ − φRn + φ ◦ Lnφ − φRn ◦ φ , n = 1, 2, . . . . (28)

According to our general results, any solution of (28) is a solution of the potential KP
hierarchy in (A, ◦1).

Now we choose A = Afree (see the example in Section 2) and R = �[[t, ε]]. Then

δn(cr,s) := Lncr,s − cr,sRn = cr+n,s − cr,s+n , n = 1, 2, . . . , (29)

determines derivations δn. They extend to (�, ◦1) by setting δn(ν) = 0 and are derivations
with respect to all products ◦n (proposition 3.2). For c := c0,0 we find

δn(c◦m) = ν ◦n c◦m + c◦m ◦n ν −
m−1∑
k=1

c◦k ◦n c◦(m−k), (30)

where c◦ n denotes the nth power of c using the product ◦. This implies

δn(f0) = f0 ◦n f0 , where f0 := ν − φ0 , φ0 :=
∑
n≥1

εn c◦ n. (31)

By proposition 5.2 and theorem 5.1,

φ = S(φ0) =
∑
n≥1

εn S(c)◦n with S(c) = eξ (t,L) c e−ξ (t,R) , (32)

where ξ (t, L) := ∑
n≥1 tn Ln, solves the potential KP hierarchy in (Afree, ◦1). Any

homomorphism ρ that commutes with the partial derivatives ∂tn induces a corresponding
solution in ρ(Afree) (see also [5]).

7. Further remarks. Another possibility to derive from (19), respectively (21), an
equation in �′, is via a decomposition (24), assuming in addition that ν a = 0, respectively
a ν = 0, for all a ∈ �′. Then (22) implies (λ−1 + φ)(φ[λ] − φ) = −∂t1 (φ), respectively
(φ−[λ] − φ)(λ−1 − φ) = ∂t1 (φ). These are functional representations of (non-commutative)
Burgers hierarchies. The simplest equations derived from them are φt2 + φt1t1 + 2φφt1 =
0, respectively φt2 − φt1t1 − 2φt1φ = 0.

Further examples and some applications of WNA algebras in the context of KP
hierarchies appeared in [3, 6, 7]. There is a WNA algebra such that (22) reproduces the
Gelfand–Dickey–Sato formulation of the (potential) KP hierarchy [6]. The free WNA
algebra described in Section 2 has a representation in terms of the algebra of quasi-
symmetric functions, which therefore also exhibits KP identities. This will be elaborated
elsewhere.

https://doi.org/10.1017/S0017089508004771 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004771


WEAKLY NON-ASSOCIATIVE ALGEBRAS AND KP HIERARCHY 57

ACKNOWLEDGEMENT. This work was presented at the ISLAND 3 meeting on Islay,
Scotland, in 2007. F M-H would like to thank the organizers for the invitation and financial
support.

REFERENCES

1. L. V. Bogdanov and B. G. Konopelchenko, Analytic-bilinear approach to integrable
hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies, J. Math. Phys. 39 (1998), 4701–
4728.

2. L. A. Dickey, Soliton equations and Hamiltonian systems (World Scientific, Singapore,
2003).

3. A. Dimakis and F. Müller-Hoissen, A new approach to deformation equations of
noncommutative KP hierarchies, J. Phys. A: Math. Theor. 40 (2007), 7573–7596.

4. A. Dimakis and F. Müller-Hoissen, Functional representations of integrable hierarchies,
J. Phys. A: Math. Gen. 39 (2006), 9169–9186.

5. A. Dimakis and F. Müller-Hoissen, Nonassociativity and integrable hierarchies,
nlin.SI/0601001.

6. A. Dimakis and F. Müller-Hoissen, Weakly nonassociative algebras, Riccati and KP
hierarchies, nlin.SI/0701010, in Generalized Lie Theory in Mathematics, Physics and Beyond
(Silvestrov S., Paal E., Abramov V. and Stolin A., Editors) (Springer, 2008) 9–27.

7. A. Dimakis and F. Müller-Hoissen, With a Cole-Hopf transformation to solutions of the
noncommutative KP hierarchy in terms of Wronski matrices, J. Phys. A: Math. Theor. 40 (2007),
F321–F329.

8. I. Z. Golubchik, V. V. Sokolov and S. I. Svinolupov, A new class of nonassociative
algebras and a generalized factorization method, ESI preprint 53 (1993). ftp://ftp.esi.ac.at/
pub/Preprints/esi053.pdf.

9. M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras, J. Diff. Equations
117 (1995), 67–126.

10. B. A. Kupershmidt, Mathematical surveys and monographs: KP or mKP, vol. 78 of
(American Math. Society, Providence, RI, USA, 2000).

11. E. N. Kuz’min and I. P Shestakov, Non-associative structures, in Algebra VI (Kostrikin
A. I. and Shafarevich I. R., Editors) (Springer, Berlin, 1995) 197–280.

12. H. O. Pflugfelder, Quasigroups and loops, vol. 7 (Heldermann, Berlin, 1990).
13. M. Sato and Y. Sato, Soliton equations as dynamical systems on infinite dimensional

Grassmann manifold, in Nonlinear partial differential equations in applied science, vol. 5 (Fujita
H., Lax P. D. and Strang G., Editors) (North-Holland, Amsterdam, 1982) 259–271.

https://doi.org/10.1017/S0017089508004771 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004771

