
JFP 21 (2): 215–218, 2011. c© Cambridge University Press 2011 215

Book reviews

Language Implementation Patterns: Create your own Domain-Specific and

General Programming Languages, by Terence Parr, Pragmatic Bookshelf,

http://www.pragprog.com, ISBN 9781934356456

doi:10.1017/S0956796810000298

The Pragmatic Bookshelf certainly lives up to its name by publishing Terence Parr’s Language

Implementation Patterns. The Gang Of Four rolled into one, his mission in this book is to

provide people at or even below the level of undergraduates with just enough compiler

construction savvy to be able to solve low to medium complexity translation problems. And

as becomes quickly evident in this book: there are plenty of such problems around, waiting

for a solution.

Clearly, relatively few people construct a compiler for a general programming language,

but as the subtitle makes clear, the material in this book can be used by domain experts

to learn how to construct their own parsers, type checkers and interpreters. The alternative

would be to embed such a language in a (general) host language, but that solution is not

pursued in this book.

The book clearly follows the compiler pipeline, but Parr’s approach is refreshingly

different. Where most compiler construction books focus on compiling general programming

languages to a suitable backend, he recognizes that translation problems occur everywhere.

Since sophistication often comes at the price of increased computational demands and

implementation complexity, it makes sense to discuss not one, but a sequence of solutions to,

say, programming tree traversals. Each solution comes with a description when it applies, and

how it may be implemented. It is up to the reader of the book to make a correct estimation of

the generality of his problem, and to choose the easiest solution that will solve the problem.

The phases that are considered are the usual suspects: two chapters on parsing, one on

abstract syntax trees, four chapters on analysis, two chapters on interpretation and finally a

few chapters that illustrate how to build a small variety of translators. Compared to most

compiler books, Parr spends quite some time on code generation and interpretation. Again,

there is a strong tendency to reuse what is there: why spend time on register allocation when

you can map to LLVM (Lattner 2010).1

Parr’s tone and style fit in well with his pragmatic approach: direct and hands-on.

Background is introduced when necessary. Pointers to issues on the side are given, but only

when the problem at hand makes it necessary. More than for ordinary compiler construction

books, it is very important to actually try the examples given in the book, and introduce

your own variations on them. You really have to get your hands dirty. Fortunately, all the

examples in the book come with an implementation. All the ones I tried compiled without a

hitch, and were easy to get to run.

Does that leave anything to complain about? Yes, it does. The first bad news, and

particularly hard on people who regularly visit the pages of JFP, is that the focus is fully

on imperative, object-oriented programming. First of all, Java is used exclusively in the

implementations while the more complex patterns are implemented in ANTLR (Parr 2007);

1 Although the implementation is not discussed in the book, you can find it at http://www.antlr.
org/wiki/display/ANTLR3/LLVM.

https://doi.org/10.1017/S0956796810000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000298


216 Book reviews

this is not surprising since the ANTLR website proclaims that “Terence Parr is the maniac

behind ANTLR”. Moreover, the translation problems considered never touch upon issues

that are close to the functional programmer’s heart, including higher-order functions, closures

and let-polymorphism. If you happen to want to build DSLs that borrow concepts specific to

functional languages, you will not find that kind of information here. In fact, the only hint

of ‘functional programming’ that I managed to find is the mention of Daan Leijen’s Parsec

combinators, see, e.g., Leijen & Meijer (2001).

Parr’s take on static analysis deals for the most part with manipulating symbol tables, and

a bit of ad hoc type checking. I understand that to keep things simple, he does not want

to tackle issues such as dataflow analysis. But in view of the intended audience it might

be useful to let the reader know that such a field does exist and where to start looking

for more information (Aho et al. 1986; Grune et al. 2000; Nielson et al. 2005; Khedkar

et al. 2009); even DSLs sometimes can do with a bit of optimisation. I also think that by

providing a hands-on introduction to dataflow analysis in the style of this book, Parr could

have provided a useful service to the field of program analysis. Although most treatments of

dataflow analysis are mathematically more challenging than the material that Parr considers

in this book, I do believe a good intuition of the basic notions, e.g., fixed-point iteration

and monotonicity, can be provided without going very much into technical details, and an

implementation in terms of a simple work-flow algorithm is not harder than some of the code

already in the book.

What I find more problematic however, is that attribute grammars (Knuth 1968; Aho

et al. 1986; Grune et al. 2000; Swierstra et al. 2010), as a particularly simple way of

implementing the forms of static analysis he does in fact consider, are never mentioned

at all, not even Java implementations such as JastAdd (Hedin & Magnusson 2003). In my

opinion, the declarativity of attribute grammars can greatly simplify the bookkeeping that is

involved in these straightforward and tedious forms of static analysis.

The book is not without mistakes; hardly any book is. What is important though is that

the Pragmatic Bookshelf take mistakes seriously. When you visit their website you can easily

find a list of known mistakes for the book, categorised by type of mistake (Parr 2009). This

allows you to quickly see whether a technical mistake you may have spotted has been found,

and where you can contribute any issue that you have with the book.

Summarizing, Language Implementation Patterns is a well-written book that even under-

graduates can use to teach themselves how to build all kinds of translators, if they are

willing to take the Java/ANTLR focus for granted. Indeed, unfamiliarity with Java and

even ANTLR, is a serious handicap in appreciating this book. When it comes to translating

functional programming languages, and anonymous functions, let-polymorphism, and higher-

order functions kick in, this book offers the reader little help. Still, the patterns that are

described will be useful in the context of most translation problems including those that

involve, say, implementing DSLs founded on the functional programming paradigm.

References

Aho, A., Sethi, R. & Ullman, J. D. (1986) Compilers: Principles, Techniques, and Tools.

Addison Wesley.

Grune, D., Bal, H. E., Jacobs, C. J. H. & Langendoen, K. G. (2000). Modern Compiler Design.

Worldwide Series in Computer Science. Wiley.

Hedin, G. & Magnusson, E. (2003) The JastAdd system – an aspect-

oriented compiler construction system, Sci. comput. program., 47(1): 37–58.

http://www.cs.lth.se/˜gorel/publications/2003-JastAdd-SCP-Preprint.pdf.

Khedkar, U., Sanyal, A. & Karkare, B. (2009) Data Flow Analysis: Theory and Practice. 1st

ed. CRC Press.

Knuth, D. E. (1968) Semantics of context-free languages, Theory comput. syst., 2(2): 127–145.

https://doi.org/10.1017/S0956796810000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000298


Book reviews 217

Lattner, C. (2010) The LLVM Compiler Infrastructure. http://llvm.org.

Leijen, D. & Meijer, E. (2001). Parsec: Direct style Monadic Parser Combinators for the

Real World. Technical Report UU-CS-2001-35. Department of Computer Science, Utrecht

University. http://www.cs.uu.nl/˜daan/parsec.html.

Nielson, F., Nielson, H. R. & Hankin, C. (2005) Principles of Program Analysis. 2nd printing

edn. Springer Verlag.

Parr, T. (2007) The Definitive Antlr Reference: Building Domain-Specific Languages.

The Pragmatic Bookshelf. http://www.pragprog.com/titles/tpantlr/the-definitive-antlr-

reference.

Parr, T. (2009) Language Implementation Patterns. The Pragmatic Bookshelf. http://

www.pragprog.com/titles/tpdsl/language-implementation-patterns.

Swierstra, S. D., Rodriguez, A., Middelkoop, A., Baars, A. I. & et al., A. Loeh. (2010) The

Haskell Utrecht Tools (hut). http://www.cs.uu.nl/wiki/HUT/WebHome.

JURRIAAN HAGE

s.j.thompson@ukc.ac.uk

Foundations of F# Robert Pickering, Apress, 2007 ISBN 10: 1-59059-757-5

doi:10.1017/S0956796810000110

The fact that Microsoft has created a functional programming language on top of the .NET

platform enables a very large community of programmers to experiment with functional

programming in an environment that they are familiar with. If they decide that functional

programming is of value for them, it will be a big advantage that it can be deployed on a

platform that is known and trusted. Especially in bigger commercial companies it is considered

quite an investment to start operating a new platform, and the fact that F# runs on the .NET

platform is really going to make a difference there. As an extra bonus there is the huge set of

supporting tools and libraries that programmers will have access to.

Since F# can be downloaded from Microsoft’s website for free, all that is needed for a

.NET programmer to give it a try is a good description of the language and the way it can

be put to use. For most people it will be difficult to get going without something like a book

they can hold in their hand, read on the train, put little slips into as bookmarks etc – just the

online manuals simply aren’t enough. “Foundations of F#” by Robert Pickering seems to be

aimed at this category of users.

After a short introduction, the book dedicates three chapters on what could indeed be

called the “foundations” of F#. The chapters describe the Functional, Imperative and Object

Oriented aspects of the language in a fairly formal way. It even starts with a list of the

keywords, which maybe a bit too fundamental for practical purposes. Fortunately the rest

of these chapters find a good balance between concise description of the language, some

examples, and some general comments on functional programming.

In general the book doesn’t waste much time explaining concepts like variable scope, or why

you might want to use a relational database. The information in its 385 pages is relevant for a

professional programmer who understands the principal concepts of computer programming.

At the same time it doesn’t assume that the reader understands typical functional programming

constructs like currying. As a consequence, the level is suited for experienced programmers

who would like to start with a functional programming language.

The examples provide good bits of functional programming “jargon”, but they can

sometimes be a bit difficult to follow. The use of variable names that are sometimes rather

short and cryptic doesn’t help here. In a similar vein, I am not sure that it is such a good idea

https://doi.org/10.1017/S0956796810000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000298

