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Abstract. The variational method for calculating energy of quantum fluids, and its applications to the 
Bose liquid 4He, Fermi neutron gas, and liquid 3He are discussed. The correlation functions are 
parameterized by their healing distance, and can depend on the states occupied by the correlated 
particles in the model wave function. They are calculated by constrained variation of lowest order 
contributions. The healing distance has a prescribed value in lowest order calculations, whereas it is 
sufficiently large in hopefully exact energy calculations. The direct many-body cluster diagrams are 
summed with successive approximations of an integral equation. The contribution of exchange dia­
grams is shown to decrease rapidly with the number of exchanges, and their sums are truncated after 
the energy has converged to within a few percent. 

1. Introduction 

An equilibrium mixture of hyperons, interacting through two-body potentials is the 
simplest model of dense matter, and its region of validity has been discussed by H. Bethe 
in his paper in this volume. (We will refer to it, hereafter, as Paper I.) In the non-
relativistic limit of this model, the many-body Schrodinger equation 

I - f V,2 + i Z t j y 0 N) = EV(\ ... N) (1) 
i i<j ) 

should be solved for the variationally determined ground state composition to calculate 
the zero temperature energy as a function of density. 

For practical reasons the form of the trial wavefunction used to solve (1) variational­
ly is restricted to 

• f ( l . . .A0= X\fij<P{\...N), (2) 

where ^ is a model fluid state wavefunction, and the correlation function fu is deter­
mined by minimizing the energy. We discuss two methods: in the first, the variation is 
constrained to enable us to make energy calculations in lowest order; in the second, 
the energy calculation is, we hope, exact and the variation is unconstrained. 

Since there are many distinguishable hyperons of similar mass, hyperonic matter can 
be anywhere inbetween a Fermi and a Bose system when its composition is hetero­
geneous. At typical maximum densities in neutron stars (Baym et al, 1971) the unit 
radius r 0 , 

An , 
Y rfc = 1 (3) 

almost equals r c , the radius of the repulsive core in the n-n potential. In liquid 3 H e and 
4 H e also the r0 at equilibrium density is a few percent less than the He-He atomic 
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potential core radius. The binding energies of both types of liquid helium, Fermi 3 H e 
and Bose 4 H e are known, and have been extensively studied by variational methods 
with wavefunction (2) (as in Schiff and Verlet, 1967; and Murphy and Watts, 1970). 
These liquids form a suitable testing ground for many-body techniques used in hyper-
onic matter, and hence calculation of their energies is discussed in considerable detail. 
The He-He atomic potential core is very hard, and has r " 1 2 behavior at small r. It 
tends to induce much stronger correlations than the n-n soft core potential with its 
r " 2 to r~3 behavior as pointed out in Paper I. Thus liquid He is probably too severe 
a test for the theoretical methods. 

2. The Radial Distribution Function 

The radial distribution function of a Bose fluid is defined as 

J i<j I J i<j 

where d r ' omits integration over rm r t , and Q is the normalization volume. The subscripts 
denote coordinate variables of the functions, thus gmn = g (rm„). 

By convention we antisymmetrize only the left-hand side W* in calculations of 
expectation values for Fermi fluids. Thus initially the particles 1 ,2 , . . . / respectively oc­
cupy plane wave states <j)l9 (t>2--<l>i with momenta k l 5 k 2 . . . k p and summation over 
particles is changed to summation over states. The radial distribution function for 
particles initially in states k m and kn can now be defined as 

t(km,k„) = / / ' \ / \ / ' x > < 5 > 

where <j>qii is the abbreviation of 0 4 ( r r ) . The true g is obviously 

The fij approaches unity at large rij9 and is small or zero at r—0. It is then convenient 
to substitute 

ft) = 1 + Ftj (7) 

for all pairs other than mn in (4) or (5). The Fu is a short-range function with absolute 
value generally less than unity, and products of (1 +FU) can be expanded in powers of 
F a s follows: 

n ( i + F f , ) = i + 1 fu+ n n <8> 
i<j i<j i<j,k<l (ij±kl) 

Integrals over various terms in (8) are represented by diagrams of the type shown in 
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A.I . . = QNf2 
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B. Fermi Fluids : Q ^ m ^ n ' Diagrams 

B J k m O O k n = ^ f 2 

n v mn 
k 

B .2 r r r ^ ^ / n N I N 
0 i ( k - k ) - r 

f e 

8 3 • ^ J w ' ' ^ \ 
n 

B .4 
m r 
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V m m I n n m I ^ n ^ m l ' ^ n ^ n m ' ^ l ^ l n ) 3 

a r m l 

Fig. 1. Radial distribution function diagrams. 

Figure 1. The points in these diagrams represent the particle coordinates, broken lines 
represent F functions, and numerator diagrams must always contain points m and n 
with f*n. In Fermi fluid diagrams the full line kq entering rt represents the final state 
<t>q occupied by the particle in the left-hand side Y*. The lines k1...ki must originate 
from points 1. . . i respectively by our convention. The gmn is simply the sum of all 
irreducible numerator diagrams divided by QN (Pandharipande and Bethe, 1972). 

3. The Energy 

The potential, and the part of the kinetic energy obtained by collecting terms in which 

A. Bose Fluids • g m n Diagrams 

_2 
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/ 5 2 V 2 / . 
Vu = vu-" \ J \ (9) 

m fa 

w = L l \ v ^ d 3 r < - ( , o ) 

The V? operating on / 0 - and fik gives additional kinetic energy U, 

i,j,k 

where Qz{rij9 rik) is a three-particle distribution function defined analogous to g{j. 
The total energy of the Bose fluid is simply 

E=W+U. (12) 

In Fermi fluids the terms in which V 2 operates on <P give exactly the Fermi gas 
energy T, 

i 

because 0 is an eigenfunction of V 2 . A term WF is obtained in addition to W from 
(V? + V 2 ) operating on 0 £ or and fij9 that is, 

^ = - O / J h r 1 * ^ L » k ' } d r<» ( I 4 ) 

0 L mu fij<Pu 
ki,kj 

where mi} is the reduced mass for particles / and y, and the relative model wave function 
is 

<t>u = e x P [' i ( K I ~ K J ) * R O ] • ( 1 5 ) 
Similarly the operation of V? on fu and </>ifc gives another term 

^ = 7 ) 2 ) — g 3 fa, *j, ru, **) ' . d 3 r t 7 d 3 r j f c , (16) 
ki,kjAk 

and the total energy is 

E = T+W+WF+U + UF. . (17) 

The terms and can be combined by redefining the effective potential (9) for 
r? : 4. Fermi systems as 

mu I fu fij4>u J 

V 2 operates on a single ftj can be included in an effective potential Vij9 and 'potential 
energy' W defined as 
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4. Constrained Variation 

Most of the results presented in Paper I are obtained with this simple method. The 
physical assumption here is that the contribution of farther neighbors of a particle i 
to the instantaneous p o t e n t i a l i t y seen by / should mostly be included in the average 
field of which cpi is an eigenfunction. Hence distant neighbors should not be strongly 
correlated, and the Effect of their correlation on the energy should be small. If this 
effect is neglected one can work with correlation functions satisfying the conditions 

iffij^l then all A = 1 (19) 

when ij are nearest neighbors. It is difficult to handle (19) because it couples various 
fu. In practice (19) is approximated as a healing constraint on a single fu as a function 
of rtj as follows (Pandharipande, 1971): 

fu(\ru\ > d) = 1, and (3 /J y /3 r , y ) (\ru\ =d) = 0. (20) 

The healing distance d is chosen such that, on the average, there is only one particle 
within a distance d of an average particle. With this constraint correlations are at 
times allowed between second and more distant neighbors, and at times even the first 
neighbors are treated as uncorrelated. We hope that these effects cancel. 

All higher order direct diagrams are zero if (19) is valid, and we will show that 
higher order exchange diagrams like B.4 of Figure 1, which can contribute even when 
(19) is valid, are small. Thus the energy can be calculated with only the two-body term 
in the cluster expansion, which is 

N - H ( - - / K D R ( 2 I ) 

for Bose fluids. (We omit subscripts wherever unnecessary.) Before minimizing"£ with 
respect to variations in / , the part of v that contributes to the average field and hence 
does not induce correlations, must be subtracted from (21). The constraint (20) gives 
for this part denoted by A(r), 

X(\r\>d) = v(r), (22) 

and we assume A(| r \ <d) to be a constant X0 to be determined from (20). The equation 

d 

S \ { - H

m + »f2 - A o / 2 } d 3 ' = 0 (23) 
o 

gives directly the two body Schrodinger equation for r < d 

- - V 2 / + vf = Ao/ (24) 
m 

and X0 can be obtained from the boundary condition (20). The effective potential 
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Vtj is clearly 

Vu(\ru\<d) = lo 
ViJ(\rij\>d) = vij(rij). (25) 

The / and A 0 are functions of d, which is determined from 

d 

gjf2d3r = l, (26) 

0 
where the left-hand side is simply the average number of particles within d as cal­
culated in lowest order. The two Equations (24) and (26) are solved simultaneously. 

In Fermi fluids let us first consider pairs of distinguishable fermions like those of 
spin up and spin down particles of a baryon type, or of two different baryons of any 
spin direction. Such pairs are not exchanged in the antisymmetrization of the wave 
function. If the two particles are in states k f and k y, the lowest order contribution of 
their interaction to the potential energy (W+ WF) is given by Equations (10) and (18) 
as 

( 

where flJ is the correlation function for particles in model states k f, k,, and <f>tj is given 
by (15). Since 

^ = -[Hki-kj)Y = - k \ (28) 
<Pij 

we can write (27) as 

(W + WF)U = ^ ( r ( v - - k 2 - - V 2 ) i l / d 3 r , (29) 
QJ \ m m J 

with 

* = (30) 

and the constraint (19) as 

^ ( r , | r | = d ) = ^ ( r , | r | = r f ) . (31) 
V <Pij 

It is convenient to decompose 4>tj and x// in partial waves 

4>ii{r)=Ylkrh(kr)P7{e,4>) 
(32) 

* ( r ) = I W ) T O <*>)• 

If v is spherically symmetric the various / states are not coupled, and the contribution 
of each can be minimized separately following the procedure described for the Bose 
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fluids. The equation for w, is 

_ h2 duf + 

and x'0 is determined from the boundary condition 

1 dul(d)_ 1 djj(kd) 
UI(d) dr jj(kd) dr 

ut + vut =(*-k2 + xCj ut (33) 

(34) 

Both the correlation function / and the effective interaction VF depend upon k and /, 
and may be written as 

fij-lf'(^r)P\j (35) 
I 

VFtJ = (r<d) = ZA'0(k)P>j (36) 

VFlJ = (r>d) = vIJ, (37) 

where the projection operators P\J operate only on the model wave function <J>Q,I<l>PJ 
by definition. 

The same procedure can be followed in calculating the contribution of interaction 
between parallel spin fermions of the same type in states k f and k,.. Adding the ex­
change contribution to (29) gives 

(w + w F ) i m = l>*(0 - (- 0] (* - ̂  * 2 - ~ v 2 ) * W d V ' 
(38) 

and on substituting the partial wave expansion (32) in (38) the even /-state contribu­
tions cancel, and those of odd states are doubled. The variational calculation of ftJ and 
VFij is unaffected because (33) is obtained by individually minimizing the contribution 
of each partial wave. The d is given by 

^ £ < ~ Wfiu | {£ f 0<> 0 P*} 0 (d)\ Uj > = 1, (39) 

where 0(d) = 1 for r<d and zero otherwise. Equations (33), (34) and (39) are solved 
simultaneously by iteration. 

The above method is simple enough to study complex systems like dense hyperonic 
matter, and still sufficiently general to treat the small differences in baryon-baryon 
interactions, interactions in different angular momentum states, and baryon masses. 
It is also possible to generalize it to treat non-central forces, particularly the strong 
tensor force in the neutron-proton interaction (Pandharipande, 1972; Pandharipande 
and Garde, 1972). 

However, there are approximations in this model justified by purely physical argu­
ments. In particular, the healing distance dis obtained from a lowest order calculation 
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of the number of particles within d. This may not be valid when d>r0, where r0 

equals d in uncorrected systems. In neutron star matter d~\.2 r0 whereas in liquid 
helium d~\Ar09 because helium atomic cores are much harder than the baryonic 
cores. The variational property £ > t r u e E0 is lost due to the lowest order calculation 
of E. In subsequent sections we describe what we hope are exact calculations of E 
with sufficiently large values of d so that the effects of the constraint are negligible. 
A comparison of the two calculations should ascertain the region of validity of the 
first. 

Some of the diagrams that contribute to the radial distribution function in a Bose sys­
tem are shown in Figure 2. A sum over all particles labeled by numbers 1, 2 , . . . is im­
plied, and it simply gives a density q with factors to account for double counting. Thus 
the contribution of diagram E.2 of Figure 2 is 

The functions F a n d S are shown in Figure 3 for a typ ica l /wi th d=2 r 0 , in liquid 4 H e 
near equilibrium density. Since the magnitude of S is larger than that of F, and they 
are of opposite sign, the contribution of diagram E.3 

is larger than that of (40). It can be easily seen that E.4 contributes more than E.3, etc. 
The diagrams E.2, E . 3 . . . are called single chains, and in dense fluids their contribution 
does not decrease with the number of particles in the chain. 

The contribution of diagram E.5 

and is of the same order as that of E.2 because . S ^ 1 in the range of F. Thus diagrams 
of type E.5-7 in which additional chains are added to connect two particles in a chain 
are also of the same order as those of single chains. Diagrams in which any two points 
of a chain may be connected by many chains are called hypernetted chains (HNC), 
and E.8 is a typical H N C diagram. N o two chains, or subchains, are connected by an 
F. 

The simplest diagram in which two chains connecting m and n are connected by an 
Fis E.9. Its contribution £ is small (Figure 6), particularly in the region where / *„ is 
appreciable, because all four particles have to be within the range of F. One would 
thus expect contributions of diagrams like E.10 involving E.9 as a subdiagram to be 
small. 

Van Leeuwen et ah (1959) have shown that the sum of all diagrams in the Bose case 

5. Integral Equation for Summing Direct Diagrams 

(40) 

(41) 

(42) 
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is given by the consistent solution of 

In 
( / m

2 „ exp ( £ m w ) J J [ L/m! exp (£M l)JJ 

m 

(43) 
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Fig. 2. Irreducible diagrams that contribute to Bose g(r). 
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Fig. 3. The functions, F, 5, and S in liquid 4He at Q = 0.35 atoms a~z and d = 2ro 
with the Lennerd-Jones potential. 

If Emn is set equal to zero one obtains the sum of all H N C diagrams. When Emn = §mn 

the equation sums all H N C diagrams plus the diagram E.9 and the HNC' s formed 
with E.9 as an element. We call this approximation HNC/4 . The difference between 
H N C and HNC/4 is rather small (Figure 6) and hence more complicated diagrams in 
which many particles have to be simultaneously correlated with all others can be 
neglected. 
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It is clear that summing all H N C diagrams connecting ij, jk9 and ki gives for the 
three-boson distribution function 

g*(*U>*lk)=gljgjkgkf (44) 

We use (44) to obtain g3 in both H N C and HNC/4 approximations. 

6. Exchange Diagrams 

The state dependence of the correlation function, that is equations (35) to (37), and 
that of the potential in the case of neutron matter, makes exact higher order cluster 
calculations in Fermi fluids very complex. We note that the short range part of the 
n-n potential, which is mainly responsible for the correlations, is similar in all states 
(Paper I). The / and k dependence of / is also not too strong for the neutron case, and 
hence higher order Fermi fluid calculations are simplified considerably by neglecting 
the differences be tween / (k m , k„) and K F (k w , k„) in all but the lowest order two-body 
clusters. 

The sum of direct g(km, kn) diagrams can be easily calculated by the integral 
Equations (43) when the FlJ are approximated by an average F, 

(45) 

U 

Let gB be the solution of (43) with the average/ , and let 

h = gB/f2. (46) 

Then the approximate contribution of all direct diagrams to g (km9 kn)D is 

# B ( k m , k „ ) D = tT")2/,. (47) 

Figure 4 shows diagrams in which only particles in states km and kn are exchanged, 
all flJ other than fmn are approximated by the average/, and the sums over states other 
than km and kn are performed. As discussed previously, all H N C (or better, HNC/4), 
diagrams connecting m and n must be summed to any number of particles, and the 
crossed line of diagram G.4 denotes such a sum. The contribution of G.4 is obviously 

£ B (km , KXx = - exp [i (k m - k„) • r] gB (k m , k„) D . (48) 

Exchange of a particle in state m or n with another particle gives diagrams of type 
H. l in Figure 5, and their average contribution is evaluated by summing over k m and 
k„. The sum of all direct diagrams connecting m and 1 is represented by the double 
broken line, and equals (gB— 1). Sum over exchanges kx and kn gives the square of 
The Slater function S(kFr) [not to be confused with S of (40)], 
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3 

where the factor 1 /2 comes from requiring that the spins of particles 1 and n must be 
parallel. The 

* H . I (average) = - 2gBo j (gBml - 1) F e x (rln) d 3 r x , 

^f2h, (51) 

exchanges of m giving the factor 2. 
Exchanging m and 1 in H.l gives the three-particle exchange diagrams gHAex. Full 

= r5~3 C s i n (K*R) ~ KFR c o s ( V ) ] • (49) 

The sum of diagrams with and without Fln gives f\n which is converted to gBln by 
summing all chains connecting 1 and n. Thus the double full line In denotes 

Fex(rin) = igBS(kFrin)2, (50) 
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Fig 5. Fermi g diagrams with exchanges in the chains. 
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lines in this diagram represent the Slater functions, and their contributions 

SH.I EX (average) = 2S (kFrmn)gBQ j (gBml - 1 ) 5 (kFrml)gBnl x 

x S ( f c F r » i ) d 3 r l S / 2 A l e x (52) 

cancels gHA at small rmu when m and n have parallel spins. 
In this notation it is quite simple to write the contributions of more complicated 

exchange diagrams; that of H.2 in Figure 5 is, for example, 

SH.2 (K, K) = - g* (K> K)D Q2 j (ft™ ~ 1) ^ex (r12) (gBn2 - 1) x 

x d ^ d ^ E h2fmn\ (53) 

Figure 6 shows the functions g2_ b o d y (=/ 2), Agmc( = 9BHNC - / 2 \ AQ ( = *gBHNc/4 
— ^ # B H N C ) > 0H.I> and gfH 2 (average) in liquid 3 H e at experimental equilibrium density. 
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The F e x is a rather small function because g is small where S(kFr) is unity and vice 
versa. Hence the diagrams with exchanges in the chains give a small contribution. We 
neglect diagram H.4 because its contribution should be much smaller than Ag which 
itself is small. The contributions of H . l , H.2, and H.3 should be treated together 
because all these diagrams involve only one F. The maximum contribution of H.5 
containing two F e x is only 0.016 at r ~ 0 . 6 d. Since H.5 is expected to be the largest of 
all diagrams with t w o F e x , all more complicated exchange diagrams can be safely 
neglected. 

The three-particle distribution function g3 (k f, k 7, kfc, rij9 rik) for various exchanges 
between i,j and k can be easily expressed in terms of the functions h with the super­
position approximation (44). 

7. Conclusions 

The energy of liquid 4 H e , as calculated in the HNC/4 approximation, is shown in 
Figure 7 as a function of ( d / r 0 ) . It is very insensitive to d in the neighborhood of 2 r 0 . 
Hence most of our calculations are carried out with d=2r0. 

Table I compares energies of a pure neutron gas as calculated with the Reid poten­
tial (Pandharipande, 1971) in the H N C and HNC/4 approximations. The maximum 

TABLE I 
The E(Q) for neutron gas with 

the Reid potential 

Q (E/n) in MeV 
(n firr3) HNC HNC/4 

0.2 19.77 19.77 
0.6 77.08 77.00 
1.0 170.5 169.7 
1.4 293.5 292.0 
1.8 440.4 438.8 
2.2 607.3 606.8 
2.6 790.5 793.4 
3.0 987.9 997.4 
3.4 1197.5 1217.4 
3.8 1417.8 1452.4 
4.2 1647.3 1701.6 
4.6 1885.3 1963.4 
5.0 2130.6 2237.6 

difference is ~ 5%, and we hope that the effect of more complicated direct diagrams 
will be <5%. The energy change on the inclusion of the exchange diagram H.5 is 
only ~ 1-2%. When d=2r0 the higher order clusters contribute a substantial fraction 
~ 50% of the total energy as shown in Table II. 

Results of the constrained variational calculation in lowest order, and of (we hope) 
exact energy calculations with unconstrained d are compared in Figures 8, 9, and 10. 
The two calculations agree very well in neutron matter, whereas the simple lowest 
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TABLE II 
The contributions to E{Q) in neutron gas with Reid potential 

Q 
(A^fm-3) 

T HNC/4 contribution to energy in MeV neutron 

All H.O. E 

0.2 40.7 -21A -0 .6 0.6 0.5 0.5 19.77 
0.6 84.6 -26 A + 0.6 11.3 6.9 18.7 77.00 
1.0 119 -11.0 16.3 30.8 14.6 61.8 169.7 
1.4 149 21.9 44.5 54.5 22.4 121 292.0 
1.8 176 70.6 82.5 79.8 29.9 192 438.8 
2.2 201 133 129 106 37.3 272 606.8 
2.6 225 209 182 133 44.6 359 793.4 
3.0 248 296 241 160 51.8 453 997.4 
3.4 269 394 307 189 59.0 554 1217.4 
3.8 290 502 378 216 66.2 661 1452.4 
4.2 310 618 456 246 73.5 773 1701.6 
4.6 329 743 538 273 80.8 892 1963.4 
5.0 348 875 625 300 89.9 1015 2237.6 
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order calculation overestimates the binding energies and equilibrium densities of 
liquid 3 H e and 4 H e by - 2 0 % . 

Table III shows the total energy, the lowest order, and higher order contributions 
to it at d/r0 = 1.2, 1.6, and 2.0. The total energy is much less sensitive to d than its 
decomposition into lowest and higher cluster contributions. The higher order con­
tributions increase by a factor of 1.5-3.0 whereas the total energy decreases only by 
10-15% and d is increased from 1.2 to 2 r 0 . 

The D F = 1 . 2 r 0 in lowest order calculations. Thus correlations with d=\.2r0 are 
mainly two-body correlations because of the average there is only one neutron within 
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Fig. 8. Neutron gas energy: The full and broken lines give the results of 'exact' energy calculation 
with Reid and the modified Reid potentials, and the points show results of lowest order constrained 

variation (from Pandharipande, 1971). 
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Fig. 9. Energy of liquid 4He: The potentials and the Monte Carlo results are from Murphy and 
Watts (1970). The curves give results of present calculations, and those of lowest order constrained 

variation are from Pandharipande (1971). 

U J - 2 h 

- 3 h 

; x p t 
-BMI A + f 5 ^ i J ) 

0.2 0.3 

? ( A / o - 5 ) 

Fig. 10. Energy of liquid 3He with various potentials. 
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TABLE III 
The neutron-gas energy with Reid potential at 

various values of d 

Q (E/N) 
(Nfm-s) MeV 

1.2 1.6 2.0 

5.0 

3.0 

1.0 Total 
L.O. 
H.O. 
Total 
L.O. 
H.O. 
Total 
L.O. 
H.O. 

204.4 
156.3 
38.1 

1174.0 
982.5 
191.5 

2467.7 
2117.5 

350.2 

177.3 
123.7 
53.6 

1037.7 
710.6 
327.1 

2266.0 
1595.0 
671.0 

169.7 
108.0 
61.7 

997.4 
544.3 
453.1 

2237.6 
1223.0 
1014.6 

correlation volume of any given neutron. The small higher order cluster contributions 
at d— 1.2 r0 come from events in which two (or more) neutrons come within the cor­
relation volume of a neutron. In lowest order calculations these are neglected assuming 
that they cancel events in which the neutron can have a larger correlation volume 
because there is nothing within 1.2 r0 of it. The actual higher order calculations show 
that the occurrence of two or more neutrons in the correlation volume gives a some­
what greater contribution than the occurrence of none. 

Our main result is the justification, for neutron matter, of the constrained lowest 
order calculation, to 5% or better, by the more exact calculation of higher order 
clusters. In Paper I the constrained lowest order method was used. 
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