
ON AN INVERSION FORMULA FOR THE LAPLACE 
TRANSFORMATION 

P. G. ROONEY 

1. Introduction. The literature of the Laplace transformation contains 
many examples of inversion operators. Particular attention has been given 
in this literature to the so-called "real" inversion operators, that is, those 
operators which make use of values of the generating function arising only 
from real values of the independent variable. 

It is one of these "real" inversion operators which we shall study here, one 
which has already been studied in part. If 

i m = f Vfi*co M 
Jo 

then the inversion operator is defined by the formula 

II 'Lk, t\f(s)] = ~?- jy'M2kx*) f[Hx + 1}) dx 

and we shall show that, under certain conditions, 

lim'Z*.,Lf(s)]= 4>{t). 
k^co 

The operator was originally given by Erdélyi (1). However the resulting 
inversion and representation theories were not studied there. A special case 
of the operator, namely v = — J, was studied by the author in (2). 

We shall derive our results here partially from those of (2) by means of a 
relation, also derived here, between the operators arising from different values 
of v. 

In §2 we find conditions for the existence of the operator, and derive a 
number of its properties, including the one mentioned in the previous para­
graph. 

Section 3 contains the inversion theory, and in § 4 we find necessary 
and sufficient conditions that a function be equal almost everywhere to a 
Laplace transform of a function of the form /a<£(/), 4> £ LP(Q, » ) , 1 < p < <», 
a> ~(p-l)/p. 

The notations introduced by formulas I and II will be taken as standard 
throughout this paper, as well as 

J»oo 

ë-'r*4>(t) dt, 
0 

iv /(*)= fY,'i*(oi<ft. 
Jo 
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102 P. G. ROONEY 

2. Existence and properties of the operator. The following theorem gives 
sufficient conditions for the operator to exist for a given <j*(t). 

THEOREM 2.1. If 

(1) e-y*4>(t) € L(0, » ) , y > 0, 
(2) -̂(1^+3/4) ̂ ) ç £ ( 0 j ô ) ? ^ r 5 0 m ^ ô > 0> 

(3) v > - 1, 

then for each t > 0, and a// & > 7/, vLkjt[f(s)] and "^.«[/(s)] exis/. 

Proof. Clearly the existence of vLJCtt[f(s)] implies that of vLktt[f(s)], since 
1/0)1 < /(*). Let & > yt, and * > 0. Now by (3; §7.21) 

( 2\* 
Jv(x) ^ I — J cos(x — |v7r — \ir) asx —» 00, 

and hence R > 0 and i f exist such that |/*(#)| < Mx~^ for x > i?. Thus 

f°° 6 - ^ a / ^ " + 1 | ^ ( 2 ^ ) | ^ 
«/B/2* < (2*)-*^ f V w / y + ^ = (2/kfMT(\v+l){ku/t)-^zl*\ 

Jo 
Further, since *> > — 1, the integral, 

J
I72/2A; 

e-]cuy*/tyv+1\Jv(2ky)\dy 
0 

is uniformly bounded in u for ^ > 0. Hence, 

e- t o / ' |^(M)|^M c_*w , / ,y , +V»(2Ay)|dy 
0 Jo 

Jioo C s*R/2Jc /»oo ) 

<T*a/'|*(w)M«i + }e-*"'v,y'+V»(2*y)|dy 
0 V Jo JRllkJ 

%/o Jo 
by (1) and (2), and where 

/ iB/2* 

Mi = J y r +V»(2*y)l rfy, and M2 = MT(lv + î)(2/*)*(*«/0" (*H '8 / 4 ) . 

Hence, by Fubini's theorem we have that 
0 7 3/2 2& pœ /»oo 

£7T « / o « / 0 

n i . 3 / 2 2fc /i 00 /»oo 

^ f- y+1Jv(2ky)dy e-
Hv'+1)u/t\<t>(u)\ du 

Jo Jo t-K Jo 
1,3/2 2Jc pco 

tx* Jtoo f*<x> 

xivJr(2kx*) e-Hz+l)u,t\4>{u)\du (wherex = ;y2) 
0 Jo = ^ f - j V ^ f f f e c » ) / ( f e ( x + 1 } ) rfx = 7*. ,[?(*)] 

exists for each £ > 0 and all k > yt. 

https://doi.org/10.4153/CJM-1955-013-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-013-6


AN INVERSION FORMULA 103 

COROLLARY. If 

(1) er"4>(t) a ( 0 , ») , 7 > 0 , 
(2) v > - 1, 
then for each t > 0 awJ a// & > yty and each e > 0, '£*,<|y~e*/(s)] exists. 

Pra>/. er"f(s) = J0
œe-St<j>e(t) dt, where 0€(/) = 0, for 0 < t < e, and 0e(*) = 

<i>(t — e) for £ > e. Thus the conditions of Theorem 2.1 are clearly fulfilled 
relative to <£e(/), and "L^fe"^/^)] exists. 

The next theorem relates the operators arising from different values of v. 

THEOREM 2.2. If 

(1) err'*® e L(0, » ) , T > 0 , 
(2) /-(ix+M+3/4) 0(^) ç £(0, d) for some Ô > 0, 
(3) X > - 1, M > 0, 
then ffj, (s) exists for s > 7, 

^ L , , , [ / ( 5 ) ] a ^ ^ , , [ / M ( 5 ) ] 

exists for each t > 0 amZ a// & > 7/, and for all such k and t, 

*+>Lktt\f(s)] = ^ £ * , ^ W ] . 

Proof. The existence of /M (5) is clear. The existence of 

^L*, ([/(s)]andof\L*,,[/„(*)] 

follows from Theorem 2.1. 
Nowby(3;§12.11),forX > - 1,/* > 0, 

Hence, setting 2 = 2kx*, and z sin 6 = 2&M5, we have 

xi(x+")A+M(2/fexi) = r^-T- f ^x7x(2£w*)(x - uf^du. 

Further, for /x > 0, u > 0, and & > 7^ > 0, 

J*"(* - ^ - i / ^ + ^ j <& = J œ ( x _ „y-i<k J* Y*(l+1)!,/'<K:y) rfy 

J»co /»co 

0 t / t t 

.(|)-rw4ife±ii). 
the interchange of integrations being valid by Fubini's theorem since 

re-kv"\4>(y)\ dy f Y t e !"<(x - uf~xdu 
Jo Ju 

= (i)™£e~k<u+1)'"ly~''^(y)\dy< »• 
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Thus for k > yt> 0, 

- O T W J o A r t ) d x ) r M2ku)(x-u) du 

= ^?rw Jo u M2ku) du X (x " u) f\T~f~) dx 

= - ^ j j — J u* A (2&wa ) /„l -A—~ M Jw 

the interchange of integrations being justified by Fubini's theorem, since by 
Theorem 2.1 *£*,«[/M(5)] exists and thus 

j~u>x\Jx(2kuh) | du J°°(x - u)"-1 / r ( X + VJ dx 

< J"«*x |7x(2A« i) | du J^ix - M ) " ~ x / r ( x ^ + 1 ) j <fe 

= ( | ) " r ( M ) J > | / x ( 2 t o è ) | / , ( M ^ f i l ) rf« < » . 

The theorem is clearly true if \x = 0. 

COROLLARY. If 

(1) enr^( / ) G i ( 0 , oo), 7 > 0 , 
(2) r ^ x + 3 / 4 ) 0 (/) e L(0, ô),jfor some 5 > 0, 
(3) X > - 1, ix > 0, 

then f-n(s) exists for each s > y. 

*+*LkM-*(s)]a*d*Lktt\f(s)] 

exist for each t > 0 and all k > yt, and for all such k and t, 

^Lk,t[f-»(s)] = t^LkM(s)]. 

Proof. The existence of/_M(s) is clear. Let \f/(t) = /M<£(/) a n d 

g(s)= £e-stHt)dt=U(s). 

Clearly 
ertt'fit) e L(09 oo) 

for any 71 > 7, and 
r(IX+H-3/4)^) = f-<*X+3/4)0(f) g L ( 0 , Ô). 

Hence x+/l£*,i[g(s)] and #*XI<*, «[&»($)] exist and are equal, by Theorem 2.2, 
for each t > 0 and all fc > 71/, and hence since 71 was an arbitrary number 
larger than 7, for all k > yt. But g (s) = /_M(s), gM(s) = f(s), and thus the 
statement is proved. 
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AN INVERSION FORMULA 105 

Let Ia{(j>{u)\t) denote the Riemann-Liouville fractional integral of order 
a, i.e., 

IaU(u); t) = \ ^ ) r l I ' ( / - «r^Mdu, a > 0, 
[<t>(t), « = 0. 

The next theorem relates the inversion operator and the fractional integral. 

THEOREM 2.3. If 

(1) e-y^it) GZ(0, » ) , 7 > 0 , 
(2) /-<*"+8/4) 4(f) ç. i ( o , ô), for some 6 > 0, 

(3) v > - 1, a > 0, 

£&£W /or eacA / > 0, and all k > yt, 
v+aLktt[s-«f(s)] and Ia{'LkJf(s));t} 

exist and are equal. 

Proof. s~af(s) is the Laplace transform of Ia{<j>{u)\ t}, which transform 
exists, by (4; ch. 2, §8), for s > y. Hence, by Theorem 2.1, 

will exist, for each t > 0 and all k > yt, if r<*<'-*>+8/4>/« {*(**); t} £ L(0, Ô) for 
some ô > 0. But, using the same 8 as in (2), we have 

< (r(a)r1 f r«("+a)+3/% [\t - uf-^Wldu 
Jo Jo 

= (TÇa))-1 f r^v+a)+wdt (\t - ufa~\t - w) io|0(M) 
«/o Jo 

< (r(a)r1 f r(iv+s/t)dt (\t - uf"-1]^) 
Jo Jo 

= (r(a)r1 f |0(«)|<f» f (/ - uf-h-^* 
Jo Ju 

< (Via))-1 ( W-(i"+8/4V U)\ du f (t - u)ia~\ 
Jo J u 

= (jr(a + I))"1 fV(iH-3/4)(Ô - «)»-|*(«) 
Jo 

< 2ô*a(r(a + l))-1 f *r(iH-8/4)|0(tO| <2« < co. 
Jo 

du 

du 

[)dt 

dt 

du 

Hence 
v+aLk,t[s-f(s)] 

exists for all t > 0 and all & > 7/. 
Now, for b > yt > 0, 

j-X0-'"4""^-(;)^} 
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For 

= 4 T - T f V - u)a-lu^a+1)du re-
bv/uvact>(v) dv 

1 (a) Jo Jo 
,1—a r*co /» t 

- v"<l>(v) dv e-""u(t - uf-xu-(aWdu 
Jo Jo r(«) 

±—a /»oo J—« /» oo /» oo 

= ^ T T e-bv,tva4>(v)dv e~bvx/txa'ldx (where x = (*/«) - 1) 
1 (a; Jo Jo 

The interchange of integrations is justified by Fubini's theorem, since 
b > yt, and since, with the same change of variables as above, 

,1—a /*oo /» J /»oo 

• ~ v"\4>(p)\dv e~b"u{t - uf-\-{aWdu = b~a e-bv"\<t>(v)\dv < » , 
1 {a) Jo Jo Jo 

by (1). 
Thus, setting b = k(x + 1), we have 

5 ^ Jo"**(^)/^(2fcc*) Ia{«- ( a + 1 ) /_a(^1 1) ; *}<** 
4 ^ J>^^(2^)/_„(^),x; ,} 

= -fa M 
-«(v-f-a) 'L^L/laO)]; *}. 

The interchange of integrations is justified by Fubini's theorem. For, 
k > yt > 0, and the same argument used to show the existence of 
^"Ljc^ls-yis)] can be applied to show the existence of v+aLktt[s-af(s)], and 
thus 

f-JoXi('+a)|^(2^)|/a| 
" / ! M /ico 

- r - x è ( " + a ) | ^ (2^ ' ) | / ( 
7T Jo 

4^±i»)|;,}^ 
M- ( a + 1 >/ . tfx 

=-? j>^i^(2*«*)i(^±ii)" x^fÂ1) *< < -. 
But by (1), (2), and the corollary to Theorem 2.2, 

^ - - + « W / - « M ] = '£*.,!/(*)]. 
Hence finally, for each t > 0 and all k > yt, 

v+aLk,t[s-«f(s)] = I*{vLk,u[f(s)h / } . 

The following theorem gives sufficient conditions that vLktt[f(s)] exist 
for a given f(s), and yields a relation involving the Laplace transformation 
of the operator. 
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THEOREM 2.4. / / 

(1) e^u-'fiu-1) 6 Z ( 0 , «>), T > 0 , 

(2) W- ( i '+7/4 ,/(M-1) 6 L(0, 8), for some 8 > 0, 

J»oo 

ë—u-1f(u-1) du, s > y, 
o 

(4) v > - 1, 

then 

(i) pLktt\f(s)] exists for each k > 0 and almost all t > 0, 

(") «T1 9Lk,.->\g(s)] and j~e-°tvLk,t\f(s)]dt 

exist and are equal for each a > 0 and all k > y /a. 

Proof. By Theorem 2.1, 

vLkt9-i[g(s)] and vLkt<r-i[g(s)] 

exist for a > 0 and all & > 7/cr. But, 
7 3 / 2 2A; /»oo /»oo 

v'1'Lt,.-*\g(s)] = — T - * iV,(2*»*) die e-*^1""»-1 /^-1) i « 

= ^ ^ J ' V ' / ^ f c e * ) dx J ^ ' r ' / r ( X + 1 } j d/ (where < = * (*+ l )« ) 

= J e~at vLkitdt. 

The interchange of integrations is justified by Fubini's theorem, since 
pLkt<r-i[g(s)] exists for a > 0 and all & > 7/0-, and hence 

/»oo /»oo 

Jo Jo 

= I x"v\Jv(2kxh)\g(k(x + 1 » dx < 00. 

Thus, by Fubini's theorem vLktt[f(s)] exists for each k > 0 and almost all 
/ > 0, and has a Laplace transform, and the equality stated is true. 

COROLLARY. If 

(1) e-yuu-lf(u-1) GL(0, 00), 7 > 0 , 

J»oo 

é"uu~1e~','f(u-1) du, s > y, e > 0, 
o 

(3) v > - 1, 

then 
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(i) 'Lk,t[e~"f(s)] exists for each k > 0 and almost all t > 0, 

(ii) «r-1 'Lk,,->[g'(s)] and f Y " 'Z». ,[e_7(*)] <» 
«/o 

&m/ awd are equal for each a > 0 a?zd a// & > 7/o\ 

Proof. The hypotheses of Theorem 2.4 are clearly fulfilled relative to 
ér"/(s) except possibly (2). But tt-dH-8/4)rc/« i s bounded for w > 0, and (2) 
is fulfilled also. Hence, applying the results of Theorem 2.4 to e~€Sf(s), we 
arrive at the above conclusions. 

The next theorem concerns the behaviour of vLk>t[e~€Sf(s)] when cj>(i) Ç 
L„(0, 00), 1 < ^ < 00. 

THEOREM 2.5. If <£(/) Ç £p(0, <*>), p fixed, 1 < £ < 00, and y > — 1, 
then 

(i) "I,*, j[e~cs/(s)] £xis/s if k, t, and e are positive, 

(ii) ko and N exist, N independent of k, such that for k > ko, 

\\'Lt,t[e-"f(s)]\\> < NMDWr 
Proof. Existence follows from the corollary to Theorem 2.1, and for all 

positive k since any positive 7 may be used. 
Now 'Lktt[e—f(s)] 

7 3 /2 2 * /»oo f»co 

= M " **V,(2Jte*) e-
rt(*fl)/,<& e-*(l+1)M/^(M) rf» 

j 3 / 2 2A; /»OO /»OO 

= V r - <T*(M+e)/'<K«) du é-tiu¥')x,t^'M2kx*) dx 
tir Jo Jo 

/"+1z,2 /,
2& /^°° 

= ^ — V - «-*«'*'>«-+<«+«>-«>(„ + er ('+1>^(«) d«, 
/TT J O 

where we have used (3; §13.3, (3)), and the interchange of integrations is 
justified by Fubini's theorem if k > 0, t > 0, since vLktt[e~€Sf(s)] exists by 
the Corollary to Theorem 2.1 applied to \<t>(t)\, and thus, 

(œxhv\Jv(2kx^\e-ikix+1)/tdx re-
kix+1)u/t\<t>(u)\du< » . 

Jo Jo 

Hence, for 1 < p < 00, we have, using Holder's inequality, 

\'Lk,t[e~esf(sW 

< O W y Jc°e-
K(M+£)'-,+(M+é)"")(M + e)-i,+1)\<Ku)\'du 

( e-*(-'",-,"",)«-<'+1WJ' 

< | 2 tvg , (2^)y / «fW; fm
e-»(c+o«-+(>f.)-i)(w + e )-(^»|^ ( M)|^M . 

by (3; §6.23, (8)), where q = p/(p - 1). Hence 
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< |2t*e»g r(2fe) j , " / g ^ y j - 0(M) |g^ J V ( fa+t) «-+<•*«>- V(« + «)-<*»<« 

= J2^ , (2 f e )y^2 lvX + 1 (2 f e )£ k ° ( M ) r ^ 

Hence 

H-i..,[«-/M)ll, < { M V | ^ } ' " { M V ^ t l w } ' ' ' | | , ( , ) | | , . 
But by (3; §7.23, (1)), Kx(2k) ~ <r**7c*/2& as & -» » . Hence *0(X) and iV 

exist such that for & > &0, 2&V*i£x(2&)7r~^ < iV. Thus if k0 > m a x f t W , 
ko(v + 1)), we have 

\\vLktt[e~^fu)]\\p<N\\<l>(t)\\p, k>k0. 

U p = oo, we have 

ri*.«[«-7(*)]i<^r- ^("'",+w",v«-(H-i)d«n*(oii. 
7T J o 

= g i V ^ ^ 01 < ^ 0 
7T 

for & > &oM> so that 
\\'LU<r«f(s)]\\„ < N\\4>(f)\\«>' 

COROLLARY. If <j>(t) £ £P(0, » ) , p fixed, 1 < /> < oo, £ > 4/(1 - 2v), 
and v > — 1, /Âe?z 
(1) 'ifc.jl/W] 0#wfo if k and t are positive, 
(2) k0 and N exist, N independent of k, such that for k > &o, 

\\vLk,t\fm\v < mmWv. 
Proof. If p > 4/(1 - 2v), then q{\v + 3/4) < 1, where q = £ / (£ - 1). 

Hence, by Holder's inequality, 
ps I r8

 )I/Q( rô ) ^ 

J r(i'+3/4)ï*(*)|dt < I Jor^+ m )dtj | Jo im'dt] < », 
so that, by Theorem 2.1, "£*,*[/(<?)] exists for t > 0, and for all k > 0 since 
any 7 > 0 may be used. 

The remainder of the corollary follows in exactly the same manner as in 
Theorem 2.5. 

3. Inversion of the transformation. The following three theorems comprise 
the inversion theory for the operator. 

THEOREM 3.1. If 

(1) <p"0(t) a ( 0 , 00), 7 > 0 , 
and if 
(2) v > - J and r<"+1>0(/) Ç i ( 0 , d) for some ô > 0, 
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(20 - 1 < v < \ and r^+3 / 4>0(/) Ç L(0, 8) for some 5 > 0, 
then, at each point t > 0 of the Lebesgue set of <£, 

l im' i*. t[f(s)} = 4>(t). 

Proof. Case (a) : v > — \. Setting X = — \ and /x = i> + | in Theorem 
2.2, we have that vLktt[f(s)] and £(*+*} ""*£*,«L/n-èM] exist and are equal. 
But by (2; Theorem 1), under the above conditions 

lim-*Lk,t[fv+h(s)\ = r ( ^ 4>{t) 

at each point / > 0 of the Lebesgue set of <£. Hence, at each such point, 

lim %,,[ /(*)] = *(*)• 

Case (b) : — 1 < v < J. Setting X = v, n = — (v + ^) in the Corollary 
to Theorem 2.2, we have that ~^Lktt[fv+i(s)] and /-<"+*) "^^[ / (s) ] are equal. 
Hence, as in case (a), using (2; Theorem 1) we have 

lim 9Lktt\f(s)]= 0(/) 
k-^co 

at each point / > 0 of the Lebesgue set of <£. 

THEOREM 3.2. / / 

(1) e-y^it) 6 L(0, » ) , 7 > 0 , 
(2) a > 0, v > - 1, 
and if 
(3) a + v> - I and r<"+1>0(*) 6 L(0, 5) /or some Ô > 0, 
or 1/ 
(30 a + v < - | arcd r<*"+3/4>0(/) Ç L(0, Ô) /or some Ô > 0, 
then for each t > 0, of the Lebesgue set of Ia{<fy(u)\ t] 

Vim Ia{
vLk,u[f(s)]; t) = /«{*(«); / } . 

Proof. By Theorem 2.3, under the above conditions 

hVUMis)}-, t\ = ' n u [ r / ( s ) ] . 
Thus the theorem will follow from Theorem 3.1, if either v + a > — ^ and 
r ( F + a + 1 ) /«{«(«); /} G L(0, 5) for some Ô > 0, or v + a < - | and r ( ^ + a ) + 3 / 4 ) 

Ia{<t>(u)\ t} e i ( 0 , Ô) for some 5 > 0. But if y + a > - J, then r ("+ 1 ) 

4>00 € i ( 0 , 6), and thus 

f r(*+a+1) |/«UM;'}|^ < (r(a)r1 f r{v+a+l)dt ( (t - uf-^u^du 
Jo Jo Jo 

= (r(a)r1 f |0(«)|d« f r("+a+1)o - uf-xdt 
Jo . */M 

= ( r ( a ) r 1 f W-<,,+1)|<)i(w)!(fM f »'(1 - vy-'dv (wherez» = «/*) 
Jo Ju/S 

< ( r ( a ) r 1 f u-{,+1)\4>(u)\du f »'(1 - v ) " - 1 ^ < » . 
Jo Jo 
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Further, we have already shown in the course of the proof of Theorem 2.3 
that if r<*>+3/4>0OO € i ( 0 , 8), then so is r^+«>+3/4>/a{(K^); / } . 

We conclude this section with a theorem removing the restrictions on the 
behaviour of <t>(t) at / = 0. 

THEOREM 3.3. If 

(1) e-y^t) a ( 0 , oo), 7 > 0 , 
(2) v > - 1. 
then for each e > 0, and at each point t > e such that t — e is in the Lebesgue 
set of <j> (u), we have 

lim 7*. ,[«—/(*)] = 4>(t-e). 

Proof. We have e~*sf(s) = foœe-st<f>e(t) dt, where </>€(t) = 0, 0 < t < e, and 
<j)€(t) = <f>(t — e), t > e. Thus the hypotheses of Theorem 3.1 are clearly 
fulfilled relative to <£e(/), and the conclusion follows. 

4. Representation theorems. The first theorem of this section is fundamen­
tal in the representation theory. 

THEOREM 4.1. If 

(i) e-yvu-yiu-1) e z,(o, oo), 7 > o, 
and if 
(2) */ > - J, and u-(v+2)f(u~l) Ç Z(0, 5) /or some <5 > 0, or if 
(20 - 1 < v < - | , and u-^+Wfiu-1) Ç Z(0,Ô) /or some 5 > 0, 
//^ft "LA>ï[/(^)] awi5 /or eacA & > 0 and almost all t > 0, "-£*,*[/($)] &as a 
Laplace transform, and 

lim fV"£fcl[f(s)]<tt =/(«,), 

a/ each point a > 0 of the Lebesgue set off. 

Proof. The existence of vLkft[f(s)] follows from Theorem 2.4, as does the 
existence of its Laplace transform for each a > 0 and all k > y/a. The 
remainder of the theorem follows from Theorems 2.4 and 3.1. 

COROLLARY. If 

(1) e-^u-^iu-1) £ L(0, oo ), y > 0, 
(2) v > - 1, e > 0, 
then vLktt[e~esf(s)] exists for each k > 0 and almost all t > 0, y£*,*[e~€*/($)] has 
a Laplace transform, and 

lim f V ' 'Ztf ,[<f 7(*)] * = <T7G0, 

a/ each point a > 0 of the Lebesgue set of f. 

Proof. Since u~(v+1)e~€/u and u~^v+7/i)e~~€/u
 a r e u n i f o r m i y bounded in ^ for 

u > 0, the hypotheses of Theorem 4.1 are satisfied, and the conclusion 
follows. 

https://doi.org/10.4153/CJM-1955-013-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-013-6


112 P. G. ROONEY 

THEOREM 4.2. Necessary and sufficient conditions that f(s) be equal almost 
everywhere to the Laplace transform of a function of the form ta(j>{t)y where 
<j>{t) € Lp(0, oo), p fixed, 1 < p < oo and a > — (p — l)/p, are that 
(1) ery«w-i/(w-i) e L(0, « ) , 7 > 0, 
(2) \\t*^LUe-<*f(s)]\\p<Mp, 
where Mp is independent of e and k, for all e > 0 and k > ko, for some 
v > max (—1, —1 —a). 

Proof of necessity. Let 

J»oo 

e-stta<j>(t) dt, 
o 

where #(*) G £P(0, oo), £ fixed, 1 < p < oo, and a > - (p - I)/p. 
If p < oo, and q = p/(p — 1), we have by Holder's inequality, for s > 0, 

Uoo ) l/p I /»oo ) l/q 

= (25)- ( a + 1 / 5 ) ( r (H-«g)) 1 / 8 | | ^ , (0 | | , = ilf5-("+1/5). 

Thus, for any y > 0, 

e - ^ z H / O " 1 ) ! < Mé^- t t -* 1 -» -^ = Me-^u*-11*, 

and hence since a — l/p > — p/p = — 1, we find that e~yUu~xf (u~l) £ L(0, <»). 
\î p = oo, we have for 5 > 0, 

J»oo 
e-'^||*(/)IU = ^(a+1>i> + DlkCOIL 

0 

and hence for any y > 0, since a > — 1, 

e-~*uu-l\f(u-')\ < r ^ « « r ( a + 1)|| 0(O||« € i ( 0 , «0. 

For the necessity of (2), we have by Theorem 2.2, if a > 0, 

r « ^ i * f I [ 6 - » / ( 5 ) ] = '£*.,[(*-"/(*))„] = '£*.,[*-"*(*)] 
where 

£(0 = JVr(/ + o_xo^ 
If a < 0, we set X = v + a, /x = — a in the corollary to Theorem 2.2 and 
obtain again 

tr"*+*Lktt[er"f(s)] = '£*.,[*—*(*)]. 
But 

^ «-V(* + e)-%(t)dt 

is the Laplace transform of a function in Lp. In fact, since ta(t + e)~a < 1 for 
/ > 0, we have \\ta(t + e)-a <j)(t)\\p < | |^(/) | |P < » . Hence we may apply 
Theorem 2.5, and obtain, for k > ko, 
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Proof of sufficiency. By (2) and (4; ch. 1, Theorem 17a for 1 < p < œ, 
Theorem 17b for p = œ ), there exists, for each e > 0, an increasing unbounded 
sequence {&*(e){, and a function </>,(/) Ç LP(0, » ) , with ||0e(/)|| < Mp, such 
that 

J»oo /»oo 

«(/) r " "+%,, «[«"7(5)1 * = «(0 *.(*) * 
- , w 0 t /0 

for every function «(*) Ç i f f(0, oo). But for each a > 0, e-<r*/a Ç £ff(0, oo), 
since a > — 1/g. Hence, by the Corollary to Theorem 4.1, we have for almost 
all a > 0 

«-7G0 = Um f V 1 **£*„ ,&r7(*)] * 
f _K30 « / 0 

= lim re-"ta ra "+aLki, t[e-J(s)] at = f V ' * " * . ( / ) (ft. 

But by the same theorems of (4), and since ||#e(0l|p < MVJ there exists a 
sequence {e*}, with lim et = 0, and a function <j>(t) Ç Lp(0, oo) such that 
| |0(/)| | < Mp, and such that for every a(t) Ç Lff(0, oo), 

J'oo /»oo 

a(/) <t>u{t)dt = I a(/) 0 ( 0 ^ . 
- , w 0 t /0 

Let Se be the set of measure zero in which, for a > 0, 

*~7(<0^ fV^.CO*; 
t / 0 

let 
oo 

2 = U Sf<. 
Then S has measure zero. 

Let or be positive and a (£ 2. Then since e - ^ " Ç Lq(0, oo), we have 

J»oo /»oo 

e-"f<}>(i{t)dt= e""f<j>(t)dt. 
. . ,_ 0 t / 0 

and the theorem is proved. COROLLARY. Necessary and sufficient conditions that f(s) be equal almost 
everywhere to the Laplace transform of a function in Lp(0, oo), p fixed, 
1 < p < oo, are that 
(1) e-^u-fiu-1) e L(0, oo ), T > 0, 
(2) H'Z'jfc.^""/^!!? < Mpifor all e > 0 awd & > &0, and for some v > — 1. 

Proof. Since (£ — l)//> > 0, we may always set a = 0 in Theorem 4.2 
and the result follows. 

The next theorem shows how far the factor e~€S is necessary. 

THEOREM 4.3. Sufficient conditions that f(s) be equal to the Laplace trans­
formation of a function of the form ta(j)(t), <l>(t) 6 Lp(0, oo), p fixed, 1 < p < oo, 
a > — (p — l)/p, are that 
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(1) er*iry(u-1) Ç L(0, œ), y > 0, 

(2) u-(v+a+2)f{url) 6 1,(0, Ô) /or some b > 0, awd some ? > - 1 swcA that 
v + a > — J, 
or 
(2') w-(^"+«)+7/4)/(^-1) Ç L(0, 5)/or 5om^ 5 > 0, and some v such that v > - 1, 
awd — 1 < v + a ^ — | , 
(3) ||r«>+«z:^[/(s)]||p < M „ £ > *o. 

Condition (1) is necessary for all such p and a. Condition (2) is necessary if 
pv > — 1, a?zd (2') is necessary if p(l + 2(a — v)) > 4. Condition (3) is 
necessary if p > 4/(1 — 2i>). 

Proof o/ necessity. Let 

/(*) = J V ¥"*(*)<« 
where <£(/) € £*(0, » ) , £ fixed, 1 < £ < oo, and a > - (p - I)/p. 

The proof of the necessity of (1) is the same as in the preceding theorem, 
and, as in its proof, we have \f(s)\ < Ms~(a+1/A) where q = p/(p — 1). 
H e n C e u-(v+«+v\f(u-l)\ < Mu-w+1/p\ 

and thus (2) is necessary if v + 1/p > 0, i.e., if pv > — 1. Also, 

M-<îi>+*)+7/*)\f(U-l)\ ^ Mu-.{l{v-a) + llP+l) 

so that (20 is necessary if \{y - a) + 1/p + | < 1, i.e., if p{\ + 2(a - v)) >4 . 
For the necessity of (3), we have, since p > 4 /(1 — 2v) that g(J*> + f) < 1. 

Hence if a > 0, the hypotheses of Theorem 2.2 are fulfilled, and 
t-av+aLktt[f(s)} = vLkft[fa(s)]. Thus by the Corollary to Theorem 2.4, since 
fa(s) is the Laplace transform of <£(/), and 4>(t) £ Lp(0, oo), 

||r-+«L,,,[/(s)]||p < iV|U(;)||P. 
If a < 0, and if we set X = v + a, /x = — a, the hypotheses of the Corollary 

to Theorem 2.2 are fulfilled and the same results ensue. Hence (3) is necessary. 

Proof of sufficiency. By (3) and (4; ch. 1, Theorem 17a for 1 < p < co, 
Theorem 17b for p = oo ) there exists an increasing unbounded sequence 
{kf} and a function <£(/) Ç LP(Q, oo), with | |$(^)IIP < Mp, and such that 

J»oo /*oo 

a(0 t~a v+aLki, t[f(s)] dt = a(l) 0(0 * 
^~ o Jo 

for every function a(/) Ç Lfl(0, «>). But for each <r > 0, ér*1/" € Lff(0, » ) 
since a: > — 1/g. Thus, by Theorem 4.1, we have for almost all a > 0, J»oo 

«-*"£*. «|/(s)]<ft 
- , _ 0 

= iim fV"r(ra^(,t[/(s)]) 

™e~atta<t>{t) dt. 

i->oo 

0 
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