ON AN INVERSION FORMULA FOR THE LAPLACE
TRANSFORMATION

P. G. ROONEY

1. Introduction. The literature of the Laplace transformation contains
many examples of inversion operators. Particular attention has been given
in this literature to the so-called ‘‘real” inversion operators, that is, those
operators which make use of values of the generating function arising only
from real values of the independent variable.

It is one of these ‘‘real”’ inversion operators which we shall study here, one
which has already been studied in part. If

I 16 = [Terew a
0
then the inversion operator is defined by the formula
3/2 2k o
11 Lo i) = 25 f " T, (2ke) f(k(x—;r9> dx
0

and we shall show that, under certain conditions,
}cim "Ly, [f(s)] = ¢().

The operator was originally given by Erdélyi (1). However the resulting
inversion and representation theories were not studied there. A special case
of the operator, namely » = — %, was studied by the author in (2).

We shall derive our results here partially from those of (2) by means of a
relation, also derived here, between the operators arising from different values
of ».

In §2 we find conditions for the existence of the operator, and derive a
number of its properties, including the one mentioned in the previous para-
graph.

Section 3 contains the inversion theory, and in §4 we find necessary
and sufficient conditions that a function be equal almost everywhere to a
Laplace transform of a function of the form #¢(f), ¢ € L,(0, ®),1 < p < =,
a>—(p—1/p.

The notations introduced by formulas I and II will be taken as standard
throughout this paper, as well as

I11 Ju(s) = J;me*“r“qs(t) dt,
v 6 = [Teriew)a
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2. Existence and properties of the operator. The following theorem gives
sufficient conditions for the operator to exist for a given ¢ (¢).

THEOREM 2.1. If

(1) e'¢(t) € L(0, »), v >0,
(2) G309 o (1) € L(0, 6), for some & > 0,
3) v> — 1,

then for each t > 0, and all k > ~t, "Ly, [f(s)] and "Ly, [f(s)] exist.

Proof. Clearly the existence of "Ly ,[f(s)] implies that of *L;,,[f(s)], since
l7(s)] < f(s). Let £ > ¢, and ¢t > 0. Now by (3; §7.21)

Ju(x) ~ <%>%cos(x —dvr— ir)asx —> o,
and hence R > 0 and M exist such that |J,(x)] < Mx~* for x > R. Thus
f;ke_""”’ "'y T (2ky)| dy
<@ M fo eIt gy = (2/R)MT (b + 2) ()",
Further, since » > — 1, the integral,

/2% kuy? 1
fo ey T, (2ky) | dy

is uniformly bounded in % for # > 0. Hence,
f —ku/tld)(u)! duf —kuy? [t v+1(J (Zky)[ dy
0
12k <)
= J o) du{f }e'k"”’”y”“lfv<2ky>l dy

< le —ku/l,¢(u)ldu + sz —ku/t —(1v+8/4)l¢(u)ldu < o,
by (1) and (2), and where

R /2K
M, = f ¥ T,(2ky) | dy, and My = MT (3w + $)(2/k) (ku /)~ 4%,
0

Hence, by Fubini’s theorem we have that

3/2 2%
2kt7re .J:) —ku/tl¢(u>' duf —kuy? [t v+1] (2ky) dy

_ 2™ o ™ kO Dur

== J,(2ky) dy [¢(u)| du
k3/262k .

—_ tw* f %VJ (Qkx ) J‘ -—k(I+1)u/t’¢(u)l du (Whel‘ex — y )

3/2 2k ) 1 ) _
=B (et (A D) s = 1 g0

exists for each ¢ > 0 and all & > ~t.
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CoroLLARY. If
(1 e'¢t) € L, »), v >0,
2) v> — 1,
then for each t > 0 and all B > vt, and each € > 0, *Ly Je~**f(s)] exists.
Proof. e=f(s) = [¢®e*'¢.(t) dt, where ¢.(f) = 0, for 0 < ¢ < ¢, and ¢.(f) =
¢ (t — €) for ¢ > e. Thus the conditions of Theorem 2.1 are clearly fulfilled
relative to ¢.(¢), and "L, ,[e~f(s)] exists.

The next theorem relates the operators arising from different values of ».
THEOREM 2.2. If

¢y e'¢t) € L0, »), v >0,
2) k30 ¢ () € L(0, 8) for some s > 0,
(3) A>—1, p>0,

then f,(s) exists for s > 7,
MeLe, df ()] and Ly, [fu(5)]
exists for each t > 0 and all k > ~t, and for all such k and t,
MLy J[f()] = 2L, o[fu(s$)]-
Proof. The existence of f,(s) is clear. The existence of
MuLy,[f(s)] and of MLy ([fu(s)]

follows from Theorem 2.1.
Now by (3;§12.11),forA > — 1, > 0,

P’ i . . _
Inu(z) = 5% , Jx(z sin 6) sin*™6 cos™ 6 6.
Hence, setting z = 2kxt, and z sin 8 = 2kuf, we have

“ T
SO Iy (k) = -I:]%—)f WP I 2kut) (x — w)*du.

Further, for x > 0, # > 0, and & > ¢ > 0,

J;‘”(x )u— (M) dx = f (x - u)”_ldx J‘me—k(z+l)y/t¢(y) dy
= [ ety f T — )

( ) I‘(u)f KDY R () gy

- (4)re )f,‘(k(qu D),

the interchange of integrations being valid by Fubini’s theorem since
Jrermsmlay [Tt — wp i
u
t »® © e _
= (E) T'(w) fo o) | dy < .

Il
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Thus for 2 > v¢ > 0,

3/2 2k ©
ML 06 = Bt [0 g, ont) f(HEHD) g

I N <k(x + 1)) J' ) 3 1
=t )\ ) dx ) @k & — w) Tdu
kl-‘+3/2e2k o n ) foo 1 (k(x + 1))

#713/2 % (oo
-5 “*“Jx@ku*)fn(M) du
tr 0 ¢

= ML, [fu(5)],
the interchange of integrations being justified by Fubini’s theorem, since by
Theorem 2.1 *L; ,[f.(s)] exists and thus
k 1
(150)

J; i @had) | du J; " — w)t
< J:ou“le(%u%)l du J;m(x — u)“"lf(k—(ﬁtil—)> dx
- (%)"r(ﬂ) fo "1 2k [f,,(k—(ﬁf—l—)) du < o,

The theorem is clearly true if u = 0.

dx

CoroLLARY. If

(1) e (1) € L(0, @), v >0,
(2) @319 (1) € L(0, 8), for some & > 0,

then f_,(s) exists for each s > 7.
MuLy, f-u(s)] and *Ly,.[f(s)]
exist for each t > 0 and all k > ~t, and for all such k and t,
MieLe, df-u(9)] = 2Ly J[f(s)].
Proof. The existence of f_,(s) is clear. Let ¥ () = ¢ (¢) and

) = [T a=1.0).
Clearly
e y()) € L(0, @)
for any 1 > v, and
f—@htsiny (f) = —O+39¢.(5) € L(0, ).
Hence M=L; ,[g(s)] and #*L; ,[g.(s)] exist and are equal, by Theorem 2.2,
for each £ > 0 and all £ > 41, and hence since ;1 was an arbitrary number

larger than 4+, for all B > ~t. But g(s) = f_.(s), g.(s) = f(s), and thus the
statement is proved.
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Let I,{¢(u);t} denote the Riemann-Liouville fractional integral of order
a,ie.,
t
—1 a—1
Lle: o) — | @@ [ e —w s a0,
¢(t)) a = 0.
The next theorem relates the inversion operator and the fractional integral.

THEOREM 2.3. If

(1) er'(t) € L(0, @), v >0,
(2) (=G 39 () € L(0, 8), for some s > 0,
(3) v> — 1: a > Ov

then for each t > 0, and all & > ~+t,

Ly sTf ()] and L.{"Ly.[f(s)]; t}
exist and are equal.

Proof. s~*f(s) is the Laplace transform of I,{¢(u); ¢}, which transform
exists, by (4; ch. 2, §8), for s > v. Hence, by Theorem 2.1,

Ly, sf (s)]
will exist, for each ¢t > 0 and all & > «t, if ~GO+a+3/9] (4 (4); ¢} € L(0, 8) for
some § > 0. But, using the same 6 as in (2), we have

S roe oo g
< (@)™ f:r‘%“*"”*""”dt e = w o) au
- (P(a))-—l :t—(‘}(v+a)+3/4)dt‘j;t(t _ u)ga—l(t _ u)ia[d)(u), du
< (P@)™ fst“%"““’dt f @ = o) du
05 06
= (T(@)™ f [6(u)| du f (t — )Py
< (T(a)™? fo 5u“*”+3/“’1¢ )| du fa(t — w)l*dt
= 3P+ 1) :u“*”““’ (6 — u)*|p(u)| du

)
< 28" (e + 1))} fo w0 g (u)| du < .

Hence
7Ly, fs7f ()]
exists for all £ > 0 and all & > ~i.
Now, for b > vt > 0,

A2) - afen(2)
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1—a —(a+1) Q) . }
el (£)

= —1@5 f (t — u)* " u“tdu f e o (v) dv

T

— o —bo/u a—1 —(a+1)
= Tw) v ¢ (v) dvf e t —u) du

[

= Fa e [T s (wheres = (/) = 1)
b J:) ewbv/td)(v) dy = b_af< ;) .

The interchange of integrations is justified by Fubini’s theorem, since
b > ~t, and since, with the same change of variables as above,

tl_a ® a ¢ —bo [u a—1 —(a+1) 3« ‘I.m —bv/t
M—F(Q)J;v[qs(v)]dvj;e ¢ —u)" u du =b ) |¢(@)] dv < =,
by (1).
Thus, setting b = k(x + 1), we have

L (6] = e [T g ry (HE D) (kD) o

3/2 2% o)
= k—wf f x0T T, o (2kxh) Ia{u_(““y_a(k—(xv;:ﬁ) ; t} dx

0

—a;3/2 2% preo
= ]a{ug;f x%(l’+a)]y+a(2kx%)f‘a<k_(ﬁ.il_)> dx; l}
um 0 u

= 1a{t "Ly [ foa(9)]; 2}
The interchange of integrations is justified by Fubini’s theorem. For,
k> vt >0, and the same argument used to show the existence of
rtal, [s7f(s)] can be applied to show the existence of *teL; ,[s~2f(s)], and

For

thus
3/2 2k ©
k Tf f x%(v+a)ljy(2kx%)’ Ia{u—(ai-l) f-a(k(x;:— 1)>> ; t} dx
0
3/2 2k (oo
< k ﬂ_i f %(v+a)|]v(2kx%)l [a{u—(&+l)f'_a<k (x :’ll) ; t} dx
0

_E J 717, 20 f>|<k(x + ”)_af@(’“ - 1>) dx < o

™

But by (1), (2), and the corollary to Theorem 2.2,

u=e Ly [fa($)] ="Lgu[f(5)].
Hence finally, for each ¢t > 0 and all 2 > +¢,
el s (s)] = Ia{va,u[f(s)]; t}-
The following theorem gives sufficient conditions that *L; [f(s)] exist

for a given f(s), and yields a relation involving the Laplace transformation
of the operator.
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TuEOREM 2.4. If
(1) e™uf@™) € L, »), v >0,
) w0 € L0, 8), for some 5 > 0,

® &) = [ e an s>,

) »> -1,
then
(1) "Ly, [f(s)] exists for each k& > O and almost all t > 0,
(i) o' "Ly..—[g(s)] and f e " "Ly, [f (s)]dt
o A

exist and are equal for each ¢ > 0 and all & > v/o.
Proof. By Theorem 2.1,

"Ly~ [g(s)] and "Ly ,~[§(s)]
exist for ¢ > 0 and all £ > vy/¢. But,

3/2 2%

0 Ly o-i[g(s)] _F ;; f & T, (2kx?) dx J‘me_k("“)""u—lf(u_l) du
0 0
3/2 2k ® )
_k Tf f " T, (2kxt) dxf e‘”t‘lf<k(x—t+l)-> dt (where t = k(x+1)u)
0 0
3/2 2k © ©

k Wf ‘f e—vlt—ldtf xévjy(zkx%)f<le(ii__l_).> dx

0 0

¢
= j e—dl va’ ldt.
0

The interchange of integrations is justified by Fubini's theorem, since
"Ly o~:[G(s)] exists for ¢ > 0 and all £ > v/¢, and hence

J‘ x%”[J,(2kx%)|dxf e FEV T £ | du
0 0

= J;mx%”lfy@kx%)lg(k(x + 1)o) dx < .

Thus, by Fubini’s theorem *L; ,[f(s)] exists for each £ > 0 and almost all
t > 0, and has a Laplace transform, and the equality stated is true.

CoroLLARY. If
(1) ™ fw™) € LO, @), ¥ > 0,

2) g°(s) = f U e Fw Y du, s> v, e > 0,
0
3) v>-—-1,
then
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(1) "Ly, Je~5f(s)] exists for each k > 0 and almost all ¢t > 0,

(i1) 0 Lio-[g(s)] and J' e Ly e f(s)] dt
0
exist and are equal for each ¢ > 0 and all kB > v/o.

Proof. The hypotheses of Theorem 2.4 are clearly fulfilled relative to
e=**f(s) except possibly (2). But u—G"+3/9¢—</ is bounded for % > 0, and (2)
is fulfilled also. Hence, applying the results of Theorem 2.4 to e~*f(s), we
arrive at the above conclusions.

The next theorem concerns the behaviour of *L; [e=¢*f(s)] when ¢(¢) €
L,(0, »), 1 <p < =.

TaeEOREM 2.5. If ¢(t) € L,(0, »), p fixed, 1 < p < o, and v > — 1,
then

(1) "Ly, e~ (s)] exists if k, t, and € are positive,
(i1) ko and N exist, N independent of k, such that for k > ko,

P L, e~ ()l < Vo @)]],-

Proof. Existence follows from the corollary to Theorem 2.1, and for all
positive & since any positive ¥ may be used.

Now *Ly Je=5f(s)]
k3/2 2k o ©
f x T, (2kx?) e_‘k(”l)”dxf eI g () du
0

t‘ll'i 0
k3/2 2k

= f f eIty (1) duf g PR OTILE 1 (2kx?) dx
0 0

1%
pHe

oo}
- ; J:) e—k((u+e) t= 4 (ute)"10) (u + e)—(v+l)¢‘(u) du,

i

where we have used (3; §13.3, (3)), and the interchange of integrations is
justified by Fubini’s theorem if & > 0, ¢ > 0, since *Ly, [e~**f(s)] exists by
the Corollary to Theorem 2.1 applied to [¢ ()|, and thus,

[ 1 reh) e e [T ) du < .
0 0

Hence, for 1 < p < =, we have, using Holder’s inequality,

"Ly, fe”f (1P

RN it o - rato-1 0 —4D) »
< 3 . e (u + ¢ |6 () "du

© ) (1) nl/e
— -1 -1 —_—
fe k@ei— ), 64D g
0

< {2k’l‘ek va(zk)}p/q t"kséfk tfme—k((u&e)t—‘+(u+e)-1 1) (u + e)—(v+1)| ¢(u) lﬂdu'

™ ™ 0

by (3; §6.23, (8)), where ¢ = p/(p — 1). Hence
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J o detronpar

3 2k /4 15 2% © ©
< {2k e 1?!/(2]3)} k’e f ]qS(u)[”duf e——k((u+€)t"+(u+e)"‘t)tV(u + 6)—(v+1)dt
0 0

™ 7|'*
1 2k 2/q 3 2% ©
_ {le If,(2k)} 200" K 11 (28) f o) P
m ™ 0
Hence

1% 1/q 3 % 1/p
P de ol < {2 RGO ),

But by (3; §7.23, (1)), Kx(2k) ~ e~%7%/2k} as B — . Hence ky(A) and N
exist such that for k> ko, 2k%¢*K,(2k)m* < N. Thus if ke > max(k(»),
ko(v + 1)), we have

"Li, de=follls < No®)l]5 E > k.

If p = », we have

I"Le. fe™F()]] <

12
kie™
o

J;e—k(ut“+m“)t"u"("+l)du‘I¢(t)l|w

1 2%
= e Kol 40 L < N1
for & > k¢(»), so that
"L, dle=f ()]lleo < N¢ (0]
CoROLLARY. If ¢(t) € L,(0, ©), p fixed, 1 <p < o, p > 4/(1 — 2),
and v > — 1, then
(1) "Ly .[f (s)] exists if k and t are positive,
(2) ko and N exist, N independent of k, such that for k > ko,
”va,t[f(s)]”p < N“¢U)”p-

Proof. If p > 4/(1 — 2v), then ¢g(3v + 3/4) < 1, where ¢ = p/(p — 1).
Hence, by Hélder’s inequality,

) [ 1/¢q 8 1/p
f t—(}?+3/4)l¢(t)l dt < { f t—q(%"+3/4)dt} {f |¢(t) Ipdt} < o,
0 0 0

so that, by Theorem 2.1, *L, ,[f(s)] exists for £ > 0, and for all 2 > 0 since
any vy > 0 may be used.

The remainder of the corollary follows in exactly the same manner as in
Theorem 2.5.

3. Inversion of the transformation. The following three theorems comprise
the inversion theory for the operator.
THEOREM 3.1. If
(1) ev'¢(t) € L(0, »), v >0,
and if
2) v > —% and t=tV¢ () € L(0, d) for some & > 0,
or if
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2) =1 <v <} and t=@+3/9¢(t) € L(0,8) for some & > 0,
then, at each point t > O of the Lebesgue set of ¢,

}cim "Ly [f(5)] = ¢@).

Proof. Case (a): v > — %. Setting A = — 3 and p = v 4+ 3 in Theorem
2.2, we have that *L; [f(s)] and (0t =L, ,[f,43(s)] exist and are equal.
But by (2; Theorem 1), under the above conditions

lim 7Ly, [y (5)] = £ ¢ (0)
k-0
at each point ¢ > 0 of the Lebesgue set of ¢. Hence, at each such point,
lim "Ly [f ()] = ¢(®).

Case (b): —1 <v < 1. Setting A =», u = — (v + %) in the Corollary
to Theorem 2.2, we have that —*L; ,[f,+1(5)] and =0+ 7L, [f(s)] are equal.
Hence, as in case (a), using (2; Theorem 1) we have

lim "Ly [f ()] = ()
at each point ¢ > 0 of the Lebesgue set of ¢.

TaEOREM 3.2. If
(1) e'¢(@) € L(0, =), v >0,
2)a>0,v>—1,
and if

B) a+v> — 3and 0tV¢() € L(0,d) for some § > 0,
or if

(8) a4+ v < — % and =&+3/9¢(t) € L(0,6) for some & > 0,
then for each t > 0, of the Lebesgue set of In{¢(u); t}

Lin L{"Lyalf(s)]; t} = L{¢(w); t}.
Proof. By Theorem 2.3, under the above conditions

L Lelf()]; t) = " "La s ()]

Thus the theorem will follow from Theorem 3.1, if either » + « > — % and

f~O+etDT { o (u); ¢} € L(0, 8) for some 8 > 0, or » + o < — % and $~Go+a+3/9)
L{o(u); t} € L(0,6) for some & > 0. But if » +a > — %, then (~0+D
o) € L(0,96), and thus

fst“(”“*”lfa{ o(u);th] dt < (D)™ fﬁt“(”"*”dt f t(t —u) 7 o(u)| du
0 s s 0 0
= (r(a))—lf0 |¢ ()] du f R (T 7

= (I'(a))™" fsu_("+1)}¢(u)| duf (1 — )" 'do (where v = u/t)
0 u/é

< (T(a)™ J:)Bu_("“)w(u)l du fv”u — ) ldy < o,
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Further, we have already shown in the course of the proof of Theorem 2.3
that if t—(%V+3/4>¢(t) € L(0, 8), then so is t—(%(v+a>+s/4)ja{¢(u); t}.

We conclude this section with a theorem removing the restrictions on the
behaviour of ¢(¢) at ¢ = 0.

THEOREM 3.3. If
(1) e'¢() € L(0, =), v >0,
@) v>—1.
then for each ¢ > 0, and at each point t > € such that t — € is in the Lebesgue
set of ¢(u), we have

}cim Li.ale“f(s)] = ot — o).

Proof. We have e=¢f(s) = ff’e’“q&e(t) dt, where ¢.(f) =0, 0 < t < ¢ and
¢.(t) = ¢(t — €), t > e. Thus the hypotheses of Theorem 3.1 are clearly
fulfilled relative to ¢.(¢), and the conclusion follows.

4. Representation theorems. The first theorem of this section is fundamen-
tal in the representation theory.

THEOREM 4.1. If
1) euf(u?) € L0, =), v >0,
and if
@) »> — %, and wCtDf(w=") € L(0, d) for some 6 > 0, or if
©2) —1<v< — % and wS+19f(4=1) € L(0,8) for some &> 0,
then "Ly [f(s)] exists for each k& > 0 and almost all t > 0, "Ly ,[f(s)] kas a
Laplace transform, and

im | €L df(s)] dt = (o),

ko 0

at each point ¢ > 0 of the Lebesgue set of f.

Proof. The existence of *L; ,[f(s)] follows from Theorem 2.4, as does the
existence of its Laplace transform for each ¢ > 0 and all £ > v/o. The
remainder of the theorem follows from Theorems 2.4 and 3.1.

COROLLARY. If
1) e~ (ut) € L(0, =), v > 0,
2)v>—1, e>0,
then "Ly, [e=5f(s)] exists for each k > 0 and almost all t > 0, "Ly Je=<3f(s)] has
a Laplace transform, and

im | 60" L, e ()] dt = e F(o),

k>0 0

at each point ¢ > 0 of the Lebesgue set of f.

Proof. Since u~+De=¢/ and u~4»+7/9¢=¢/% gre uniformly bounded in % for
# > 0, the hypotheses of Theorem 4.1 are satisfied, and the conclusion
follows.
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THEOREM 4.2. Necessary and sufficient conditions that f(s) be equal almost
everywhere to the Laplace transform of a function of the form 1°¢(t), where
o) € L,(0, ®), p fixed, 1 < p < o anda > — (p — 1)/p, are that
(1) e™uYf(uw) € L(0, ©),v > 0,

2) ||t oLy, Jesf ()], < My,
where M, is independent of ¢ and k, for all € > 0 and k > ko, for some
v > max (—1, —1 — a).

Proof of necessity. Let
6 = [Terrsma
0

where ¢(¢) € L,(0, »), p fixed, 1 < p < @, and a > — (p — 1)/p.
If p < »,and ¢ = p/(p — 1), we have by Holder’s inequality, for s > 0,

w n{ o 1/q
ot < s pag” e
0 0
= ()OI + ag)) |6}y = M5,
Thus, for any v > 0,
e—Wu—l[ f(u—l)[ & Mevy—(1—a—1/0) = [fg—rige—1/p,
and hencesincea — 1/p > — p/p = — 1, we find that e u"f (u=1) € L(0, ).
If p = o, we have for s > 0,
fo)I < f e ealpoll. = 5P+ DO
and hence for any ¥ > 0, since a > — 1,
e f(w )| < e™urT (e + Dl ¢ @l € L(0, »).
For the necessity of (2), we have by Theorem 2.2, if « > 0,
terrely e f(s)] = "Ly, (7 (s))a]l = "Ly, fe~*°g(s)]

where
g(s) = f et + "o (2) dt
0

If @ <0, we set A\ =» 4+ «a, p = — « in the corollary to Theorem 2.2 and
obtain again

e vtel e sf(s)] = "Ly, Je g (s)].
But

¢(s) = fo T+ ) (0)dt

is the Laplace transform of a function in L,. In fact, since (¢ + ¢)™ < 1 for
t >0, we have ||f2(t 4+ &= ¢o®)]], < |lo@)]], < «. Hence we may apply
Theorem 2.5, and obtain, for £ > k,,

[[t= Ly, [e=F ()]l = ["Li, le= gl < Nt + =6 O)l, < Nll¢@ll5-
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Proof of sufficiency. By (2) and (4; ch. 1, Theorem 17a for 1 < p < =,
Theorem 17b for p = o), there exists, for each ¢ > 0, an increasing unbounded
sequence {k;(e)}, and a function ¢.(f) € L,(0, =), with |[¢.(¢)|| < M,, such
that

fim | ") £ L, Je () dt = f a(t) de(t) dt
1300 0
for every function a(f) € L,(0, «). But for each ¢ > 0, e 7% € L,(0, =),
since « > — 1/g. Hence, by the Corollary to Theorem 4.1, we have for almost
alle >0
EGo) = lim | e L 6] df

00
[ee]

=lim | e % "Ly, Je f(s)] dt = f e " e(t) dt.
0

o YO0
But by the same theorems of (4), and since ||¢.(¢)|], < M,, there exists a
sequence {e¢}, with lim e; = 0, and a function ¢(¢) € L,(0, ») such that
llo@)|| < M,, and such that for every a(t) € L,(0, ),

lim f a(t) ¢, () dt = f a(t) ¢(2) dt.
i 0 0
Let 2. be the set of measure zero in which, for ¢ > 0,

e “f(o) # J;me_”t“q&e(t) dt;

let

Then Z has measure zero.
Let o be positive and ¢ § Z. Then since e=%* € L (0, »), we have

f(o) = lim e “’f(¢) = lim J; e b (t) dt = f e (t) dt.
300 150 0
and the theorem is proved.

COROLLARY. Necessary and sufficient conditions that f(s) be equal almost
everywhere to the Laplace transform of a function in L,(0, »), p fixed,
1 <p < =, are that
(1) e"’“u_lf(u"l) E L(Oy m)v Y > 01
(2) |I"Ly,de==5f ()l < My, for all € > 0 and k > ko, and for some v > — 1.

Proof. Since (p — 1)/p > 0, we may always set @ = 0 in Theorem 4.2
and the result follows.

The next theorem shows how far the factor ¢—** is necessary.

TureoreM 4.3. Sufficient conditions that f(s) be equal to the Laplace trans-
formation of a function of the form ¢ (t), ¢(t) € L,(0, =), p fixed, 1 < p < o,
a> — (p — 1)/p, are that
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(1) e f(w™) € L(0, »), v >0,

and

(2) uOtedDf(y=1) € L(0,8) for some 6 > 0, and some v > — 1 such that
v+ a> — 3,

or

(2) u—GU+a+1/0f(y=1) € L(0, 8) for some s > 0, and some v such thatv > — 1,
and —1 <v+a< — 1%,
@) It Ly [f()]ll, < My, b > ko

Condition (1) is necessary for all such p and a. Condition (2) is necessary if
pv > — 1, and (2') is necessary if p(1 + 2(a — v)) > 4. Condition (3) is
necessary if p > 4/(1 — 2v).

Proof of necessity. Let -
16 = [Teren a
0

where ¢(¢) € L,(0, ©), p fixed, 1 < p < @»,anda > — (p — 1)/p.
The proof of the necessity of (1) is the same as in the preceding theorem,
and, as in its proof, we have |f(s)| < Ms=©+1/9 where ¢ = p/(p — 1).

Hence w0tk | f ()| < My—O+1+1m),

and thus (2) is necessary if v + 1/p > 0, i.e., if p» > — 1. Also,
w—GOr+TID| £ (y=1)| < Mu~Go-a+1mtd

so that (2") isnecessary if 1(v —a) + 1/p+ £ < 1, i.e, if p(1 + 2(a — »)) >4.

For the necessity of (3), we have, since p > 4/(1 — 2») thatg¢(3v + %) < 1.
Hence if a > 0, the hypotheses of Theorem 2.2 are fulfilled, and
e vl Jf(5)] = *Ly i[fa(s)]. Thus by the Corollary to Theorem 2.4, since
f«(s) is the Laplace transform of ¢(¢), and ¢ () € L,(0, =),

|7 =Ly [f ()]l < N|| ¢ @D,

Ifa < 0,and if weset\ = v + o, u = — «, the hypotheses of the Corollary
to Theorem 2.2 are fulfilled and the same results ensue. Hence (3) is necessary.

Proof of sufficiency. By (3) and (4; ch. 1, Theorem 17a for 1 < p < o,
Theorem 17b for p = =) there exists an increasing unbounded sequence
{k;} and a function ¢() € L,(0, ), with [|¢(8)||, < M,, and such that

i [“a) L g d = [ Tal) o) a1

150
for every function a(t) € L,(0, ). But for each ¢ > 0, e € L,(0, »)
since « > — 1/q. Thus, by Theorem 4.1, we have for almost all ¢ > 0,

#(o) = lim 0°°e—” L, [f(s)] dt

>0
©

= lim et "Ly, LS (5)]) dt

500 0

fwe"’ o (t) dt.
0

I
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