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1. The object of this paper is firstly to extend the theorem of
Pascal concerning six points of a conic to sets of 2 (n + 1) points of
the rational normal cur v̂e of order n in space of n dimensions; secondly
to explain why a wider extension to other sets of 2 (n + 1) points in
\n] must be sought; and lastly to give briefly an extension to [3] and
[4] which will be further generalised in a later paper. The striking
feature of Pascal's theorem—that each of the sixty ways of arranging
the points in a cycle, or as vertices of a closed polygon, leads to
a different version of the theorem—is retained in the following
extension to [n].

If 2 (n + 1) points of a rational normal Cn in [n] are taken as the
vertices of a polygon, the [n — 2]'s which are determined each as the inter-
section of one of the n + 1 pairs of opposite primes of the polygon have the
property that every line which intersects all but one of these [n — 2]'s must
also intersect the last.

To establish this the procedure is the same for all values of n;
proofs for the values 3 and 4 of n will explain it.

2. In space of three dimensions, if eight points Plt P2, P3, Pi, -P5,
P6, P7, Pa of a twisted cubic curve are taken as vertices of a skew
polygon of eight sides, the four lines of intersection of opposite planes
of the polygon, [P-^P^P^ and P6PGP7; P2P3P4 and PeP7Ps;
P^PiPs and P7PaP1; P± P5 P6 and Ps Px P2) will be generators
of a hyperboloid.

I t is clear that, if au a2, a3, a4, a5, a6, a7, a8 denote any eight
numbers, then

(cii — ab) (a2 a3 a4 — a6 a7 as) + (a2 — %) («3 «4 a5 — a7 a8 ax)
+ (% — ^7) (a4 «s «e — as a1 a2) + (a4 — <*$) (% «e «7 — ai ai ^3) = °-

Replace an by (6 — en)/(<j> — en), and clear away the fractions by
multiplying by the product of all the quantities (<f> — en). The first
factor of the first term, a1 — a5, gives us

(6 - e i ) (<f> - e 5 ) - (6 - eb) (<f> - ex) = {et - eb) (6 - <f>).
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When the common factor (9 — <£) is rejected, the first factor in each
term is reduced to a constant, ex — e3, e2 — e6, e3 — e7, or e4 — e8.

The second factor of the first term, a2 a3 ai — «6 a7 as, gives us

(9 - e2) (9 - e3) (9 - e 4 ) , (9 - e6) (9 - e7) (9 - e8)
(<f> - e2) (<f> - e3) (<f> — e 4 ) , (<j> - e6) (</> - e7) (<£ - e8)

or, when the determinant is expanded, six terms (9r <j>" — 0' <f>r) (r and «
having values 0, 1, 2 or 3), each term with a coefficient made up from
the numbers en. But, if e1( e2, . . . . e7, e8 are values of the parameter
6 which correspond to eight points Pu Pz, . . . . P7, P8 of the twisted
•cubic curve

x 0 : x 1 : x 2 : x% :: 9 3 : 6 2 : 6 : 1 ,

these coefficients are seen to be the six coordinates of the line of
intersection of the planes P 2 P 3 Pt and P 8 P7 Ps. Thus we have four
lines, each determined as the intersection of two planes; and, if we
take any one of the six coordinates of each line and multiply by the
respective constants

ei — e3, e2 — e6, e3 — e7, e4 — e8,

the sum vanishes. This proves that a linear complex which contains
three of the lines must also contain the fourth, or that any line which
meets three of the lines must also meet the fourth, or that the four
lines are generators (of the same system) of a hyperboloid.

3. In the same way, if we take ten numbers ax, a2, • •. ra8, a9, a10)

the sum of five expressions such as

(<*! — a6) (a2 a3 a4 a6 — a7 as a9 a10)

is seen to vanish. When we replace an as before by (9 — e,,)/(<£ — en)
and clear away the fractions, the first factor is reduced to the
constant ex — e6. The second factor gives us a determinant of two
rows as before, quartie functions of 9 and (f> taking the places of cubic
functions. When we consider the points Plt P2, . . . . P8, P9, P10 on
the rational normal C4 in [4],

x0: xi_: x2: x3: x4 :: 04 : 93: 9~: 9: 1,

which correspond to the values ex, e2, . . . . e8, e9, e10 of 9, we see that
the functions of the numbers en which appear as coefficients in the
determinant are the ten coordinates of the plane common to the
primes P2P3P4P5 and P7 P8PgP10. As before, the fact that this
determinant multiplied by ex — e6 and the four similar products
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(obtained by moving the suffixes forward cyclically in their natural
order) have zero sum proves that every line which intersects four of
these planes must intersect the fifth also. The planes form a set of
five associated planes in [4]. Hence we have the theorem:—

In [4], if ten points of a rational normal quartic curve are taken
as vertices of a polygon of ten sides, the five pairs of opposite primes of
the polygon intersect in five planes which form a set of five associated
planes.

Exactly similar reasoning proves the theorem enunciated in § 1
for any other value of n. In [n], a [n — 2] is the dual of a line; and,
just as a line is defined by \n{n + 1) coordinates, each a determinant
of two rows in the coordinates of two points of the line, so a [n — 2]
is defined by \n (n + 1) coordinates, each a determinant of two rows
in the coefficients of the equations of two primes through the [n — 2].
That a line and a [n — 2] should intersect, i.e. should have one
common point and lie in a prime, imposes one condition upon the
coordinates of the line and the [n — 2], linear in the coordinates of
each.

4. Starting from a set of points on a curve, we have been led to
a system of [n — 2]'s possessing a certain property. Can the process
be reversed? Can we for example, working in space of three
dimensions, start from four generators of a hyperboloid and work
back to a skew octagon whose opposite planes intersect in the
generators, and will the eight vertices of the octagon lie upon a
twisted cubic curve % For ordinary space the answer to the questions
is known.

In Vol. 12 of Ada, Mathematica there are papers by Dobriner
(pp. 339-361) and Zeuthen (pp. 362-366) dealing with the eight
points common to three quadrics, and in the second paper Zeuthen
proves that these eight points possess the property that we have
proved in § 2 for any eight points of a twisted cubic curve.
A geometrical proof by Schroeter will be found in Vol. 14
(pp. 207-209). But Prof. H. F. Baker has drawn my attention to a
very remarkable paper published in 1850 in Vol. 5 of the Cambridge
and Dublin Mathematical Journal (pp. 58-69), by T. Weddle, who
not only anticipated Zeuthen's discovery by 35 years but at the same
time established the converse theorem. Given four generators of a
hyperboloid, 1, 2, 3, 4, in order to derive a skew octagon we take any
two planes through each generator, Plt Q1 through 1, and so on. We
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arrange these planes in a cycle, e.g. Px P2 P3 Pi Q\ Q2 Qi Qi Pi Pz so that
the two through a generator are opposite. Then each two consecutive
planes in the cycle intersect in a side, and each three consecutive
planes intersect in a vertex of the octagon. The eight vertices,
Weddle shows, are the common points of three quadrics. Exception-
ally they will lie upon a twisted cubic curve, but they will not
generally do so.

Thus it appears that, although the theorems concerning 2 (n + 1)
points of a Cn in [n] lend themselves readily to extension to space of
any number of dimensions, they do not fully illustrate the properties
of the configurations which they lead us to study. Algebraic methods
of proof are greatly simplified when the parametric expressions for
the coordinates of points of a Gn are available for our use; without
them algebraic methods tend to become laborious. But certain
results may be obtained by geometrical reasoning and are of import-
ance. A certain well-known figure will be found useful.

Place six points A, Z, B, X, C, Y, round an oval and join AB,
BC, CZ, ZY, YX, XA. Let BC and YX meet in U, CZ and AX
in V, ZY and AB in W. By Pascal's theorem, if A, B, C, X, Y, Z
lie on a conic, U, V, W lie on a line; conversely, if U, V, W are
collinear, A, B, C, X, Y, Z lie on a conic; moreover the pencils of
lines X (ABC'Y) and Z(ABGY) have equal cross-ratios.

5. To prove Weddle's theorem in space of three dimensions, let
1, 2, 3, 4 be four lines such that every transversal that meets three
of them must also meet the fourth line; and let Plt P2, P3, P4,
Qi, Qz, Qz> Qa be eight planes, each passing through the line denoted
by the suffix. Taken in this order these planes determine a skew
polygon of eight sides and eight vertices whose pairs of opposite
planes intersect in the lines 1, 2, 3, 4. Denote the vertices of the
octagon by A, B, C, D, E, F, G,H, A, B,G lying in Pu B, C, D in P2,
C, D, E in P3, and so on.

Consider the figure in the plane Px in connection with the figure
described above. A, B, G are in the plane; we suppose that Z and X
are the points where DE and GH respectively meet the plane. Then
BC, CZ, BA, AX are the lines in which Px is met by P2, P3, Q4, Q3.
Again P4 or DEF and Q2 or FGH meet Pj in two lines through Z and
X respectively; we suppose them to be ZY and XY. Then, since U
lies on P2 and Q2, V on P3 and Qz, W on P4 and Qi} U, V, W are the
points where the lines 2, 3, 4 meet the plane Px; the fourth line 1 lies
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wholly in the plane. Since the line UV meets the first three of the
lines 1, 2, 3, 4 it must also meet the last, i.e. V, V, W must be
collinear, A, B, C, X, Y, Z must lie on a conic and the four planes
through DE and A, B, C, Y must have the same anharmonic ratio as
those through GH and the same four points. That is to say

DE (A, B, C, F) = GH (A, B, C, F).

It follows that there is a quadric on which lie the lines DE and GH
and the points A, B, G, F. Each of the planes Pn and Qn provides a
quadric such as this passing through the eight points A, B, C, D, E,
F, G, H,—eight quadrics in all.

Conversely we may start (as Schroeter does) from a set of eight
points common to three quadrics and therefore to a net of quadrics.
If the points, in order, are A, B, C, D, E, F, G, H, one quadric of the
net has the lines DE and GH as generators, and Pascal's theorem
applied to the section of this quadric by the plane ABC proves that
the four lines of intersection of opposite planes of the octagon
ABCDEFGH are all met by a line in the plane ABC. Similarly it is
shown that they are all met by a line in the plane BCD, etc., etc.,
i.e. by eight lines in all. It is proved beyond doubt that the four
lines belong to a regulus and that the eight points in the preceding
paragraph are common to a net of quadrics.

6. In space of four or more dimensions similar results are
obtained, but it is not possible to draw conclusions so simply. We
may confine ourselves to [4]. The analogue of the four lines is the
well-known system of five associated planes, which will be denoted
by 1, 2, 3, 4, 5: two primes pass through each plane, Px and Q1 through
1, P2 and Q2 through 2, and so on. Arranged in cyclical order

•Pi) Pz> P31 Pit P5; Qu $2> Qs> Qi> Qo>

they generate a polygon of ten sides and ten vertices, each vertex
being the point common to four successive primes. The vertices
may be named A, B, C, D, E, F, G, H, J, K, A lying in the primes
Plt P2, P3) P4, B in P2, P3, P4, P5, and so on. Four consecutive
vertices lie in each prime, e.g. A, B, C, D in P4; pairs of opposite
primes intersect in the five associated planes, e.g. the primes ABCD
and FGHJ, or P4 and Qit intersect in the plane 4.

As before consider the figure in the plane ABC, in connection
with the figure described at the end of §4. The points A, B,C are
shown in that figure; the points Z and X are the points in which the
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planes DEF and HJK meet ABC, for in [4] two planes have one
common point; the lines ZY and XY are the lines in which the
primes DEFG and GHJK respectively meet ABC.

The lines AB, BC, CZ, ZY, YX, XA are the lines of intersection of
ABC with the primes JKAB, BCDE, CDEF, DEFG, GHJK, HJK A,
or P2,Pr» Qu Qi> Qb> Pi- Thus U, lying in Q5 and P5, is the point in
which ABC meets the plane 5; similarly V and W. are the points in
which ABC meets 1 and 2. As to the other two of the five associated
planes, 3 and 4, ABC lies wholly in the primes P3 and P4; ABC meets
3 and 4 in the lines where it intersects the primes Qz and Q±, so that
every line in ABC meets 3 and 4. Hence UV meets 1, 3, 4, 5, four of
the five associated planes, and must meet the fifth also. As in § 5,
U, V, W must be collinear, and A, B, C, X, Y, Z, must lie upon a
conic; the four primes which pass through the plane DEF and the
four points A, B, C, G must have the same anharmonic ratios as the
four through HJK and these points. Two projective pencils of
primes through DEF and HJK generate a quadric passing through
A, B, C and G. The same reasoning can be applied to each of the
planes BCD, CDE, . . . ., so we have ten quadrics passing through the
ten points A, B,C, D, E, F, G, H, J, K. Each quadric is a cone; the
point common to DEF and HJK is the vertex of the one first
discussed.

Conversely, it- is known that in [ 4 ] there exist sets of ten points
having the property that every quadric passing through nine of them
must pass through the tenth point1. Starting from such a set of
points, A,B,C,D,E,F,G,H,J,K, we observe that whereas in general
fourteen points determine a quadric, yet a quadric can be made to
pass through these ten and five other points. Take three points in
the plane DEF and two in HJK. The quadric passes through six
points of the plane DEF and must contain the whole plane; further,
since DEF and HJK have one common point, it passes through six
points in HJK and must contain the whole of HJK also. By the
argument of the previous section we prove that a line in the plane
ABC meets each of the five planes of intersection of opposite primes
of the decagon ABCDEFGHJK; and in the same way we prove that
ten lines meet each of these planes.

But these conditions unfortunately do not constitute a proof. It
is highly probable, but not certain, that the ten points obtained in the

1 See the EncyUopaedie d. math. Wissenschaften, Bd. I l l , 2.2. A., pp. 836, 837.
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first part of this section are a set of ten associated points: to prove it
we must consider how many of the ten quadrics are linearly inde-
pendent. As regards the final paragraph, since an infinity of lines
meet any five planes, to show that ten lines meet five particular
planes proves nothing without further investigation. But a different
line of reasoning establishes the result directly1.

7. As in §5, take eight associated points in [3], A, B, C, D, E, F
G, H, i.e. eight points common to three quadrics, and denote the
planes

ABC, BCD, CDE, DEF, EFG, FGH, GHA, HAB,
by Pu P2, P3, P4, Qu Q2, Q3, Qt.

Consider the tetrahedron formed by Plt P2, P3, P4, denoting its
vertices by Xu X2, X3, X4; Xlt being common to the planes BCD,
CDE, DEF, coincides with D, and Xit being common to ABC, BCD,
CDE, coincides with C. Now it is a fundamental property of eight
associated points that, if they are separated into two groups of four
the two tetrahedra thus obtained are both self-polar with respect to
a certain quadric. Thus there is a quadric 2 with respect to which
the tetrahedra HABC and DEFG are both self-polar. What are the
polar planes of Xlt X2, X3, X4 with respect to 2 ? That of Xx or D
is EFG or Qx; that of Z4 or C is HAB or Q±. X2 is the point common
to Pu P3, P4, i.e. to the plane ABC and the line DE; its polar
with respect to £ is therefore the plane containing the point H and
the line FG, i.e. the plane FGH or Q2. X3 is the point common to
ABC, BCD, DEF, i.e. to the line BC and the plane DEF; its polar
plane therefore contains the line HA and the point G, i.e. is the
plane GHA or Q3.

Pu P2, P3, P4 are the faces of a tetrahedron and Qx, Q2, Q3, Qi
are the polar planes of its vertices with respect to a certain quadric
2. If the equation of E in coordinates x1} x2, x3, xx referred to this
tetrahedron Xx X2 X3 X4 is

cnx\ + c22x'i + . . . . + 2c12xxx2-\- . . . . -)- 2c34x3Xi = 0,

the equation of the plane Qx is

Cu *i -f c12 x.2 + c13 xz + cu xA = 0.

1 §§ 1-6 of this paper are the outcome of work carried on at intervals during several
years. The method of §§ 7 and 8 was discovered only after the former sections were
already in type.
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The six coordinates q12, q13, qlt, q3i, q2i, q23, of the line of intersection
of Qx and Plt and of the three similar lines with suffix 2, 3 or 4 are

c12 c13 c14 0 0 0
— c12 0 0 0 c24 c23

0 — c13 0 c34 0 — c23
0 0 — c14 — c34 — c24 0.

Since the sum of the numbers in each column vanishes, it follows
tha t any linear complex which contains three of the lines must
contain the fourth line.

8. Again, as in §6, take A, B, C, D, E, F, G, H, J, K, ten
associated points in [4], and denote the primes

ABCD, BCDE, C'DEF, DEFG, EFGH,

and FGHJ, GHJK, HJKA, JKAB, KABC,
by Qi, Q2, Q3, Qi, Qo-

The vertices of the simplex formed by P 1 ; P2, P3, P4, Po are denoted
by Xlt X2, X3, Xi, Xb; X1 now coincides with E and Xo with D.
Again there is a quadric £ such that both of the simplexes KABCD and
EFGHJ are self-polar with respect to it, and again it appears that
Qi, Qi, Qz> Qi> Qo a r e the polar primes of Xlt X2, X3, X4, X-o, with
respect to 2. For, firstly, the polar primes of Xx and X5, i.e. E and
D, are FGHJ or Q2 and KABC or Q5. Nextly, X2, being common to
the primes P 1 ; P3, P4, P5, lies on the prime ABCD and the line EF.
I ts polar prime with respect to £ therefore contains the point K and
the plane OHJ, i.e. in Q2. In the same way the polar prime of X4 is
Q4. Lastly, X3 being common to the primes P ] ; P2, P4, P5, lies in
the planes BCD and EFG; its polar prime therefore contains the lines
KA and HJ and is Qz.

Thus the primes Pj , P2, P3, P4, P 5 form a simplex and Ql3 Q2,
Qz, Qi, Qb a r e the polar primes of its vertices with respect to a certain
quadric S . The argument used in § 7 with the necessary modifica-
tions proves the planes of intersection of Pa Qu P2 Q2, P 3 Q3, P4 Qi,
Po Qo to be five associated planes.
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