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INRADIUS AND CIRCUMRADIUS FOR
PLANAR CONVEX BODIES CONTAINING NO LATTICE POINTS

P.R. SCOTT AND P.W. AWYONG

Let K be a planar convex body containing no points of the integer lattice. We
give a new inequality relating the inradius and circumradius of K.

1. INTRODUCTION

Let K be a convex body in the Euclidean plane E2, and let T denote the integer
lattice. Denote by K,Q the set of all such convex bodies K which contain no point
of F as an interior point. Associated with K are a number of well-known functionals
including the diametr d(K) = d, the width w(K) = w, the inradius r(K) — r and
the circumradius R(K) — R. (For definitions see, for example, [3].) A number of
inequalities betwee these various functionals have been extablished. Examples are:

(1) w^ i ( 2 + v^) * 1.866,

(2) (w-l)(d-l)^l,

(3) 2R-d^±,

(4) (2r

and

(5) ( w j

These inequalities are all best possible. We define the following sets in Ko •
VQ: an infinite strip of width 1;
To: a triangle with a longest side on the x-axis, and unit intercept by the line y = 1;
SQ: the equilateral triangle in the set {To}-
Then Vo is the extremal set for inequality (4) [2]; £0 is the extremal set for inequalities
(1) [4], (3) [1], and (5) [6]; and To is the extremal set for inequality (2) [5].

In this paper we establish a pretty new inequality relating the quantities r and R.
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T H E O R E M 1 . If K e K,2 then

(6) (2r

This hound cannot be improved as we see by taking K = To with its longest side (the
base) becoming large.

2. S E T T I N G UP THE PROBLEM

By translating K through a suitable lattice vector, we may take the centre of the
incircleof K to lie within the square with vertices A(0,0), 5 (1 ,0 ) , C ( l , l ) , D(0 ,1) . It
is clear that (6) is trivially satisfied if 2r ^ 1. We therefore assume that 2r > 1. Since
K is convex, K is bounded by lines through the points A, B, C and D. If these lines
form a convex quadrilateral Q, then Q contains no lattice points in its interior, and we
may assume that K is Q. On the other hand these lines may determine a triangular
region T, as for example, a degenerate quadrilateral, or when a line through D separates
K from C. Such a region T may contain interior lattice points; nevertheless it will be
sufficient for us to establish the theorem for T. Arguing as in [5], we may assume that
T has an edge along the a;-axis. A further possibility is that Q(T) may degenerate into
an infinite strip of width 1.

Let us first assume then that K is the quadrilateral Q. Let quadrilateral Q
have vertices L, M, N, P, and edges LM, MN, NP, PL passing through C, B, A, D
respectively. By reflecting Q in the line i = 1/2 if necessary, we may assume that L
lies in the strip 1/2 $J x ^ 1.

The circumcircle of Q may be determined by two boundary points of Q which
are endpoints of a diameter of the circle. In this case we have d = 2R. If Q is non-
degenerate, then since w ^ 2r , and noting that (2) holds with equality only for a
triangle 7o, our result follows immediately from:

(7) ( 2 r - l ) (2 i? - l ) < ( t o - l ) ( d - l ) < 1.

On the other hand, if Q degenerates to a triangle, then

(8) (2r

The other possibility is that the circumcircle of Q is determined by three points on
the boundary of Q forming the vertices of an acute-angled triangle. Take this triangle
to be T = ALMP. We observe that ZMNP will be obtuse. The incircle of Q will
touch edges LM, LP and at least one of the edges MN, PN. In fact, we may assume
Q is such that the incircle touches all four edges. For if necessary, we can rotate PN
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in an anti-clockwise direction about A, or MN in a clockwise direction abut B until
these edges of Q are tangents to the incircle, making contact on the short arc AB. This
operation leaves the value of r unchanged, and increases the value of R. A consequence
of this construction is that we may assume that the incircle intercepts each side of squaxe
ABCD.

The following results will be useful.

LEMMA 1. Let l,m be two non-orthogonal lines meeting in P, and let C be a
point interior to one of the acute angles formed by I and m. Let T denote the set of all
non-obtuse-angled triangles T — ALMP havign L on I, M on m, and LM through
C. Then R(T) is maximal when T £ T is a right-angled triangle.

PROOF: Let T = ALMP be an acute-angled triangle. (See Figure 1.) We may
assume that CL ^ CM, and that line m is the x-axis.

' P m M Af

Figure 1. The triangle with largest circumcircle

Take P' = P, and V on LP, M' on the x-axis so that L', C and M' are collinear,
and AP'L'M' is a right-angle. Denote by T the right-angled triangle AP'L'M'. We
claim that R(T') > R(T). To show this will be sufficient to show that L'M' > LM.
For recalling that P' = P, the sine rule then gives

L'M' LM

Noting that CL' < CL < CM, we take points R, R' on CM, CM' respectively such
that ACL'L S ACRR'. Choose point W on CM' such that MW//RR'. We now
have

LM = LC + CR + RM < CR' + L'C + R'W < CR' + L'C + R'W + WM' = L'M'.

Hence for T G T, R(T) is maximal when T is a right-angled triangle. This
completes the proof of the lemma. U

LEMMA 2. Let A, B, C, D be points defined as previously, and let XC be the
line with equation 4x + 3y — 7 = 0, making an angle of 53.13° with the x-axis. Then
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any circle which intercepts segment AB and does not contain C, D in its interior, does
not intercept line XC in the halfplane y > 1.

PROOF: It is easily checked that the circle F which just touches the x-axis and
passes through points C, D has equation

lV
-2)

5 \ 2 25
)

The angle which the radius of this circle to C makes with the a;-axis is now arctan
3/4 = 36.87°; hence the angle which the tangent to the circle at C makes with the
x-axis is 53.13°. Thus XC is the tangent to F at C.

Let Fs denote the segment of circle F which lies above CD. Let F' be any other
circle satisfying the conditions of the lemma. If the radius of F' exceeds the radius of
F, then the centre of F' lies further from CD than the centre of F, and the portion
of F' lying above CD is contained in segment Fs • If the radius of F' is smaller than
the radius of F, then the cente F' lies closer to the x-axis than the centre of F, and
again the portion of F' lying above CD is contained in segment Fs • Hence in all
cases the circle fails to intercept the line XC in the half-plane y > 1, and the lemma
is proved. D

COMMENT. It folows that if the edge LCM of Q makes an angle of more than 53.13°
with the x-axis, then it will meet the incircle on the short arc CB. The contrapositive
is that if LCM meets the incircle on the short are CD, then LCM makes an angle of
not more than 53.13° with the x-axis.

3. PROOF OF THE THEOREM

Suppose that Q is either a non-degenerate quadrilateral or an acute-angled triangle
ALMP with edge MP along the x-axis for which inequality (6) is not satisfied. From
our setting up, vertex L lies in the half-strip 1/2 ^ x ^ 1, y ^ 1. Since LLMP is acute,
L is exterior to the semicircle on CD as diameter defined by (x — 1/2)2 + (y — I)2 =
1/4, y > l .

Let now X be the intersection of the given line XC of Lemma 2 with the semicircle
on CD as diameter, and let DX meet the line x = 1 in E. Denote by U the 'triangular'
region bounded by arc XC and line segments XE, EC (see Figure 2).

L cannot lie in U. For in this case, by Lemma 2, edge LM touches the incircle of
Q on the short arc BC. Let AX'E'C be the (point) reflection of AX EC in C, and
let line t through B be the reflection of line XC in the line y = 1/2. Since XC and
t meet on the mirror line y = 1/2, AX'E'C lies in the half-plane bounded by t which
contains C. We know that edge MN of Q meets the incircle on the short arc AB.
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y= 1.5

A AB X

Figure 2. Restricting the position of L

Hence applying the Coment after Lemma 2 to edge NBM, this edge makes an angle of
at most 53.13° with the z-axis. It follows that LC ^ CM, and we can apply Lemma 1
to edge LM (running L down LP and M along MN) to obtain a new right-angled
quadrilateral Q* with r{Q*) > r(Q) and R(Q') > R(Q). The right-angle of Q* tells
us that d{Q*) = 2R(Q*), and inequality (6) follows from (7). Hence we may assume
that L lies outside the semicircle and above the line DE.

L cannot lie on or above the line y = 1.5. Since trivially 2r ^ \/2, it is easy to
check that (6) is satisfied when 2R ^ 2 + y/2. Hence we may assume that 2R> 2 + \/2.
From inequality (3), it follows that we may assume that d(Q) > d(T) > 3. Let LM, LP
meet the x-axis in M*,P* respectively, and let T* = ALM*P*. Since T C T*, we
have d(T) ^ d(T*). Suppose that L lies on or above the line y = 3/2. Then we claim
that d(T*) = M*P* < 3. By a simple similarity argument, this is certainly true if L
has x-coordinate x = 1/2. As L moves to the right along y = 3/2, the length of P*M*
remains the same, and LP* increases, first assuming the value d when LLP'M* = 30°
But then L lies in the triangular region U considered above (since ZXDC = 36.87°).
Hence d(T) ^ 3 for L on or above the line y = 1.5. This contradiction allows us to
assume that L lies in the small 'triangular' region V bounded by the semi-circular arc,
the line DX and the line y — 1.5.

L cannot lie in V. The coordinates of X are easily found to be (16/25, 111/75) =
(0.64,1.48). It would be nice to adapt the argument of the above paragraph to the
line y = 1.48, but unfortunately the bound obtained is not tight enough to give a
contradiction. But we observe that in [1] inequality (3) is deduced from the more
general inequality 2R-d^ (2/3)(2 - xfyw which holds for general convex sets with
no lattice point constraints. Since we now have w < 1.5, we can replace inequality
(3) by the tighter bound 2R - d ^ 2 - \ / 3 , whence we may assume that d{Q) >
d(T) > 2R - (2 - V3) > (2 + V2) - (2 - ^3) = 3.146. By repeating the similarity
argument of the previous paragraph with L lying on or above the line y - 1.48, we
obtain d{T*) = P*M* ̂  3.084. This contradiction establishes that L cannot lie in V.

In summary, we have shown that there are three possible classes of extremal set:
the non-degenerate quadrilateral Q, the acute-angled triangle ALMP with edge MP
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along the x-axis, and the infinite strip 0 $J y ̂  1. The above argument shows that
there is no set in the first two classes for which inequality (6) does not hold. Regarding
the infinite strip as the limit of T = ALMP as R —¥ oo, we have 2r < w, 2r —¥ w,
2R = d, and

(2r - 1)(2R - 1) < (iw - l)(d - 1) < 1.

Hence in every case, inequality (6) is satisfied, and the bound of 1 cannot be improved.

4. FINAL COMMENTS

We observe that there are nice similarities between the inequalities (2), (4) and
(6). The final likely combination of two of d, 2r, 2R and w,

(w-l)(2R-l)< 1

is false, as can be checked using the equilateral triangle £o • In fact using inequalities
(5) and (1) we have

(u; - 1)(2.R - 1) < ^ - u » + l = | i ^ p j u > + l< ^ + 1« 1.289,

with equality for the triangle So •
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