APPROXIMATION OF ENTIRE FUNCTIONS OVER CARATHÉODORY DOMAINS

G.P. Kapoor and A, Nautiyal

Let D be a domain bounded by a Jordan curve. For $1 \leq p \leq \infty$, Let $L^{p}(D)$ be the class of all functions f holomorphic in D such that $\|f\|_{D, p}=\left((1 / A) \iint_{D}|f(z)|^{p} d x d y\right)^{1 / p}<\infty$, where A is the area of D. For $f \in L^{p}(D)$, set

$$
\begin{equation*}
E_{n}^{p}(f)=\inf _{g \in \pi_{n}}\|f-g\|_{D, p} \tag{*}
\end{equation*}
$$

π_{n} consists of all polynomials of degree at most n. Recently, Andre Giroux (J. Approx. Theory 28 (1980), 45-53) has obtained necessary and sufficient conditions, in terms of the rate of decrease of the approximation error ${ }_{E}^{E}{ }_{n}^{p}(f)$, such that
$f \in L^{p}(D), 2 \leq p \leq \infty$, has an analytic continuation as an entire function having finite order and finite type. In the present paper we have considered the approximation error (*) on a Carathéodory domain and have extended the results of Giroux for the case $1 \leq p<2$.

1. Introduction

Let B denote a Carathéodory domain, that is, a bounded simply
connected domain such that the boundary of B coincides with the boundary of the domain lying in the complement of the closure of B and containing the point ∞. In particular, a domain bounded by a Jordan curve is a Carathéodory domain. Let $L^{p}(B), 1 \leq p \leq \infty$, be the class of all functions f holomorphic on B and satisfying

$$
\|f\|_{B, p}=\left(\iint_{B}|f(z)|^{p} d x d y\right)^{1 / p}<\infty
$$

where the last inequality is understood to be $\sup _{z \in B}|f(z)|<\infty$ for $p=\infty$. Then $\|\cdot\|_{B, p}$ is called the L^{p}-norm on $I^{p}(B)$. For $f \in L^{p}(B)$, we define $E_{n}^{p}(f)$, the error in approximating the function f by polynomials of degree at most n in L^{p}-norm, as

$$
E_{n}^{p}(f) \equiv E_{n}^{p}(f, B)=\inf _{g \in \pi_{n}}\|f-g\|_{B, p}, n=0,1,2, \ldots,
$$

where π_{n} consists of all polynomials of degree at most n.
We prove
THEOREM 1. Let $f \in L^{p}(B), l \leq p \leq \infty$. Then f is the restriction to B of an entire function, if and only if,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(E_{n}^{p}(f)\right)^{1 / n}=0 \tag{1.1}
\end{equation*}
$$

For the case $p=\infty$, it is sufficient to assume that f is continuous on B.

THEOREM 2. Let $f \in L^{p}(B), l \leq p \leq \infty$. Then f is the restriction to B of an entire function of finite order ρ, if and only if,

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\lim \sup }\left((n \log n) /\left(-\log E_{n}^{p}(f)\right)\right)=\rho \tag{1.2}
\end{equation*}
$$

and, if $\rho>0$, of nonzero finite type T, if and only if,

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\lim \sup } n\left(E_{n}^{p}(f)\right)^{\rho / n}=e \rho d^{\rho} T \tag{1.3}
\end{equation*}
$$

where d is the transfinite diameter of the closure of B. For the case $p=\infty$, it is enough to assume that f is continuous on B.

REMARKS. (i) Results of the nature of Theorems 1 and 2, in L^{∞}-norm, have been extensively studied by various workers (for example, Bernstein [1, p. '113], [5, pp. 76-78], Varga [10], Shah [8], Kapoor and Nautiyal [4], Winiarski [11]).
(ii) For $p=2$ and $B=\{z:|z|<1\}$, Theorems 1 and 2 are due to Reddy [7].
(iii) Theorems 1 and 2 extend and generalize the results of Giroux [3], obtained for the case $2 \leq p \leq \infty$ with B as a domain bounded by a Jordan curve.

2. Proofs of the theorems

Let B^{*} be the component of the complement of \bar{B}, the closure of B, that contains the point ∞. Set $B_{r}=\{z:|\varphi(z)|=r\}, r>I$, where the function $\omega=\varphi(z)$ maps B^{*} conformally onto $|\omega|>1$ such that $\varphi(\infty)=\infty$ and $\varphi^{\prime}(\infty)>0$.

We need the following lemmas.
LEMMA 1 ([11, Lemma 3.1]). The order ρ of an entire function $f(z)$ is given by

$$
\rho=\underset{r \rightarrow \infty}{\lim \sup }(\log \log \bar{M}(r, f)) /(\log r)
$$

and, if $0<\rho<\infty$, the type T of $f(z)$ is given by

$$
T d^{\rho}=\underset{r \rightarrow \infty}{\lim \sup }(\log \bar{M}(r, f)) / r^{\rho}
$$

where d is the transfinite diameter of \bar{B} and

$$
M(r, f)=\max _{z \in B_{r}}|f(z)|
$$

LEMMA 2. Let $f \in L^{p}(B), 1 \leq p<\infty$, be the restriction to B of an entire function and let $r^{\prime}(>1)$ be given. Then, for all $r>2 r^{\prime}$
and all sufficiently large values of n, we have

$$
E_{n}^{p}(f) \leq K \bar{M}(r, f)\left(r^{\prime} / r\right)^{n},
$$

where K is a constant independent of n and r.
Proof. Since $f(z)$ is entire, there exists a sequence of polynomials $\left\{Q_{n}\right\}, Q_{n}$ being of degree at most n, such that

$$
\begin{equation*}
\left|f(z)-Q_{n}(z)\right| \leq(3 / 2) \bar{M}(r, f) \frac{\left(r^{\prime} / r\right)^{n+1}}{1-\left(r^{\prime} / r\right)}, \quad z \in \bar{B}, \tag{2.1}
\end{equation*}
$$

for all $r>r^{\prime}$ and all sufficiently large values of n ([6, p. 114]). It follows from the definition of $E_{n}^{p}(f)$, since $Q_{n} \in \pi_{n}$, that

$$
\begin{equation*}
E_{n}^{p}(f) \leq\left\|f-Q_{n}\right\|_{B, p} \leq A^{1 / p} \max _{z \in \bar{B}}\left|f(z)-Q_{n}(z)\right| \tag{2.2}
\end{equation*}
$$

where A is the area of B. The lemma now follows from (2.1) and (2.2).
Proof of Theorem 1. If $f \in L^{p}(B), 1 \leq p<\infty$, is entire, it follows from Lemma 2 that $\underset{n \rightarrow \infty}{\lim \sup }\left(E_{n}^{p}(f)\right)^{1 / n} \leq r^{\prime} / r$ for all $r>2 r^{\prime}$. Letting $r \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty}\left(E_{n}^{p}(f)\right)^{1 / n}=0
$$

This proves the necessity part of the theorem for $1 \leq p<\infty$.
Now, let $z_{0} \in B$ and let $R>0$ be such that $D_{R}=\left\{z ;\left|z-z_{0}\right| \leq R\right\}$ is contained in B. If $f \in L^{p}(B), 1 \leq p<\infty$, then $f(z)$ is holomorphic on D_{R} and has the following Taylor expansion

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \tag{2.3}
\end{equation*}
$$

in D_{R}, where the a_{n} 's are given by

$$
\frac{\pi R^{2(n+1)}}{n+1} a_{n}=\iint_{D_{R}} f(z) \overline{\left(z-z_{0}\right)^{n}} d x d y
$$

Thus, for any $g \in \pi_{n-1}$, we have

$$
\begin{aligned}
\frac{\pi R^{2(n+1)}}{n+1}\left|a_{n}\right| & =\left|\iint_{D_{R}}(f(z)-g(z)) \overline{\left(z-z_{0}\right)^{n}} d x d y\right| \\
& \leq R^{n}\|f-g\|_{B, 1}
\end{aligned}
$$

Now, using Hölder's inequality, the above relation gives that

$$
\frac{\pi R^{n+2}}{n+1}\left|a_{n}\right| \leq A^{q}\|f-g\|_{B, p}
$$

where A is the area of B and $q=1-1 / p$. Since the above relation holds for any $g \in \pi_{n-1}$, we have

$$
\begin{equation*}
\frac{\pi R_{n}^{n+2}}{n+1}\left|a_{n}\right| \leq A_{E_{n-1}^{p}}^{p}(f) \tag{2.4}
\end{equation*}
$$

If, for $f \in L^{p}(B), 1 \leq p<\infty$, equation (1.1) holds, then it follows, from (2.4), that

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=0
$$

and so, (2.3) gives that $f(z)$ is an entire function. This proves the sufficiency part of the theorem for $1 \leq p<\infty$.

The theorem is thus proved for $1 \leq p<\infty$. For the case $p=\infty$, the theorem is essentially due to Winiarski [11].

Proof of Theorem 2. (i) First, let $f(z)$ be an entire function. Then ([9, p. 273]), for all finite z,

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} b_{n} p_{n}(z) \tag{2.5}
\end{equation*}
$$

where $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a sequence of polynomials, p_{n} being of degree n, such that

$$
\begin{equation*}
\iint_{B} p_{n}(z) \overline{p_{m}(z)} d x d y=\delta_{m}^{n}, \quad b_{n}=\iint_{B} f(z) \overline{p_{n}(z)} d x d y \tag{2.6}
\end{equation*}
$$

$\delta_{m}^{n}=1$ for $m=n$ and $\delta_{m}^{n}=0$ otherwise. It is also known [9, p. 272]
that, given $r_{*}>1$, we have

$$
\begin{equation*}
\max _{z \in \bar{B}}\left|p_{n}(z)\right| \leq C r_{*}^{n}, n=1,2, \ldots, \tag{2.7}
\end{equation*}
$$

where C is a constant independent of n.
From (2.6) and (2.7), for any $g \in \pi_{n-1}, n \geq 1$, we obtain

$$
\begin{equation*}
\left|b_{n}\right|=\left|\iint_{B}(f(z)-g(z)) \overline{p_{n}(z)} d x d y\right| \leq C r_{*}^{n}\|f-g\|_{B, 1} \tag{2.8}
\end{equation*}
$$

On applying Holder's inequality, (2.8) gives

$$
\left|b_{n}\right| / r_{*}^{n} \leq C A^{q}\|f-g\|_{B, q}, \quad 1 \leq p<\infty,
$$

where A is the area of B and $q=1-1 / p$. Since the above relation holds for any $g \in \pi_{n-1}$, we have

$$
\begin{equation*}
\left|b_{n}\right| / r_{*}^{n} \leq C A q_{n-1}^{p}(f), \quad 1 \leq p<\infty \tag{2.9}
\end{equation*}
$$

Now, using (2.5) and (2.7) and applying Bernstein's inequality [6,
p. 112] to each term of the series $\sum_{n=0}^{\infty} b_{n} p_{n}(z)$, we obtain

$$
|f(z)| \leq\left|b_{0}\right|+C \sum_{n=1}^{\infty}\left|b_{n}\right|\left(r r_{*}\right)^{n}, \quad z \in B_{r}
$$

The above relation, in view of (2.9), gives that
(2.10) $\bar{M}(r, f) \leq\left|b_{0}\right|+C^{2} A^{q} \sum_{n=1}^{\infty} E_{n-1}^{p}(f)\left(r r_{*}^{2}\right)^{n}, \quad 1 \leq p<\infty$.

Set $f_{p}(z)=\sum_{n=0}^{\infty} E_{n}^{p}(f) z^{n}, 1 \leq p<\infty$. By Theorem $1, f_{p}(z)$ is an entire function. Further, (2.10) gives that

$$
\begin{equation*}
\bar{M}(r, f) \leq\left|b_{0}\right|+c^{2} A^{q_{r r}^{2}}{ }_{*}^{2}\left(r r_{*}^{2}, f_{p}\right) . \tag{2.11}
\end{equation*}
$$

In view of Lemma 1, from (2.11) we obtain

$$
\begin{equation*}
\rho \leq \rho_{p} \tag{2.12}
\end{equation*}
$$

where ρ is the order of $f(z)$ and ρ_{p} is the order of $f_{p}(z)$.
On the other hand, by Lemma 2, we get

$$
\begin{align*}
M\left(r / r^{\prime}, f_{p}\right) & \leq P(r)+K \bar{M}(r+1, f) \sum_{n=0}^{\infty}(r /(r+1))^{n} \tag{2.13}\\
& =P(r)+K(r+1) \bar{M}(r+1, f)
\end{align*}
$$

where $P(r)$ is a polynomial. From (2.13) and Lemma 1, we have

$$
\begin{equation*}
\rho_{p} \leq \rho . \tag{2.14}
\end{equation*}
$$

Combining (2.12) and (2.14) we get $\rho_{p}=\rho$. Thus, applying the formula expressing the order of an entire function in terms of its Taylor coefficients $[2, \mathrm{p} .9]$ to the function $f_{p}(z)$, it follows that the order ρ of $f(z)$ is given by (1.2).
(ii) If, for $f \in L^{p}(B), 1 \leq p<\infty$, the limit superior on the left hand side of (1.2) is finite, it follows that $\lim _{n \rightarrow \infty}\left(E_{n}^{p}(f)\right)^{1 / n}=0$. Hence, by Theorem 1, $f(z)$ is entire. From (i) we now get that the order ρ of $f(z)$ is given by (1.2).
(iii) Let $f(z)$ be an entire function of order $\rho, 0<\rho<\infty$, and type T. Then, using (2.11), (2.13) and Lemma 1 , we get

$$
T d^{\rho} \leq r_{\star}^{2 \rho} T_{p}, \quad T_{p} /\left(r^{\prime}\right)^{\rho} \leq T d^{\rho},
$$

where T_{p} is the type of the entire function $f_{p}(z)$. Since $r_{*}>1$ and $r^{\prime}>1$ are arbitrary, we get $T_{p}=T$. Thus, applying the formula expressing the type of an entire function in terms of its Taylor coefficients [2, p. 11] to the function $f_{p}(z)$, it follows that the type T of $f(z)$ is given by (1.3).
(iv) If, for $f \in L^{p}(B), l \leq p<\infty$, the limit superior on the left hand side of (1.3) is nonzero finite, it follows that

$$
\underset{n \rightarrow \infty}{\lim \sup }\left((n \log n) /\left(-\log E_{n}^{p}(f)\right)\right)=\rho .
$$

Hence, by part (ii), $f(z)$ is an entire function of order ρ. From part
(iii), we now get that the type T of $f(z)$ is given by (1.3).

For $1 \leq p<\infty$, the theorem now follows from parts (i) to (iv) above. For $p=\infty$, the theorem is essentially due to Winiarski [11].

References

[1] Serge Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle (Gauthier-Villars, Paris, 1926).
[2] Ralph Philip Boas, Jr., Entire functions (Pure and Applied Mathematics, 5. Academic Press, New York, 1954).
[3] André Giroux, "'Approximation of entire functions over bounded domains", J. Approx. Theory 28 (1980), 45-53.
[4] G.P. Kapoor and A. Nautiyal, "Polynomial approximation of an entire function of slow growth", J. Approx. Theory 32 (1981), 64-75.
[5] G.G. Lorentz, Approximation of functions (Holt, Rinehart and Winston, New York, Chicago, London, 1966).
[6] A.l. Markushevich, Theory of functions of a complex variable. Vol. III, revised English edition (translated and edited by Richard A. Silverman. Prentice-Hall, Englewood Cliffs, New Jersey, 1967).
[7] A.R. Reddy, "A contribution to best approximation in L^{2} norm", J. Approx. Theory 11 (1974), 110-117.
[8] S.M. Shah, "Polynomial approximation of an entire function and generalized orders", J. Approx. Theory 19 (1977), 315-324.
[9] V.I. Smirnov and N.A. Lebedev, Functions of a complex variable: constructive theory (translated by Scripta Technica. MIT Press, Cambridge, Massachusetts, 1968).
[10] Richard S. Varga, "On an extension of a result of S.N. Bernstein", J. Approx. Theory 1 (1958), 176-179.

```
[11] T. Winiarski, "Approximation and interpolation of entire functions", Ann. Polon. Math. 23 (1970), 259-273.
```

```
Department, of Mathematics,
Indian Institute of Technology,
Kanpur 208016,
India.
```

