(C) Canadian Mathematical Society 2011

Chen Inequalities for Submanifolds of Real Space Forms with a Semi-Symmetric Non-Metric Connection

Cihan Özgür and Adela Mihai

Abstract. In this paper we prove Chen inequalities for submanifolds of real space forms endowed with a semi-symmetric non-metric connection, i.e., relations between the mean curvature associated with a semi-symmetric non-metric connection, scalar and sectional curvatures, Ricci curvatures and the sectional curvature of the ambient space. The equality cases are considered.

1 Introduction

H. A. Hayden introduced the notion of a semi-symmetric metric connection on a Riemannian manifold [10]. K. Yano studied a Riemannian manifold endowed with a semi-symmetric metric connection [20]. Some properties of a Riemannian manifold and a hypersurface of a Riemannian manifold with a semi-symmetric metric connection were studied by T. Imai [11,12]. Z. Nakao [18] studied submanifolds of a Riemannian manifold with semi-symmetric metric connections. N. S. Agashe and M. R. Chafle introduced the notion of a semisymmetric non-metric connection and studied some of its properties and submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection [1,2].

On the other hand, one of the basic problems in submanifold theory is to find simple relationships between the extrinsic and intrinsic invariants of a submanifold. B. Y. Chen [6, 7, 9] established inequalities in this respect, called Chen inequalities. Afterwards, many geometers studied similar problems for different submanifolds in various ambient spaces; see, for example, [3]-5, 13, 14, 19].

Recently, the present authors studied Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection and Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semisymmetric metric connections [15, 16].

In the present paper, we study Chen inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection. The paper is organized as follows. In Section 2, we give a brief introduction about a semi-symmetric non-metric connection, Chen lemma and Ricci curvature. In Section 3, for submanifolds of

[^0]real space forms endowed with a semi-symmetric non-metric connection we establish a Chen first inequality. Section 4 gives a relation between the Ricci curvature in the direction of a unit tangent vector and the mean curvature. In Section5 we state a relationship between the sectional curvature of a submanifold M^{n} of a real space form $N^{n+p}(c)$ of constant sectional curvature c endowed with a semi-symmetric non-metric connection $\widetilde{\nabla}$ and the associated squared mean curvature $\|H\|^{2}$. Using this inequality, we prove a relationship between the k-Ricci curvature of M^{n} and the squared mean curvature $\|H\|^{2}$.

2 Preliminaries

Let N^{n+p} be an $(n+p)$-dimensional Riemannian manifold and $\widetilde{\nabla}$ a linear connection on N^{n+p}. If the torsion tensor \widetilde{T} of $\widetilde{\nabla}$, defined by

$$
\widetilde{T}(\widetilde{X}, \widetilde{Y})=\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}-\widetilde{\nabla}_{\widetilde{Y}} \widetilde{X}-[\widetilde{X}, \widetilde{Y}]
$$

for any vector fields \widetilde{X} and \widetilde{Y} on N^{n+p}, satisfies $\widetilde{T}(\widetilde{X}, \widetilde{Y})=\phi(\widetilde{Y}) \widetilde{X}-\phi(\widetilde{X}) \widetilde{Y}$ for a 1-form ϕ, then the connection $\widetilde{\nabla}$ is called a semi-symmetric connection.

Let g be a Riemannian metric on N^{n+p}. If $\widetilde{\nabla} g=0$, then $\widetilde{\nabla}$ is called a semisymmetric metric connection on N^{n+p}. If $\widetilde{\nabla} g \neq 0$, then $\widetilde{\nabla}$ is called a semi-symmetric non-metric connection on N^{n+p}.

Following [1], a semi-symmetric non-metric connection $\widetilde{\nabla}$ on N^{n+p} is given by

$$
\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}=\tilde{\nabla}_{\widetilde{X}} \widetilde{Y}+\phi(\widetilde{Y}) \widetilde{X}
$$

for any vector fields \widetilde{X} and \widetilde{Y} on N^{n+p}, where $\stackrel{\sim}{\nabla}$ denotes the Levi-Civita connection with respect to the Riemannian metric g and ϕ is a 1-form. Denote by $P=\phi^{\sharp}$, i.e., the vector field P is defined by $g(P, \widetilde{X})=\phi(\widetilde{X})$, for any vector field \widetilde{X} on N^{n+p}.

We will consider a Riemannian manifold N^{n+p} endowed with a semi-symmetric non-metric connection $\widetilde{\nabla}$ and the Levi-Civita connection denoted by $\stackrel{\circ}{\nabla}$.

Let M^{n} be an n-dimensional submanifold of an $(n+p)$-dimensional Riemannian manifold N^{n+p}. On the submanifold M^{n} we consider the induced semi-symmetric non-metric connection denoted by ∇ and the induced Levi-Civita connection denoted by $\stackrel{\circ}{\nabla}$.

Let \widetilde{R} be the curvature tensor of N^{n+p} with respect to $\widetilde{\nabla}$ and \widetilde{R} the curvature tensor of N^{n+p} with respect to $\stackrel{\circ}{\nabla}$. We also denote by R and \dot{R} the curvature tensors of ∇ and $\stackrel{\circ}{\nabla}$, respectively, on M^{n}.

The Gauss formulas with respect to ∇, respectively $\stackrel{\circ}{\nabla}$ can be written as:

$$
\begin{array}{ll}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), & X, Y \in \chi\left(M^{n}\right), \\
\stackrel{\rightharpoonup}{\nabla}_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\stackrel{\circ}{h}(X, Y), \quad X, Y \in \chi\left(M^{n}\right),
\end{array}
$$

where \grave{h} is the second fundamental form of M^{n} in N^{n+p} and h is a (0,2)-tensor on M^{n}. According to the formula (3.4) in [2],

$$
\begin{equation*}
h=\stackrel{\circ}{h} . \tag{2.1}
\end{equation*}
$$

One denotes by H the mean curvature vector of M^{n} in N^{n+p}.
Let $N^{n+p}(c)$ be a real space form of constant sectional curvature c endowed with a semi-symmetric non-metric connection $\widetilde{\nabla}$.

The curvature tensor $\tilde{\widetilde{R}}$ with respect to the Levi-Civita connection $\stackrel{\tilde{\nabla}}{ }$ on $N^{n+p}(c)$ is expressed by

$$
\begin{equation*}
\stackrel{\circ}{\widetilde{R}}(X, Y, Z, W)=c\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W)\} . \tag{2.2}
\end{equation*}
$$

Then the curvature tensor \widetilde{R} with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ on $N^{n+p}(c)$ can be written as (1]

$$
\begin{equation*}
\widetilde{R}(X, Y, Z, W)=\stackrel{\circ}{\widetilde{R}}(X, Y, Z, W)+s(X, Z) g(Y, W)-s(Y, Z) g(X, W) \tag{2.3}
\end{equation*}
$$

for any vector fields $X, Y, Z, W \in \chi\left(M^{n}\right)$, where s is a (0,2)-tensor field defined by

$$
s(X, Y)=\left(\stackrel{\circ}{\nabla}_{X} \phi\right) Y-\phi(X) \phi(Y), \quad \forall X, Y \in \chi\left(M^{n}\right)
$$

From (2.2) and (2.3) it follows that the curvature tensor \widetilde{R} can be expressed as

$$
\begin{align*}
\widetilde{R}(X, Y, Z, W)=c\{g(X, W) g(Y, Z)- & g(X, Z) g(Y, W)\} \tag{2.4}\\
& +s(X, Z) g(Y, W)-s(Y, Z) g(X, W) .
\end{align*}
$$

Denote by λ the trace of s. Using (2.1), the Gauss equation for the submanifold M^{n} into the real space form $N^{n+p}(c)$ is

$$
\stackrel{\circ}{R}(X, Y, Z, W)=\stackrel{\circ}{R}(X, Y, Z, W)+g(h(X, Z), h(Y, W))-g(h(X, W), h(Y, Z))
$$

Decomposing the vector field P on M uniquely into its tangent and normal components P^{T} and P^{\perp}, respectively, we have $P=P^{T}+P^{\perp}$.

Let $\pi \subset T_{x} M^{n}, x \in M^{n}$, be a 2-plane section. Denote by $K(\pi)$ the sectional curvature of M^{n} with respect to the induced semi-symmetric non-metric connection ∇. For any orthonormal basis $\left\{e_{1}, \ldots, e_{m}\right\}$ of the tangent space $T_{x} M^{n}$, the scalar curvature τ at x is defined by

$$
\tau(x)=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right)
$$

We recall the following algebraic lemma.
Lemma 2.1 ($[6]$ Let $a_{1}, a_{2}, \ldots, a_{n}, b$ be $(n+1)(n \geq 2)$ real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right)
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}=\cdots=a_{n}$.

Let M^{n} be an n-dimensional Riemannian manifold, L a k-plane section of $T_{x} M^{n}$, $x \in M^{n}$, and X a unit vector in L. We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ of L such that $e_{1}=X$. One defines [8] the Ricci curvature (or k-Ricci curvature) of L at X by $\operatorname{Ric}_{L}(X)=K_{12}+K_{13}+\cdots+K_{1 k}$, where $K_{i j}$ denotes, as usual, the sectional curvature of the 2-plane section spanned by e_{i}, e_{j}. For each integer $k, 2 \leq k \leq n$, the Riemannian invariant Θ_{k} on M^{n} is defined by

$$
\Theta_{k}(x)=\frac{1}{k-1} \inf _{L, X} \operatorname{Ric}_{L}(X), \quad x \in M^{n}
$$

where L runs over all k-plane sections in $T_{x} M^{n}$ and X runs over all unit vectors in L.

3 Chen First Inequality

Recall that the Chen first invariant is given by

$$
\delta_{M^{n}}(x)=\tau(x)-\inf \left\{K(\pi) \mid \pi \subset T_{x} M^{n}, x \in M^{n}, \operatorname{dim} \pi=2\right\}
$$

(see for example [9]), where M^{n} is a Riemannian manifold, $K(\pi)$ is the sectional curvature of M^{n} associated with a 2-plane section, $\pi \subset T_{x} M^{n}, x \in M^{n}$ and τ is the scalar curvature at x.

Denote by

$$
\begin{equation*}
\Omega(X)=s(X, X)+g\left(P^{\perp}, h(X, X)\right) \tag{3.1}
\end{equation*}
$$

for a unit vector X tangent to M^{n} at a point x. We remark that Ω does not depend on X. Detailed explanations will be given in the proof of Theorem 3.1

For submanifolds of real space forms endowed with a semi-symmetric non-metric connection we establish the following optimal inequality, which we will call the Chen first inequality.

Theorem 3.1 Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of an $(n+p)$-dimensional real space form $N^{n+p}(c)$ of constant sectional curvature c, endowed with a semisymmetric non-metric connection $\widetilde{\nabla}$. We have
$\delta_{M^{n}}(x) \leq \Omega+(n-2)\left[\frac{n^{2}}{2(n-1)}\|H\|^{2}+(n+1) \frac{c}{2}\right]-\frac{1}{2}(n-1) \lambda-\frac{1}{2}\left(n^{2}-n\right) \phi(H)$,
where π is a 2-plane section of $T_{x} M^{n}, x \in M^{n}$. Equality holds at a point $x \in M^{n}$ if and only if there exists an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of $T_{x} M^{n}$ and an orthonormal basis $\left\{e_{n+1}, \ldots, e_{n+p}\right\}$ of $T_{x}^{\perp} M^{n}$ such that the shape operators of M^{n} in $N^{n+p}(c)$ at x
have the following forms:

$$
\begin{aligned}
A_{e_{n+1}} & =\left(\begin{array}{ccccc}
a & 0 & 0 & \cdots & 0 \\
0 & b & 0 & \cdots & 0 \\
0 & 0 & \mu & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \mu
\end{array}\right), \quad a+b=\mu \\
A_{e_{n+i}} & =\left(\begin{array}{ccccc}
h_{11}^{n+i} & h_{12}^{n+i} & 0 & \cdots & 0 \\
h_{12}^{n+i} & -h_{11}^{n+i} & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \quad 2 \leq i \leq p
\end{aligned}
$$

where we define $h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right)$ for $1 \leq i, j \leq n$ and $n+1 \leq r \leq n+p$.
Proof From [2], the Gauss equation with respect to the semi-symmetric non-metric connection is

$$
\begin{align*}
\widetilde{R}(X, Y, Z, W)= & R(X, Y, Z, W)+g(h(X, Z), h(Y, W)) \tag{3.2}\\
& -g(h(Y, Z), h(X, W))+g\left(P^{\perp}, h(Y, Z)\right) g(X, W) \\
& -g\left(P^{\perp}, h(X, Z)\right) g(Y, W)
\end{align*}
$$

Let $x \in M^{n}$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{e_{n+1}, \ldots, e_{n+p}\right\}$ be orthonormal bases of $T_{x} M^{n}$ and $T_{x}^{\perp} M^{n}$, respectively. For $X=W=e_{i}, Y=Z=e_{j}, i \neq j$, from the equation (2.4) it follows that

$$
\begin{equation*}
\tilde{R}\left(e_{i}, e_{j}, e_{j}, e_{i}\right)=c-s\left(e_{j}, e_{j}\right) \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3) we get

$$
\begin{aligned}
c-s\left(e_{j}, e_{j}\right)=R\left(e_{i}, e_{j}, e_{j}, e_{i}\right)+g\left(h\left(e_{i}, e_{j}\right)\right. & \left., h\left(e_{i}, e_{j}\right)\right) \\
& -g\left(h\left(e_{i}, e_{i}\right), h\left(e_{j}, e_{j}\right)\right)+\phi\left(h\left(e_{j}, e_{j}\right)\right)
\end{aligned}
$$

By summation after $1 \leq i, j \leq n$, it follows from the previous relation that

$$
\begin{equation*}
\left(n^{2}-n\right) c-(n-1) \lambda=2 \tau+\|h\|^{2}-n^{2}\|H\|^{2}+\left(n^{2}-n\right) \phi(H) \tag{3.4}
\end{equation*}
$$

where we recall that λ is the trace of s and denote by

$$
\begin{gathered}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right), \quad H=\frac{1}{n} \text { trace } h, \\
\phi(H)=\frac{1}{n} \sum_{j=1}^{n} \phi\left(h\left(e_{j}, e_{j}\right)\right)=g\left(P^{\perp}, H\right)
\end{gathered}
$$

One takes

$$
\begin{equation*}
\varepsilon=2 \tau-\frac{n^{2}(n-2)}{n-1}\|H\|^{2}+(n-1) \lambda-\left(n^{2}-n\right) c+\left(n^{2}-n\right) \phi(H) \tag{3.5}
\end{equation*}
$$

Then from (3.4) and (3.5) we get

$$
\begin{equation*}
n^{2}\|H\|^{2}=(n-1)\left(\|h\|^{2}+\varepsilon\right) \tag{3.6}
\end{equation*}
$$

Let $x \in M^{n}, \pi \subset T_{x} M^{n}, \operatorname{dim} \pi=2, \pi=s p\left\{e_{1}, e_{2}\right\}$. We define $e_{n+1}=\frac{H}{\|H\|}$, and from the relation (3.6) we obtain

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left(\sum_{i, j=1}^{n} \sum_{r=n+1}^{n+p}\left(h_{i j}^{r}\right)^{2}+\varepsilon\right)
$$

or equivalently,

$$
\begin{equation*}
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left\{\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} \sum_{r=n+2}^{n+p}\left(h_{i j}^{r}\right)^{2}+\varepsilon\right\} . \tag{3.7}
\end{equation*}
$$

By using Lemma 2.1] we have from (3.7)

$$
2 h_{11}^{n+1} h_{22}^{n+1} \geq \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} \sum_{r=n+2}^{n+p}\left(h_{i j}^{r}\right)^{2}+\varepsilon
$$

The Gauss equation for $X=W=e_{1}, Y=Z=e_{2}$ gives

$$
\begin{array}{rl}
K(\pi)= & R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)=c-s\left(e_{2}, e_{2}\right)-g\left(P^{\perp}, h\left(e_{2}, e_{2}\right)\right)+\sum_{r=n+1}^{p}\left[h_{11}^{r} h_{22}^{r}-\left(h_{12}^{r}\right)^{2}\right] \\
\geq c & s\left(e_{2}, e_{2}\right)-\phi\left(h\left(e_{2}, e_{2}\right)\right)+\frac{1}{2}\left[\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{i, j=1}^{n} \sum_{r=n+2}^{n+p}\left(h_{i j}^{r}\right)^{2}+\varepsilon\right] \\
& +\sum_{r=n+2}^{n+p} h_{11}^{r} h_{22}^{r}-\sum_{r=n+1}^{n+p}\left(h_{12}^{r}\right)^{2}=c-s\left(e_{2}, e_{2}\right)-\phi\left(h\left(e_{2}, e_{2}\right)\right) \\
& +\frac{1}{2} \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{i, j=1}^{n} \sum_{r=n+2}^{n+p}\left(h_{i j}^{r}\right)^{2}+\frac{1}{2} \varepsilon+\sum_{r=n+2}^{n+p} h_{11}^{r} h_{22}^{r}-\sum_{r=n+1}^{n+p}\left(h_{12}^{r}\right)^{2} \\
=c & -s\left(e_{2}, e_{2}\right)-g\left(P^{\perp}, h\left(e_{2}, e_{2}\right)\right)+\frac{1}{2} \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{n+p} \sum_{i, j>2}\left(h_{i j}^{r}\right)^{2} \\
& +\frac{1}{2} \sum_{r=n+2}^{n+p}\left(h_{11}^{r}+h_{22}^{r}\right)^{2}+\sum_{j>2}\left[\left(h_{1 j}^{n+1}\right)^{2}+\left(h_{2 j}^{n+1}\right)^{2}\right]+\frac{1}{2} \varepsilon \\
\geq c & s\left(e_{2}, e_{2}\right)-g\left(P^{\perp}, h\left(e_{2}, e_{2}\right)\right)+\frac{\varepsilon}{2},
\end{array}
$$

which implies $K(\pi) \geq c-s\left(e_{2}, e_{2}\right)-g\left(P^{\perp}, h\left(e_{2}, e_{2}\right)\right)+\varepsilon / 2$. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an orthonormal basis of $T_{x} M^{n}$. If we take $\pi=s p\left\{e_{1}, e_{2}\right\}$, the formula (3.1) implies that $\Omega\left(e_{1}\right)=\Omega\left(e_{2}\right)$. Analogously, for $\pi^{\prime}=s p\left\{e_{1}, e_{3}\right\}$, we have $\Omega\left(e_{1}\right)=\Omega\left(e_{3}\right)$. Therefore, $\Omega\left(e_{1}\right)=\Omega\left(e_{2}\right)=\cdots=\Omega\left(e_{n}\right)$. Thus $\Omega(X)$ does not depend on X and denote it simply by Ω. By using (3.5) we get

$$
K(\pi) \geq \tau-\Omega-(n-2)\left[\frac{n^{2}}{2(n-1)}\|H\|^{2}+(n+1) \frac{c}{2}\right]+\frac{1}{2}(n-1) \lambda+\frac{1}{2}\left(n^{2}-n\right) \phi(H)
$$

which represents the inequality.
The equality case holds at a point $x \in M^{n}$ if and only if it achieves the equality in all the previous inequalities and we have the equality in the lemma.

$$
\begin{aligned}
h_{i j}^{n+1} & =0, \forall i \neq j, i, j>2, \\
h_{i j}^{r} & =0, \forall i \neq j, i, j>2, r=n+1, \ldots, n+p, \\
h_{11}^{r}+h_{22}^{r} & =0, \forall r=n+2, \ldots, n+p, \\
h_{1 j}^{n+1} & =h_{2 j}^{n+1}=0, \forall j>2, \\
h_{11}^{n+1}+h_{22}^{n+1} & =h_{33}^{n+1}=\cdots=h_{n n}^{n+1} .
\end{aligned}
$$

We may chose $\left\{e_{1}, e_{2}\right\}$ such that $h_{12}^{n+1}=0$ and we denote by $a=h_{11}^{r}, b=h_{22}^{r}, \mu=$ $h_{33}^{n+1}=\cdots=h_{n n}^{n+1}$. It follows that the shape operators take the desired forms.

4 Ricci Curvature in the Direction of a Unit Tangent Vector

In this section, we establish a sharp relation between the Ricci curvature in the direction of a unit tangent vector X and the mean curvature H with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$.

Denote by $N(x)=\left\{X \in T_{x} M^{n} \mid h(X, Y)=0, \forall Y \in T_{x} M^{n}\right\}$.
Theorem 4.1 Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of an $(n+p)$-dimensional real space form $N^{n+p}(c)$ of constant sectional curvature c endowed with a semisymmetric non-metric connection $\widetilde{\nabla}$.
(i) For each unit vector X in $T_{x} M$ we have

$$
\begin{align*}
\|H\|^{2} \geq \frac{4}{n^{2}}[& \operatorname{Ric}(X)-(n-1) c+\frac{n-1}{2} \lambda \tag{4.1}\\
& \left.\quad-\frac{(n-2)(n-1)}{2} s(X, X)+\frac{1}{2}\left(n^{2}-n\right) \phi(H)\right] .
\end{align*}
$$

(ii) If $H(x)=0$, then a unit tangent vector X at x satisfies the equality case of (4.1) if and only if $X \in N(x)$.
(iii) The equality case of inequality (4.1) holds identically for all unit tangent vectors at x if and only if either x is a totally geodesic point, or $n=2$ and x is a totally umbilical point.

Proof (i) Let $X \in T_{x} M$ be a unit tangent vector at x. We choose an orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p}$ such that $e_{1}, e_{2}, \ldots, e_{n}$ are tangent to M at x, with $e_{1}=X$.

From (3.4) we obtain $n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}+(n-1) \lambda-\left(n^{2}-n\right) c+\left(n^{2}-n\right) \phi(H)$. From Gauss equation (3.2) and the formula (3.3), for $X=W=e_{i}, Y=Z=e_{j}$, $i \neq j$, we get

$$
\begin{aligned}
K_{i j} & =\widetilde{R}\left(e_{i}, e_{j}, e_{j}, e_{i}\right)+g\left(h\left(e_{i}, e_{i}\right), h\left(e_{j}, e_{j}\right)\right)-g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \\
& =c-s\left(e_{j}, e_{j}\right)+\sum_{r=n+1}^{n+p}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right]
\end{aligned}
$$

By summation and by using formula (3.4), it follows that

$$
\begin{aligned}
\sum_{2 \leq i<j \leq n} K_{i j}= & \sum_{r=n+1}^{n+p} \sum_{2 \leq i<j \leq n}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right]+\sum_{2 \leq i<j \leq n}\left[c-s\left(e_{j}, e_{j}\right)\right] \\
= & \sum_{r=n+1}^{n+p} \sum_{2 \leq i<j \leq n}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] \\
& +\frac{(n-2)(n-1)}{2} c-\frac{(n-2)(n-1)}{2} s\left(e_{1}, e_{1}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& n^{2}\|H\|^{2}=2 \tau+\frac{1}{2} n^{2}\|H\|^{2}+\frac{1}{2} \sum_{r=n+1}^{n+p}\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{n n}^{r}\right)^{2} \\
& \quad-2 \sum_{r=n+1}^{n+p} \sum_{2 \leq i<j \leq n}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right]+(n-1) \lambda-n(n-1) c+\left(n^{2}-n\right) \phi(H)
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
\frac{1}{2} n^{2}\|H\|^{2}= & 2 \operatorname{Ric}\left(e_{1}\right)+2 \sum_{2 \leq i<j \leq n} K_{i j}+\frac{1}{2} \sum_{r=n+1}^{n+p}\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{n n}^{r}\right)^{2} \\
& +(n-1) \lambda-n(n-1) c+n^{2} \phi(H)-2 \sum_{r=n+1}^{n+p} \sum_{2 \leq i<j \leq n}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] \\
= & 2 \operatorname{Ric}\left(e_{1}\right)+(n-2)(n-1) c-(n-2)(n-1) s\left(e_{1}, e_{1}\right) \\
& +\frac{1}{2} \sum_{r=n+1}^{n+p}\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{n n}^{r}\right)^{2} \\
& +(n-1) \lambda-n(n-1) c+\left(n^{2}-n\right) \phi(H)
\end{aligned}
$$

$$
\begin{aligned}
& \geq 2 \operatorname{Ric}\left(e_{1}\right)-2(n-1) c+(n-1) \lambda-(n-2)(n-1) s\left(e_{1}, e_{1}\right) \\
& \quad+\left(n^{2}-n\right) \phi(H)
\end{aligned}
$$

Finally,
$\operatorname{Ric}\left(e_{1}\right) \leq \frac{1}{4} n^{2}\|H\|^{2}+(n-1) c-\frac{n-1}{2} \lambda+\frac{(n-2)(n-1)}{2} s\left(e_{1}, e_{1}\right)-\frac{1}{2}\left(n^{2}-n\right) \phi(H)$, or, equivalently,
$\|H\|^{2} \geq \frac{4}{n^{2}}\left[\operatorname{Ric}(X)-(n-1) c+\frac{n-1}{2} \lambda-\frac{(n-2)(n-1)}{2} s(X, X)+\frac{1}{2}\left(n^{2}-n\right) \phi(H)\right]$,
for every unit vector $X \in T_{x} M$, which represents to inequality to prove.
(ii) Assume $H(x)=0$. Equality holds in (4.1) if and only if

$$
h_{12}^{r}=\cdots=h_{1 n}^{r}=0, \quad h_{11}^{r}=h_{22}^{r}+\cdots+h_{n n}^{r}, r \in\{n+1, \ldots, n+p\} .
$$

Then $h_{1 j}^{r}=0$ for all $j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, n+p\}$, i.e., $X \in N(x)$.
(iii) The equality case of (4.1) holds for all unit tangent vectors at x if and only if

$$
\begin{aligned}
h_{i j}^{r} & =0, \quad i \neq j, r \in\{n+1, \ldots, n+p\} \\
h_{11}^{r}+\cdots+h_{n n}^{r}-2 h_{i i}^{r} & =0, \quad i \in\{1, \ldots, n\}, r \in\{n+1, \ldots, n+p\} .
\end{aligned}
$$

We distinguish two cases:

- $n \neq 2$, then x is a totally geodesic point;
- $n=2$, it follows that x is a totally umbilical point.

The converse is trivial.

5 k-Ricci Curvature

We first state a relationship between the sectional curvature of a submanifold M^{n} of a real space form $N^{n+p}(c)$ of constant sectional curvature c endowed with a semisymmetric non-metric connection $\widetilde{\nabla}$ and the associated squared mean curvature $\|H\|^{2}$. Using this inequality, we prove a relationship between the k-Ricci curvature of M^{n} (intrinsic invariant) and the squared mean curvature $\|H\|^{2}$ (extrinsic invariant), as another answer of the basic problem in submanifold theory which we mentioned in the introduction.

Theorem 5.1 Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of an $(n+p)$-dimensional real space form $N^{n+p}(c)$ of constant sectional curvature c endowed with a semisymmetric non-metric connection $\widetilde{\nabla}$. Then we have

$$
\begin{equation*}
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)}-c+\frac{1}{n} \lambda+\phi(H) \tag{5.1}
\end{equation*}
$$

Proof Let $x \in M^{n}$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ an orthonormal basis of $T_{x} M^{n}$. The relation (3.4) is equivalent to

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}+(n-1) \lambda-n(n-1) c+\left(n^{2}-n\right) \phi(H) \tag{5.2}
\end{equation*}
$$

We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p}\right\}$ at x such that e_{n+1} is parallel to the mean curvature vector $H(x)$ and e_{1}, \ldots, e_{n} diagonalize the shape operator $A_{e_{n+1}}$. Then the shape operators take the forms

$$
\begin{gathered}
A_{e_{n+1}}=\left(\begin{array}{cccc}
a_{1} & 0 & \cdots & 0 \\
0 & a_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n}
\end{array}\right) \\
A_{e_{r}}=\left(h_{i j}^{r}\right), i, j=1, \ldots, n, \quad r=n+2, \ldots, n+p, \quad \operatorname{trace} A_{r}=0
\end{gathered}
$$

From (5.2), we get

$$
\begin{align*}
& n^{2}\|H\|^{2}= \tag{5.3}\\
& \quad 2 \tau+\sum_{i=1}^{n} a_{i}^{2}+\sum_{r=n+2}^{n+p} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+(n-1) \lambda-n(n-1) c+\left(n^{2}-n\right) \phi(H) .
\end{align*}
$$

On the other hand, since

$$
0 \leq \sum_{i<j}\left(a_{i}-a_{j}\right)^{2}=(n-1) \sum_{i} a_{i}^{2}-2 \sum_{i<j} a_{i} a_{j}
$$

we obtain

$$
n^{2}\|H\|^{2}=\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\sum_{i=1}^{n} a_{i}^{2}+2 \sum_{i<j} a_{i} a_{j} \leq n \sum_{i=1}^{n} a_{i}^{2}
$$

which implies

$$
\sum_{i=1}^{n} a_{i}^{2} \geq n\|H\|^{2}
$$

We have from (5.3)

$$
n^{2}\|H\|^{2} \geq 2 \tau+n\|H\|^{2}+(n-1) \lambda-n(n-1) c+\left(n^{2}-n\right) \phi(H)
$$

or, equivalently,

$$
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)}-c+\frac{1}{n} \lambda+\phi(H)
$$

Using Theorem 5.1, we obtain the following.

Theorem 5.2 Let $M^{n}, n \geq 3$, be an n-dimensional submanifold of an $(n+p)$-dimensional real space form $N^{n+p}(c)$ of constant sectional curvature c endowed with a semisymmetric non-metric connection $\widetilde{\nabla}$. Then for any integer $k, 2 \leq k \leq n$, and any point $x \in M^{n}$, we have

$$
\begin{equation*}
\|H\|^{2}(p) \geq \Theta_{k}(p)-c+\frac{1}{n} \lambda+\phi(H) \tag{5.4}
\end{equation*}
$$

Proof Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of $T_{x} M$. Denote by $L_{i_{1} \cdots i_{k}}$ the k plane section spanned by $e_{i_{1}}, \ldots, e_{i_{k}}$. By the definitions, one has

$$
\begin{aligned}
& \tau\left(L_{i_{1} \cdots i_{k}}\right)=\frac{1}{2} \sum_{i \in\left\{i_{1}, \ldots, i_{k}\right\}} \operatorname{Ric}_{L_{i_{1} \cdots i_{k}}}\left(e_{i}\right), \\
& \tau(x)=\frac{1}{C_{n-2}^{k-2}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \tau\left(L_{i_{1} \ldots i_{k}}\right) .
\end{aligned}
$$

From (5.1) and the above relations, one derives

$$
\tau(x) \geq \frac{n(n-1)}{2} \Theta_{k}(p)
$$

which implies (5.4).

References

[1] N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 23(1992), no. 6, 399-409.
[2] On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection Tensor 55 (1994), no. 2, 120-130.
[3] K. Arslan, R. Ezentaş, I. Mihai, C. Murathan, and C. Özgür, B. Y. Chen inequalities for submanifolds in locally conformal almost cosymplectic manifolds. Bull. Inst. Math., Acad. Sinica 29(2001), no. 3, 231-242.
[4] , Certain inequalities for submanifolds in $(k \mu)$-contact space forms. Bull. Aust. Math. Soc. 64(2001), no. 2, 201-212. http://dx.doi.org/10.1017/S0004972700039873
[5] , Ricci curvature of submanifolds in locally conformal almost cosymplectic manifolds. Math. J. Toyama Univ. 26 (2003), 13-24. Zbl 1076.53030
[6] B-Y. Chen, Some pinching and classification theorems for minimal submanifolds Arch. Math. (Basel) 60 (1993), no. 6, 568-578. http://dx.doi.org/10.1007/BF01236084
[7] , Strings of Riemannian invariants, inequalities, ideal immersions and their applications. In: The Third Pacific Rim Geometry Conference. Monogr. Geom. Topology 25. Int. Press, Cambridge, MA, 1998, pp. 7-60.
[8] , Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasg. Math. J. 41(1999), no. 1, 33-41. http://dx.doi.org/10.1017/S0017089599970271
[9] $\longrightarrow \delta$-invariants, inequalities of submanifolds and their applications. In: Topics in Differential Geometry. Ed. Acad. Române, Bucharest, 2008, pp. 29-155.
[10] H. A. Hayden, Subspaces of a space with torsion. Proc. London Math. Soc. 34 (1932), 27-50.
[11] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection. Tensor 23 (1972), 300-306.
[12] , Notes on semi-symmetric metric connections. Tensor 24(1972), 293-296.
[13] K. Matsumoto, I. Mihai, and A. Oiagă, Ricci curvature of submanifolds in complex space forms. Rev. Roumaine Math. Pures Appl. 46(2001), no. 6, 775-782.
[14] A. Mihai, Modern Topics in Submanifold Theory. Editura Universitătii din Bucuresti, Bucharest, 2006.
[15] A. Mihai and C. Özgür, Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection. Taiwanese J. Math. 14(2010), no. 4, 1465-1477.
[16] , Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections, to appear Rocky Mountain J. Math.
[17] I. Mihai, Slant submanifolds in complex space forms. In: Topics in Differential Geometry. Editura Academiei Române, Bucharest, 2008, pp. 157-187.
[18] Z. Nakao, Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Amer. Math. Soc. 54(1976), 261-266. http://dx.doi.org/10.1090/S0002-9939-1976-0445416-9
[19] A. Oiaga and I. Mihai, B. Y. Chen inequalities for slant submanifolds in complex space forms. Demonstratio Math. 32 (1999), no. 4, 835-846.
[20] K. Yano, On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 15(1970), 1579-1586.

Balıkesir University, Department of Mathematics, 10145, Çă̆ı̧̧, Balıkesir, Turkey
e-mail: cozgur@balikesir.edu.tr
University of Bucharest, Faculty of Mathematics and Computer Science, Department of Mathematics,
Academiei 14, 010014 Bucharest, Romania
e-mail: adela_mihai@fmi.unibuc.ro

[^0]: Received by the editors July 17, 2009.
 Published electronically May 30, 2011.
 The second author's work was supported in part by the strategic grant POSDRU/89/1.5/S/58852, Project Postdoctoral programme for training scientific researchers, cofinanced by the European Social Fund within the Sectoral Operational Program Human Resources Development 2007-2013.

 AMS subject classification: 53C40, 53B05, 53B15.
 Keywords: real space form, semi-symmetric non-metric connection, Ricci curvature.

