Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T07:22:16.150Z Has data issue: false hasContentIssue false

In-situ Observation of Silicon Epitaxy Breakdown with Real-Time Spectroscopic Ellipsometry

Published online by Cambridge University Press:  21 March 2011

Charles W. Teplin
Affiliation:
National Center for Photovoltaics National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, U.S.A.
Dean H. Levi
Affiliation:
National Center for Photovoltaics National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, U.S.A.
Qi Wang
Affiliation:
National Center for Photovoltaics National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, U.S.A.
Eugene Iwaniczko
Affiliation:
National Center for Photovoltaics National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, U.S.A.
Kim M. Jones
Affiliation:
National Center for Photovoltaics National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, U.S.A.
Howard M. Branz
Affiliation:
National Center for Photovoltaics National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401, U.S.A.
Get access

Abstract

We use in-situ real-time spectroscopic ellipsometry to observe the breakdown of silicon epitaxy during growth by hot-wire chemical vapor deposition (HWCVD) on Si (100) substrates. Representative data is presented for the two types of epitaxy breakdown that we have observed: 1) an immediate transition to hydrogenated amorphous silicon (a-Si:H), and 2) a slower transition where a-Si:H cones nucleate and grow until they eclipse further epitaxial growth. Simple models, consistent with transmission-electron and atomic-force micrographs, describe the evolution of both types of breakdown showing that real-time spectroscopic ellipsometry is a useful tool for monitoring the growth of epitaxial silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bergmann, R. B. and Werner, J. H., Thin Solid Films 403, 162169(2002).Google Scholar
2. Schwarzkopf, J., Selle, B., Schmidbauer, M., and Fuhs, W., Thin Solid Films 427, 274278(2003).Google Scholar
3. Eaglesham, D. J., Gossmann, H. J., and Cerullo, M., Physical Review Letters 65, 12271230(1990).Google Scholar
4. Thiesen, J., Iwaniczko, E., Jones, K. M., Mahan, A., and Crandall, R., Applied Physics Letters 75, 992994(1999).Google Scholar
5. Bergmann, R. B., Zaczek, C., Jansen, N., Oelting, S., and Werner, J. H., Applied Physics Letters 72, 29962998(1998).Google Scholar
6. Oberbeck, L., Schmidt, J., Wagner, T. A., and Bergmann, R. B., Progress in Photovoltaics 9, 333340(2001).Google Scholar
7. Schwarzkopf, J., Selle, B., Bohne, W., Rohrich, J., Sieber, I., and Fuhs, W., Journal of Applied Physics 93, 52155221(2003).Google Scholar
8. Seitz, H. and Schroder, B., Solid State Commun. 116, 625629(2000).Google Scholar
9. Collins, R. W. and Fujiwara, H., Current Opinion in Solid State & Materials Science 2, 417424(1997).Google Scholar
10. Levi, D. H., Nelson, B. P., Perkins, J. D., and Moutinho, H. R., Journal of Vacuum Science & Technology A 21, 15451549(2003).Google Scholar
11. Wang, Q., Page, M. R., Xu, X. Q., Iwaniczko, E., Williams, E., and Wang, T. H., Thin Solid Films 430, 208211(2003).Google Scholar
12. Fujiwara, H., Koh, J., Rovira, P. I., and Collins, R. W., Phys. Rev. B 61, 1083210844(2000).Google Scholar
13. Born, M. and Wolf, E., Principles of Optics Sixth ed. 1980, Cambridge, MA: Cambridge University Press.Google Scholar
14. Palik, E. D., Journal of the Optical Society of America a-Optics Image Science and Vision 1, 1297–1297(1984).Google Scholar
15. Abeles, B., Wronski, C. R., Tiedje, T., and Cody, G. D., Solid State Commun. 36, 537540(1980).Google Scholar