SOME THEOREMS ON OPEN RIEMANN SURFACES

MASATSUGU TSUJI

1

Let F be an open Riemann surface spread over the z-plane. We say that F is of positive or null boundary, according as there exists a Green's function on F or not. Let u(z) be a harmonic function on F and

$$D(u) = \iint_{F} \left(\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right) dx dy \qquad (z = x + iy)$$

be its Dirichlet integral. As R. Nevanlinna¹⁾ proved, if F is of null boundary, there exists no one-valued non-constant harmonic function on F, whose Dirichlet integral is finite. This Nevanlinna's theorem was proved very simply by Kuroda.²⁾ By this mehod, we will prove

THEOREM 1. Let F be an open Riemann surface with null boundary and Δ be a non-compact domain on F, whose houndary Λ consists of (compact or noncompact) analytic curves. Let u(z) be a one-valued harmonic function in Δ , such that u(z) = 0 on Λ and its Dirichlet integral in Δ

$$D(u) = \iint_{\Delta} \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right) dx dy$$

is finite. Then $u(z) \equiv 0$.

This theorem was proved by R. Nevanlinna³¹ under the condition that u(z) is harmonic outside a compact domain F_0 and its Dirichlet integral in $F-F_0$ is finite.

Received June 18, 1951.

¹) (a) R. Nevanlinna: Quadratisch integrierbare Differentiale auf einer Riemannschen Mannigfaltigkeit. Annales Acad. Sci. Fenn. Series A, Mathematica-Physica 1 (1941).
(b) Über das Anwachsen des Dirichletintegrals einer analytischen Funktion auf einer offenen Riemannschen Fläche. Annales Acad. Sci. Fenn. Series A, Mathematica-Physica 45 (1948).

²⁾ T. Kuroda; Some remarks on an open Riemann surface. To appear in the Tohoku Math. Journ.

³⁾ R. Nevanlinna, l.c. ¹⁾ (a).

Proof. We choose a schlicht disc F_0 in Δ , whose boundary is Γ_0 . We appoximate F by a sequence of compact Riemann surfaces F_n , $\overline{F}_n \subset F_{n+1}$ (n=0, 1, 2, ...), $F_n \to F$, whose boundary $\Gamma_0 + \Gamma_n$ consists of a finite number of analytic Jordan curves.

Let

(1)
$$\omega_n(z) = \omega(z, \Gamma_n, F_n - F_0)$$

be the harmonic measure of Γ_n with respect to $F_n - F_0$, such that $\omega_n(z)$ is harmonic in $F_n - F_0$ and $\omega_n(z) = 0$ on Γ_0 , $\omega_n(z) = 1$ on Γ_n .

Let $\overline{\omega}_n(z)$ be its conjugate harmonic function, then

$$D(\omega_n) = \int\!\!\!\int_{F_n - F_0} \left(\left(\frac{\partial \omega_n}{\partial x} \right)^2 + \left(\frac{\partial \omega_n}{\partial y} \right)^2 \right) dx dy = \int_{\Gamma_n} \omega_n d\overline{\omega}_n = \int_{\Gamma_0} d\overline{\omega}_n = \int_{\Gamma_0} d\overline{\omega}_n.$$

As Nevanlinna⁴⁾ proved, $D(\omega_n) \rightarrow 0$ as $n \rightarrow \infty$, so that

(2)
$$\mu_n = \frac{2\pi}{D(\omega_n)} \to \infty \quad \text{as} \quad n \to \infty.$$

We put

(3)
$$\boldsymbol{u}_n(\boldsymbol{z}) = \mu_n \boldsymbol{\omega}_n(\boldsymbol{z}), \qquad \boldsymbol{v}_n(\boldsymbol{z}) = \mu_n \overline{\boldsymbol{\omega}}_n(\boldsymbol{z}),$$

then $u_n(z) = 0$ on Γ_0 , $u_n(z) = \mu_n$ on Γ_n and $v_n(z)$ is its conjugate harmonic function, such that

(4)
$$\int_{\Gamma_0} dv_n(z) = 2\pi.$$

Let D_{λ} $(0 \leq \lambda \leq \mu_n)$ be the domain, such that $0 \leq u_n(z) \leq \lambda$ and Δ_{λ} be the common part of Δ and $D_{\lambda} + F_0$. Let Γ_{λ} be the niveau curve $u_n(z) = \lambda$ and $\Gamma_{\lambda}(\Delta)$ be its part contained in Δ .

To prove $u(z) \equiv 0$, we assume that $u(z) \equiv 0$ and let v(z) be its conjugate harmonic function.

Since u(z) = 0 on Λ ,

(5)
$$D(\lambda) = \int \int_{\Delta_{\lambda}} \left(\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right) dx dy = \int_{\Gamma_{\lambda}(\Delta)} u \frac{\partial u}{\partial \nu} ds = \int_{\Gamma_{\lambda}(\Delta)} u \frac{\partial u}{\partial u_n} dv_n,$$

where ν is the inner normal and ds is the arc element on Γ_{λ} . From

(6)
$$D(\lambda) = \int_{0}^{\lambda} d\lambda \int_{\Gamma_{\lambda}(\Delta)} \left(\left(\frac{\partial u}{\partial u_{n}} \right)^{2} + \left(\frac{\partial u}{\partial v_{n}} \right)^{2} \right) dv_{n} + \text{ const.},$$

we have

$$D'(\lambda) = \int_{\Gamma_{\lambda}(\Delta)} \left(\left(\frac{\partial u}{\partial u_n} \right)^2 + \left(\frac{\partial u}{\partial v_n} \right)^2 \right) dv_n,$$

so that from (5),

⁴⁾ R. Nevanlinna. I.c. ¹⁾ (a).

$$D^{c}(\lambda) \leq \int_{\Gamma_{\lambda}(\Delta)} u^{2} dv_{n} \int_{\Gamma_{\lambda}(\Delta)} \left(\frac{\partial u}{\partial u_{n}}\right)^{2} dv_{n} \leq D'(\lambda) \int_{\Gamma_{\lambda}(\Delta)} u^{2} dv_{n}.$$

We put

(7)
$$m(\lambda) = \int_{\Gamma_{\lambda}(\Delta)} u^2 dv_n,$$

then

(8)
$$D^2(\lambda) \leq m(\lambda) D'(\lambda).$$

Since u=0 on Λ ,

(9)
$$m'(\lambda) = 2 \int_{\Gamma_{\lambda}(\Delta)} u \frac{\partial u}{\partial u_n} dv_n = 2 D(\lambda) > 0,$$

(10)
$$m''(\lambda) = 2 D'(\lambda).$$

Since by (9), $m'(\lambda)$ (>0) is an increasing function of λ , $m(\lambda)$ is an increasing convex function of λ .

Since $m'(\lambda) > 0$, we have from (8), (9), (10),

$$\frac{m'(\lambda)}{m(\lambda)} \leq 2 \frac{m''(\lambda)}{m'(\lambda)}.$$

Hence integrating, we have

$$m(\lambda) \leq k[m'(\lambda)]^2, \quad k = \frac{m(0)}{(m'(0))^2} = \frac{m(0)}{4(D(0))^2},$$

so that from (8), (9),

$$\frac{D^2(\lambda)}{D'(\lambda)} \leq 4 k D^2(\lambda), \text{ or } d\lambda \leq 4 k dD(\lambda).$$

Hence integrating on $[0, \mu_n]$, we have

$$\mu_n \leq 4k(D(\mu_n) - D(0)) \leq 4kD(\mu_n).$$

Since by the hypothesis, $D(\mu_n)$ is bounded and $\mu_n \to \infty$ as $n \to \infty$, this is absurd. Hence $u(z) \equiv 0$. q.e.d.

THEOREM 2. Let F be an open Riemann surface with null boundary and Δ be a non-compact domain on F, whose boundary Γ consists of (compact or non-compact) analytic curves. Let u(z) be a one-valued harmonic function in Δ , whose Dirichlet integral in Δ is finite. If u(z) is bounded on Γ , then u(z) is bounded in Δ , such that

$$m \leq u(z) \leq M$$
 in Δ ,

where

$$m = \inf_{\Gamma} u(z), \qquad M = \sup_{\Gamma} u(z).$$

⁵⁾ c. f. R. Nevanlinna. l.c. ¹⁾ (a).

MASATSUGU TSUJI

Proof. Suppose that there exists a point z_0 in Δ , such that $u(z_0) > M$. We choose K, such that $u(z_0) > K > M$ and let $\Delta(K)$ be the sub-domain of Δ , such that $u(z) \cong K$ and Λ be its boundary. Then u(z) = K on Λ , so that Λ has no common points with Γ , hence $\Delta(K)$ is non-compact. Since u(z) = K on Λ and its Dirichlet integral in $\Delta(K)$ is finite, we have by Theorem 1, $u(z) \equiv K$, which is absurd, since $u(z_0) > K$. Hence $u(z) \leq M$ in Δ . Similarly $u(z) \cong m$ in Δ . q.e.d.

We will prove

THEOREM 3. Let F be an open Riemann surface and z=0 be contained in F. We approximate F by a sequence of compact Riemann surfaces F_n , $\overline{F_n} \subset F_{n+1}$ (n=0,1,2...), $F_n \to F$, whose boundary Γ_n consists of a finite number of analytic Jordan curves and F_0 contains z=0. Let $g_n(z, 0)$ be the Green's function of F_n , with z=0 as its pole and let at z=0,

2

$$g_n(z, 0) = \log \frac{1}{|z|} + \gamma_n + \varepsilon_n(z)$$
 $(\varepsilon_n(0) = 0),$

where γ_n is the Robin's constant. Then

$$g_n(z, 0) - \gamma_n$$
 (*n*=0, 1, 2, ...)

is uniformly bounded in any compact domain of F, which does not contain z=0.

Proof. Let $F_0: |z| \leq \rho < 1$ be contained in F and $\Gamma_0: |z| = \rho$. We put

(1)
$$M_n = \underset{\Gamma_0}{\operatorname{Max.}} g_n(z, 0).$$

Then Heins⁶⁾ proved that

(2)
$$u_n(z) = M_n - g_n(z, 0)$$

is uniformly bounded in any compact domain of F, which does not contain z=0. For the sake of completeness, we will reproduce his proof. Now

$$u_n(z) > 0 \quad \text{in} \quad F_n - F_0$$

and since $u_1(z) - u_n(z)$ is harmonic in F_1 and at some point z_0 on Γ_0 , $u_n(z_0) = 0$, $u_1(z_0) \ge 0$, by the maximum principle, we have

$$\operatorname{Max.} (u_1(z) - u_n(z)) \geq 0.$$

Since $u_1(z) = M_1$ on Γ_1 , we have

⁶⁾ M. Heins: The conformal mapping of simply connected Riemann surfaces. Annals of Math. **50** (1949).

(4)
$$\operatorname{Min}_{n} u_{n}(z) \leq M_{1},$$

Let $|z| \leq \rho_1$ ($\rho < \rho_1 < 1$) be contained in F_1 , then from (3), (4) and Harnack's theorem on positive harmonic functions, we conclude that for any compact domain \varDelta of F, which contains $|z| \leq \rho_1$, there exists a constant $K = K(\varDelta)$, such that for $n \geq n_0$,

(5)
$$|g_n(z, 0) - M_n| \leq K$$
 in \varDelta outside $|z| = \rho_1$.

Hence

$$|v_n(z)| = |g_n(z, 0) - M_n - \log \frac{1}{|z|}| \le K + \log \frac{1}{\rho_1}$$
 on $|z| = \rho_1$.

Since $v_n(z)$ is harmonic in $|z| \leq \rho_{1_2}$

$$|v_n(0)| = |\gamma_n - M_n| \leq K + \log \frac{1}{\rho_1},$$

so that from (5),

(6)
$$|g_n(z, 0) - \gamma_n| \leq K + |\gamma_n - M_n| \leq 2K + \log \frac{1}{\rho_1}$$
 in Δ outside $|z| = \rho_1$.

Hence

(7)
$$|g_n(z, 0) - \log \frac{1}{|z|} - \gamma_n| \le 2K + 2\log \frac{1}{\rho_1}$$
 on $|z| = \rho_1$.

Since the left hand side of (7) is harmonic in $|z| \leq \rho_1$, (7) holds in $|z| \leq \rho_1$, so that

(8)
$$|g_n(z, 0) - \gamma_n| \leq 2K + 2\log \frac{1}{\rho_1} + \log \frac{1}{|z|}$$
 in $|z| \leq \rho_1$.

From (6), (8), we have the theorem. q.e.d.

By Theorem 3, we can find a partial sequence n_{κ} , such that

(9) $\lim (g_{n_{\kappa}}(z, 0) - \gamma_{n_{\kappa}}) = u(z, 0)$

uniformly in any compact domain of F, which does not contain z=0. u(z, 0) is harmonic on F, except at z=0, where it has a logarithmic singularity. Hence we have

THEOREM 4. Let F be an open Riemann surface and z_0 be any point of F. then there exists a potential function $u(z, z_0)$, which is harmonic on F, except at z_0 , where it has a logarithmic singularity, such that

$$u(z, z_0) - \log \frac{1}{|z-z_0|}$$

is harmonic at z_0 .

Mathematical Institute, Tokyo University