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The canopy-related terms in the transport equations for momentum, Reynolds stresses,
turbulent kinetic energy and its dissipation rate were described by a perturbative expansion
around a velocity scale based on the mean total kinetic energy. The quality of the
series and the relative magnitude of the first orders were analysed through comparison
with the results of large-eddy simulation of three canopy flows representative of
real-life applications. The flows in question were those over a horizontally homogeneous
forest, a sequence of forest stands and clearings, and a forested hill. The analysis
gave both the highest order required for an accurate evaluation of the canopy effects
and a mathematical formulation for the canopy-related terms in a Reynolds-averaged
Navier–Stokes formulation. This offers a sounder basis and assured consistency for the
turbulence modelling of canopy flows between Reynolds-averaged Navier–Stokes and
large-eddy simulation frameworks.
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1. Introduction

A forest is defined as an area of more than 0.5 ha, of which over 10 % is covered
with trees with a minimum height of 5 m. Still according to the Global Forest Resource
Assessment (FAO 2012, 2016), forests cover 30.6 % of Earth’s total land area and their
biomass and soils store more carbon than the atmosphere (Pan et al. 2013). It is not
surprising, therefore, that the flow within forests has been a subject of research, and the
review papers by Raupach & Thom (1981), Finnigan (2000), Belcher, Harman & Finnigan
(2012) and Brunet (2020) offer an overview of how our understanding and modelling of
forest flows have developed.

Initial studies (cf. Raupach, Thom & Edwards 1980) considered a forest to be a
perturbation to the upstream boundary layer. This approach (based on the characteristic
roughness, z0, and displacement height, d) can only be successfully applied to the mean
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flow over large homogeneously forested regions and is most useful under conditions
of insufficient spatial resolution (e.g. Silva Lopes, Palma & Piomelli 2015). Nowadays,
the flow over a forest is viewed as an analogue of a mixing layer (cf. Finnigan 2000),
composed of large turbulent structures that gradient-diffusion-based approaches cannot
mimic. Within the forest, the flow between the complex network of trunks and leaves
increases shear and, consequently, turbulence – wake production – while, at the same
time, large eddies are broken into smaller ones, increasing dissipation – spectral shortcut
(e.g. Novak et al. 2000; Cava & Katul 2008).

In the case of a higher resolution, trees are seen as a drag force ( fi), and modelled via
additional contributions to the transport equations for momentum (Ui, (1.1)), turbulent
kinetic energy (TKE; k, (1.2)) and its dissipation rate (ε, (1.3)). Traditionally, the canopy
models in the Reynolds-averaged Navier–Stokes (RANS) formulation have the general
form

F k−ε
Ui

= −Cda(z)|U |Ui, (1.1)

F k−ε
k = Cda(z)

(
βp|U |3 − βd|U |k), (1.2)

F k−ε
ε = Cd a(z)

(
Cε4βp|U |3 ε

k
− Cε5βd|U |ε

)
. (1.3)

Here Cd is a mean drag coefficient, a(z) is the leaf area density (LAD), a function of
the distance to the ground, and |U | is the mean scalar velocity, (UiUi)

1/2. Here, we are
assuming the mathematical formulation of canopy flows in the context of the two-equation
(k–ε) RANS model, first presented by Svensson & Häggkvist (1990) and Green (1992).
Since this model is based on the eddy-viscosity concept, its accuracy, when compared
with Reynolds-stress models, is questionable in strongly advective conditions. However, it
is successfully used in the study of atmospheric flows and by the wind industry (e.g. Costa
et al. 2006; Dalpé & Masson 2008; Abiven, Palma & Brady 2011).

Equations (1.2) and (1.3) were obtained using dimensional relations and the coefficients
determined as usual in turbulence modelling; i.e. on the basis of canonical flows, with
comparison of the computational and experimental results of mean wind speed, shear
stress or TKE (see, for instance, Wilson 1988; Lien & Yee 2004; Lien, Yee & Wilson
2005; Sanz & Katul 2007; Sogachev et al. 2012) or of large-eddy simulations (LES)
(Silva Lopes et al. 2013). Experimental data within real forests are scarce, and many
of the constants have been fine-tuned with measurements taken outside forests, where
the impact of such a different model (or set of constants) is lower. These equations try
to accommodate the two opposing and competing phenomena of wake production and
spectral shortcut. This effort, eloquently summarized in table 1, has led us to the current
position, in which, in the context of two-equation turbulence modelling, neither standard
parametrization nor standard values for the coefficients are available when modelling
the flow over forests. Sanz (2003), Sogachev & Panferov (2006), Sanz & Katul (2007),
Sogachev (2009) and Sogachev et al. (2012) provide some of the most comprehensive
derivations of the coefficients, based on such phenomenological arguments as assuming
the Kolmogorov relation, a dense and homogeneous canopy and constant mixing length
within the canopy. Nevertheless, these physical constraints are insufficient and the
coefficient values are found to be bound to such additional ad hoc restrictions as Cε4 = Cε5
(Sanz 2003).

The forest flow parametrizations in the LES and RANS frameworks are highly similar.
Both require a canopy-related term in the momentum equation and in the TKE (e) of
the subgrid scales (cf. Sagaut 2006), if such an equation (1.4) is required (e.g. Shaw &
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Modelling the flow within forests 910 A7-3

One-equation model βp βd

Wilson, Finnigan & Raupach (1998) — 1.0, 2.5
Pinard & Wilson (2001)a — 1.0
Sogachev et al. (2002) 1.0 4.0

Two-equation (k–ε) model βp βd Cε4 Cε5

Svensson & Häggkvist (1990) 1.0 — 1.95 —
Green (1992) 1.0 4.0 1.5 1.5
Kobayashi, Pereira & Siqueira (1994)b 1.0 — 0.975, 1.95, 2.5 —
Liu et al. (1996) 1.0 4.0 1.5 1.5, 0.6
Katul et al. (2004)e 1.0 4.0, 5.1 1.5, 0.9 1.5, 0.9
Foudhil, Brunet & Caltagirone (2005) 0.8 4.0 1.875 0.6, 0.81, 1.5
Costa et al. (2006)b 1.0 — 1.95 —
Liang et al. (2006) 1.0 4.0 3.6 1.2
Sogachev & Panferov (2006) 1.0 4.0 1.52 1.833
Mochida et al. (2008)c 1.0 — 1.0, 1.5, 1.8, 2.0 —
Mochida et al. (2008)d 1.0 4.0 1.5, 1.8 0.6, 1.0 –1.5–1.8
Dalpé & Masson (2008)d 1.0 5.03 0.78 0.78
Rosenfeld, Marom & Bitan (2010)e 1.0 4.0 1.5 1.5
King, Tinoco & Cowen (2012) 0.2 1.0 — —
Silva Lopes, Palma & Viana Lopes (2013) — 4.0 — 0.9
Krayenhoff et al. (2015) f 1.0 6.5 1.26 1.26
Present study — 2.67 — 1.0

Two-equation (k–ω) model βp βd Cε4 Cε5

López & García (2001) 1.0 — 1.33 —
Neary (2003) 1.0/0.05 — 1.33/0.16 —
Sogachev (2009) 1.0 1.0 0.52 0.833
Sogachev, Kelly & Leclerc (2012) 1.0 1.0 0 −0.48

Second-order model βp βd Transport equations

Wilson & Shaw (1977) 1, 0, 0 — uu, vv, ww
Yamada (1982) 0–1 — uiuj, �

Wilson (1988)g >0 — uiuj
Meyers & Baldocchi (1991) 1 — k − uw
Ayotte, Finnigan & Raupach (1999) — — uiuj, ε

Ayotte et al. (1999) 1 — −1

TABLE 1. Models and model coefficients in RANS formulation. Optimal values are underlined.
aBased on Wilson et al. (1998).
bBased on Svensson & Häggkvist (1990).
cBased on Yamada (1982) and Svensson & Häggkvist (1990).
dBased on Green (1992) and Liu et al. (1996).
eBased on Sogachev & Panferov (2006).
f Based on Sanz (2003).
gThe mathematical formulation by Wilson (1988) differs from the other models.

Schumann 1992). According to Kanda & Hino (1994),

FLES
e = Cda(z)

(
α|U |3 − 2|U |e), (1.4)

where α, the ratio for the transformation of the energy loss in grid-scale flow through leaf
drag to wake production in the subgrid-scale flow, can vary between 0 and 1. This equation
is analogous to (1.2) and the coefficients α and 2 are denoted by βLES

p and βLES
d . It should be
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mentioned that this analogy between (1.2) and (1.4) is merely formal, since k encompasses
the whole range of scales whereas e is the TKE of subgrid scales. Most LES-based studies
have their origin in the work of Shaw & Schumann (1992) and have used a simpler form of
(1.4), in which βLES

p is equal to 0 and βLES
d is equal to 8/3 (e.g. Shaw & Patton 2003; Bohrer

et al. 2009; Chatziefstratiou, Velissariou & Bohrer 2014; Nebenführ & Davidson 2015)
or 2 (e.g. Shaw & Schumann 1992; Kanda & Hino 1994; Dwyer, Patton & Shaw 1997;
Shen & Leclerc 1997; Patton et al. 1998; Yang et al. 2006; Dupont & Brunet 2008, 2009;
Schrottle & Dornbrack 2013; Kanani et al. 2014; Schlegel et al. 2015; Boudreault et al.
2017). Unlike RANS-based studies (see table 1), very few LES-based studies take wake
production into account (Shaw & Patton 2003). Concerning the constants (βLES

p and βLES
d )

and their values, the uncertainty involved in LES-based modelling is much lower, since
only one constant and two values (8/3 or 2) are used, and in the case of the subgrid-scale
dynamic model (e.g. Yue et al. 2008; Silva Lopes et al. 2013, 2015; Yan et al. 2017) it does
not even apply, because there is no equation for TKE of the subgrid scales (e). Concerning
the uncertainty, even arbitrariness, as regards the constants in LES-based modelling, it is
much lower, since only one constant (βLES

d ) and two values (8/3 or 2) are used, or, as is
the case of the subgrid-scale dynamic model (e.g. Yue et al. 2008; Silva Lopes et al. 2013,
2015; Yan et al. 2017), this does not even apply, because there is no equation for TKE of
the sub-grid scales (e).

Our goal in this work was to derive the most accurate equations for the effect a canopy
has on a turbulent flow. The canopy-related terms in the equations, namely momentum,
TKE and its dissipation rate, were approximated using a Taylor series expansion of
the velocity magnitude, with a velocity scale based on the total kinetic energy. Unlike
previous models (table 1), this approximation did not require any empirical coefficient.
As in previous studies (Silva Lopes et al. 2013, 2015; Silva Lopes, Palma & Viana Lopes
2016), we considered LES to be a surrogate for a well-controlled experiment and we used
the time-averaged LES results to validate the decomposition and determine the highest
order required for an accurate representation of the effect of the trees in each of the three
equations.

There are some similarities between ours and previous studies. For instance, Belcher,
Jerram & Hunt (2003) and Belcher, Finnigan & Harman (2008) also made use of some
form of decomposition in their linear versions of flow over forested regions. Our work
is more similar to that of Lien et al. (2005), which addressed urban canopy flows.
Both our study and that of Lien et al. (2005) decompose the canopy-related terms in
a Taylor series and assume that the turbulent fluctuations are much smaller than the
magnitude of the mean-flow velocity (weak turbulence regime). However, in this study,
the velocity scale is different and validation, with a larger number of more demanding
test cases, shows that the new approach does not suffer from the limitations raised by
Lien et al. (2005) and that it can deal with low-velocity regions and flow-developing
regions.

1.1. Paper outline
Section 2 addresses the canopy-related terms in the transport equations for momentum,
Reynolds stresses, TKE and its dissipation rate, which are approximated by a Taylor series
expansion in § 3. The quality of the expansion and the lowest order required for an accurate
evaluation of the canopy effects are analysed in § 4, on the basis of LES results for the flow
over a horizontally homogeneous forest, a forest edge and a forested hill. Section 5 presents
a summary of our conclusions.
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Modelling the flow within forests 910 A7-5

2. Mathematical model

A neutrally stratified flow within a forest is governed by equations expressing the
conservation of mass and momentum:

∂〈ui〉
∂xi

= 0, (2.1)

∂〈ui〉
∂t

+ ∂(〈uj〉〈ui〉)
∂xj

= − 1
ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

− ∂τij

∂xj
+ fi, (2.2)

where ui is the component of the velocity in the Cartesian direction xi, p is the pressure, ρ

and ν are the standard air density and kinematic viscosity and 〈 〉 denotes a spatial filtering
operation. Parameters τij = 〈uiuj〉 − 〈ui〉〈uj〉 are the LES subgrid stresses. The canopy drag
force per unit mass fi arises because filtering and derivation do not commute in the space
occupied by the canopy elements. It is usually determined by

fi = −Cd a(z)|〈u〉|〈ui〉, (2.3)

where Cd is a drag coefficient (assumed constant, since form drag is much larger than
viscous drag) and |〈u〉| = (〈ui〉〈ui〉)1/2 is the scalar velocity. The spatial filtering over
foliage elements used to obtain (2.1) and (2.2) was formalized by Wilson & Shaw (1977)
and Raupach & Shaw (1982), and reviewed in detail by Finnigan & Shaw (2008).

After time averaging – denoted by an overbar – of the momentum equation (2.2),

∂〈ui〉
∂t

+ ∂(〈uj〉〈ui〉)
∂xj

= D〈ui〉
Dt

= · · · + Fui, (2.4)

the average canopy drag is found to be

Fui = fi = −Cda(z)|〈u〉|〈ui〉. (2.5)

Henceforth, we will drop the angle brackets that denote the filtering operation when
referring to time averages of filtered quantities, i.e. ūi ≡ 〈ui〉 and u′

iu
′
j ≡ 〈ui〉′〈uj〉′. The

Reynolds stresses are u′
iu

′
j, where u′

i = ui − ūi is the fluctuating part of the instantaneous
velocity.

The counterpart of Fui in the transport equations for the Reynolds stresses u′
iu

′
j is

obtained in a similar manner to the other terms in these transport equations:

u′
i

Du′
j

Dt
+ Du′

i

Dt
u′

j = Du′
iu

′
j

Dt
= · · · + Fu′

iu
′
j
, (2.6)

where
Fu′

iu
′
j
= u′

i fj + u′
j fi (2.7)

is the correlation between canopy drag and velocity fluctuations. In the same way, for each
component εij of the Reynolds stresses dissipation rate tensor,

2ν
∂u′

i

∂xk

D
Dt

[
∂u′

j

∂xk

]
+ D

Dt

[
∂u′

i

∂xk

]
∂u′

j

∂xk
= D

Dt
2ν

∂u′
i

∂xk

∂u′
j

∂xk
= Dεij

Dt
= · · · + Fεij, (2.8)

with

Fεij = 2ν
∂u′

i

∂xk

∂fj

∂xk
+ ∂u′

j

∂xk

∂fi

∂xk
(2.9)
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being responsible for the enhancement of dissipation by the correlation between the
gradient of the canopy drag and the turbulent strain rate. Finally, the terms that correspond
to the action of the canopy drag on the TKE (or k) and on its dissipation rate (ε) are
obtained by contracting (2.7) and (2.9) for 〈u′

iu
′
i〉 and εii:

Fk = u′
i fi = −Cd a(z)|u|uiu′

i, (2.10)

Fε = 2ν
∂u′

i

∂xk

∂fi

∂xk
= −2νCd

∂

∂xk
[a(z)|u|ui]

∂u′
i

∂xk
. (2.11)

Because fi (equation (2.3)) results from the spatial filtering, Fk and Fε only represent
the canopy action at larger scales. This means that Fk cannot account for the increased
turbulent production caused by enhanced strain of the flow in the space between leaves
– wake production. However, such small-scale turbulence should dissipate quickly (over
a short distance) and contribute little to TKE transport (Raupach & Shaw 1982; Wilson
1988; Shaw & Patton 2003).

3. Weak turbulence regime

Since the canopy-related terms (equations (2.3), (2.10) and (2.11)) depend on the
velocity magnitude, Lien & Yee (2005) introduced an approximation for |u| based on
perturbation theory:

|u| = U

√
1 + 2

u′
s

U
+ u′

iu
′
i

U2
, (3.1)

where U = (Ui Ui)
1/2 is the magnitude of the mean velocity (Ui = ūi ) and u′

s and u′
n, given

by

u′
s ≡ u′

i
Ui

U
and u′

n ≡ (
u′

iu
′
i − u′

su
′
s

)1/2
, (3.2a,b)

are the velocity fluctuations along the streamwise and normal directions defined by the
mean flow. Using a series expansion of the square root in (3.1), Lien & Yee (2005)
expressed the canopy-related terms in the transport equations of a RANS model as the
sum of time-averaged second-order velocity moments. The expansion about the mean flow
state assumes that the turbulent fluctuations are much smaller than the magnitude of the
mean-flow velocity – weak turbulence regime (WTR):

u′
iu

′
i � U2. (3.3)

This approach can be applied near the surface, because both the mean velocity and the
fluctuations approach zero. However, in a region of separated flow, as on the lee side of a
hill covered with vegetation, the turbulent fluctuations can be large and the mean velocity
small, or even null, which breaks the WTR assumption (3.3).

Here, we propose to redefine the velocity scale (3.1), expanding |u| around a velocity Q,
derived from the total kinetic energy (mean flow + turbulence):

|u| = Q

√
1 + 2

Uu′
s

Q2
+ u′

iu
′
i − 2k
Q2

, (3.4)
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with Q = (U2 + 2k)1/2. We define ξ and η such that

ξ = Uu′
s

Q2
and η = u′

iu
′
i − 2k
Q2

, (3.5a,b)

which will be used as the small parameters required to perform the Taylor series expansion
of the square root:

√
1 + 2ξ + η ≈ 1 + ξ + η − ξ 2

2
+ ξ 3 − ξη

2
+ 6ξ 2η − η2 − 5ξ 4

8
+ · · · . (3.6)

In the case of Lien & Yee (2005) (3.1), the expansion of the fluctuating term
has a non-zero average, yielding an expansion around zero, fluctuations and a poor
quality of series convergence. In (3.4), we reorganized the argument of the square
root to have a fluctuating term around zero and a greater velocity scale (Q > U).
Expanding with the rescaled fluctuating term leads to a better convergence of the Taylor
series.

An indication of the validity of the approximation can be inferred from the joint
probability distribution of velocity fluctuations in a LES of a horizontally homogeneous
canopy. In a statistically steady-state regime, the velocity fluctuations are well described
by a probability distribution that is a function only of the distance to the ground z. The
probability distribution is given by

P(u|r) = lim
T→∞

1
T

∫ t+T

t
δ(u′(r, t′) − u) dt′ (3.7)

and any average of the fluctuations at a point in space, r, can be obtained by a phase-space
average:

Ā(r) =
∫

A(u′)P(u′|r) du′, (3.8)

where A is a generic function of the velocity.
A Taylor series expansion of the operator A(u′) is valid if the higher orders of the series

expansion are a good approximation in the regions where the probability weight is relevant.
Figure 1 shows the joint probability distribution of the streamwise and normal components
of the velocity fluctuations (obtained from LES results, as in § 4.2) at the location where
the turbulence is strongest. We can observe that the probability weight is concentrated near
the origin, where the instantaneous velocity is equal to the mean velocity. This measure
suggests the approximation based on small velocity fluctuations (WTR) is valid and shows
that the distribution is concentrated in a region inside the average fluctuation (u′

s, u′
n) and

that the reduced variables ξ and η (equation (3.5)) will be small even when the mean
velocity U is small.

3.1. Transport of momentum
Although (2.3) has been used to model the canopy drag with both the LES (Shaw &
Schumann 1992; Kanda & Hino 1994; Dwyer et al. 1997; Patton et al. 1998) and RANS
(Wilson 1988; Svensson & Häggkvist 1990; Green 1992) methods, it does not yield the
same time-averaged force since |ū|ūi ≤ |u|ui, as signalled by Su et al. (1998) and Finnigan
& Shaw (2008), who suggested using a lower Cd with LES.
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FIGURE 1. Joint probability density function of the streamwise and normal velocity
components (u′

s, u′
n) of the flow inside a horizontally homogeneous forest.

Here, we use the WTR assumption and the expansion (3.6) to propose an alternative
formulation for (1.1) in the RANS framework, in order to match the LES results. The
canopy drag (2.5) can be expressed as a sum of terms with a decreasing order of
magnitude:

FUi = lim
n→+∞

SUi(n), (3.9)

where the n-truncated Taylor expansion,

SUi(n) = −Cd a(z)
n∑

j=0

sUi( j), (3.10)

is generated by the expansion of the square root (3.6):

|u|u
Q

= Ui

√
1 + 2ξ + η + ui

√
1 + 2ξ + η. (3.11)

Collecting order by order, the first four terms of (3.10) are

sUi(0) = QUi, (3.12a)

sUi(1) = 0, (3.12b)

sUi(2) = U
Q

(
u′

su
′
i −

U Ui

2Q2
u′

su′
s

)
= Uj

Q

(
δik − Ui Uk

2Q2

)
u′

ju
′
k, (3.12c)

sUi(3) = 1
2Q

(
u′

iu
′
ju

′
j −

U2

Q2
u′

su′
su

′
i

)

= 1
2Q

(
δij − Ui Uj

Q2

) (
δkl − UkUl

Q2

)
u′

ju
′
ku

′
l. (3.12d)
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Modelling the flow within forests 910 A7-9

The zeroth-order term (3.12a) agrees with the common RANS canopy drag (1.1) when
the TKE is much lower than the kinetic energy of the mean field (k � U2, Q ≈ U).
However, there is numerical (see figure 1 of Silva Lopes et al. (2013)) and experimental
(see figure 3 of Cescatti & Marcolla (2004)) evidence that the ratio between turbulent
(k) and mean field kinetic (1/2U2) energies could reach between 10 and 100 %. The
differences emerge when higher-order terms are considered: for instance, the second-order
term (3.12c) of the WTR expansion predicts an average finite drag normal to the flow
direction if the two velocity components are correlated, i.e. the Reynolds shear stress u′

su′
n

is not null. This cannot be predicted by (1.1), the basis of the RANS canopy models.
Although the normal component is one order of magnitude smaller than the streamwise
component (as shown by the LES results in § 4.2), this is a major conceptual difference
between this formulation and the common RANS approach (1.1).

3.2. Transport of TKE
Following the same procedure as in § 3.1, a series expansion can also be obtained for the
rate of work done by the canopy drag against the turbulent fluctuations (2.10):

Sk(n) = −Cd a(z)
n∑

j=0

sk( j), (3.13)

where

sk(0) = 2Qk, (3.14a)

sk(1) = 0, (3.14b)

sk(2) = U2(Q2 − k)
Q3

u′2
s , (3.14c)

sk(3) = U(3Q2 − 2k)
2Q3

u′
su

′
iu

′
i −

U5

2Q5
u′3

s , (3.14d)

sk(4) = U4(2Q2 − 5k)
4Q7

u′4
s − U2(2Q2 − 3k)

2Q5
u′2

s (u′
iu

′
i − 2k) + 2Q2 − k

4Q3

[
(u′

iu
′
i)

2 − 4k2
]
.

(3.14e)

If the TKE is much lower than the kinetic energy of the mean field (k � U2, Q ≈ U)
and isotropy is assumed, the second-order approximation is identical to the RANS k–ε

canopy models (1.2) without wake production (βp = 0). This is a consequence of the
assumptions of our mathematical model (§ 2) and agrees with the LES results obtained by
Silva Lopes et al. (2013), in whose work the canopy was also modelled as a homogeneous
porous medium. Wake production is due to horizontal heterogeneity of the vegetation
and exists at scales much smaller than the grid sizes currently used in the simulation of
atmospheric flows. This is different from canopy-resolving LES as applied to rod or urban
canopy flows (e.g. Novak et al. 2000; Castro, Cheng & Reynolds 2006; Cava & Katul
2008; Bou-Zeid et al. 2009; Patton et al. 2011; Poggi, Katul & Vidakovic 2011; Blackman
et al. 2017). Truncating the series to second order requires only quantities that can be
obtained from RANS models. Third-order terms can also be included if an approximation
for the third-order correlations is used.
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3.3. Transport of the dissipation rate of TKE
Finally, an approximation for the effect of the canopy drag on the transport of TKE
dissipation rate (2.11) was also derived:

Sε(n) = −ν Cd

n∑
j=0

sε( j). (3.15)

The expansion of the product between the gradient of the canopy drag and the turbulent
strain rate is more complex than that for momentum or TKE transport. For the sake of
convenience (§ 4.4), the series terms were split into large-scale contribution, SL

ε (n), which
depends on velocity correlations, and small-scale contribution, Ss

ε(n), which depends on
statistics that include the turbulent strain rate:

Sε(n) = SL
ε (n) + Ss

ε(n) = −ν Cd

⎛
⎝ n∑

j=0

sL
ε ( j) +

n∑
j=0

ss
ε( j)

⎞
⎠ , (3.16)

where

sL
ε (0) = sL

ε (1) = 0, (3.17a)

sL
ε (2) = ∂

∂xk

[
a(z)Q

(
Ui Uj

Q2
+ δij

)]
∂u′

iu
′
j

∂xk
, (3.17b)

sL
ε (3) = ∂

∂xl

[
a(z)

Ui

Q

(
δjk − Uj Uk

3Q2

)]
∂u′

iu
′
ju

′
k

∂xl
(3.17c)

and

ss
ε(0) = ss

ε(1) = 0, (3.18a)

ss
ε(2) = 2a(z) Q

(
δij + Ui Uj

Q2

)
∂u′

i

∂xk

∂u′
j

∂xk
, (3.18b)

ss
ε(3) = 2a(z)

(
Uiδjk + Ujδik + Ukδij

Q
− UiUjUk

Q3

)
u′

i

∂u′
j

∂xl

∂u′
k

∂xl
. (3.18c)

As with TKE transport, if the TKE is much lower than the kinetic energy of the mean
field (k � U2, Q ≈ U) and isotropy of both the Reynolds stresses and TKE dissipation rate
is assumed, the second-order small-scale approximation becomes similar to conventional
RANS k–ε canopy models without wake production (equation (1.3)). As will be shown
in § 4.4, the magnitude of the small-scale part overshadows the large-scale part, since
dissipation is mainly effected at the smaller scales. Also, if isotropy is assumed, the
second-order approximation uses quantities available in RANS models. The correlations
required by the third-order small-scale term are difficult to approximate.

4. Numerical experiments and validation

Large-eddy simulations were performed (table 2) to assess the accuracy of the proposed
model (equations (3.12), (3.14), (3.17) and (3.18)), that is, the function of the order of
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Modelling the flow within forests 910 A7-11

Horizontally homogeneous Forest edge Forested hill

Domain size 9.6h × 4.8h × 3h 38.4h × 19.2h × 6.2h 300h × 60h × 20h
h (m) 20 7.5 10.0
Ub (m s−1) 2 3 2
Cd 0.15 0.2 0.2
LAI 2 2 1.6
Grid nodes 192 × 96 × 98 960 × 480 × 204 1698 × 252 × 340
z0/h 1.00 × 10−3 3.73 × 10−3 3.0 × 10−3

�x/h = �y/h 5.00 × 10−2 4.00 × 10−2 1.77 × 10−1

�zmin/h 1.25 × 10−2 5.33 × 10−3 1.77 × 10−2

fzmax 1.045 1.031 1.017

TABLE 2. Numerical parameters. Here Ub, bulk velocity; LAI = ∫ h
0 a(z) dz, leaf area index;

fzmax , maximum expansion factor of the grid in the vertical direction.

approximation in the description of canopy effects on the transport of momentum, TKE
and its dissipation rate. Three different flows – over a horizontally homogeneous canopy,
a forest edge and a forested hill – were considered on the basis of studies by Shaw &
Schumann (1992), Yang et al. (2006) and Dupont, Brunet & Finnigan (2008), respectively.
These flows have already been considered by Silva Lopes et al. (2013), because they test
the accuracy of the model for flows from the simplest to one with pressure gradients,
streamline curvature and separation. The results obtained by Silva Lopes et al. (2013) and
their set of optimized coefficients, identified as reference RANS k–ε, will serve as an
additional source for comparing the performance of the decomposition.

4.1. Numerical model
The numerical model is composed of (2.1) and (2.2) and the subgrid stresses, modelled by
an eddy-viscosity assumption:

τij − 1
3δijτkk = −2νtSij = −2 (C�)2 |S|Sij, (4.1)

where Δ = (�x �y �z)1/3 is the filter size, Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the resolved
strain-rate tensor and |S| = (2SijSij)

1/2 is its magnitude. The coefficient C was obtained
using a combination of the Meneveau, Lund & Cabot (1996) Lagrangian dynamic model
with the wall-damped Mason & Thomson (1992) Smagorinsky model near the surface.
The two models merged below 0.75h and CS = 0.16 was used in the Smagorinsky model.
Further details of the implementation can be found in Silva Lopes, Palma & Castro
(2007) and Silva Lopes et al. (2013). Periodic conditions were used in the streamwise
and spanwise directions. The surface stress was determined using the Marusic, Kunkel &
Porté-Agel (2001) model, while the top of the domain used a free-slip condition. At each
time step, a uniform (in space) streamwise pressure gradient was determined to balance
the canopy drag, resulting in a constant flow rate (momentum balance).

Numerical uncertainty has been assessed previously (Silva Lopes et al. 2013), on the
basis of the streamwise velocity normalized with the volume-averaged streamwise velocity
component (Ub), and the TKE and Reynolds shear stress (u′

su
′
n). Both of these were

normalized with the friction velocity (u∗), calculated using the total shear stress (resolved
and subgrid) at the canopy top. Calculations in three numerical grids of increasing
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FIGURE 2. Approximations of the canopy drag along the streamwise and normal directions
(s and n) in the horizontally homogeneous forest. (a) The WTR series terms up to the third order
(sUi (3.12)) and LES results (FUi (2.5)); (b) WTR summations up to the third order (SUi (3.10))
and LES results; (c) reference RANS k–ε (Fk−ε

Ui
(1.1)) and LES results (FUi (2.5)). Note that

horizontal scales are magnified 20× in the case of quantities referring to the normal direction, n.

resolution, of which the finest was identical to the one in this study, showed that U/Ub
and u′

su
′
n/u2

∗ were independent of grid resolution. In contrast, k/u2
∗ above the canopy

increased nearly 10 % in peak value between the coarsest grid (96 × 48 × 48) and finest
grid (192 × 96 × 98) results. The contribution of the subgrid stress to the peak Reynolds
shear stress, at treetop level, decreased from 4 % with the coarsest grid to 2 % with the
finest. The grid refinement study was performed for the horizontally homogeneous canopy,
while in the other cases, the resolution was limited by computational resource availability.
It was, nevertheless, considered appropriate for this study.

4.2. Transport of momentum
Figure 2 shows the WTR approximation of the canopy drag along the streamwise and
normal directions in the horizontally homogeneous forest, where there is no streamline
curvature, and a comparison with LES results. Regardless of the direction, the magnitude
of the series terms decreases with the order and the sum approaches the LES results
(figure 2a,b), suggesting the convergence of the series. The WTR expansions correctly
predicted both drag components, with the largest terms being based on the streamwise
velocity and on the Reynolds shear stress u′w′. The zeroth order was sufficient to
improve the standard RANS approximation, which underpredicted streamwise drag by
25 % (figure 2c).

In the case of the forest edge and the forested hill, with streamline curvature, it is useful
to analyse the drag force in terms of its streamwise and normal components:

FUs(n) = SUi(n)
Ui

U
and FUn (n) = [|SU(n)|2 − F 2

Us
(n)

]1/2
, (4.2a,b)
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FIGURE 3. Correlations of approximations of the streamwise component of the canopy drag in
the forest edge and forested hill flows. (a–c) The WTR summations up to the third order (SUs

(3.10)) and LES results (FUs (2.5)); (d) reference RANS k–ε (Fk−ε
Us

(1.1)) and LES results.

and to study canopy force modelling by verifying the correlation of the WTR expansion up
to the third order (3.10) with the canopy drag determined in the LES simulations at each
point within the canopy layer (figures 3 and 4). In the case of the streamwise component,
a perfect match is already achieved by the second-order WTR approach (figure 3b,c),
whereas the standard RANS presented deviations of up to 20 % (figure 3d). The normal
component was around 20× smaller than the streamwise one (as in the horizontally
homogeneous canopy flow) and the convergence was slower, especially in the case of the
forested hill (figure 4). However, the dispersion observed in the correlation was, in either
case, restricted to specific regions of the physical domain (the leading edge of the forest
and the lee side of the forested hill, inside the separated flow region).

In summary and on the basis of the three flow cases, we conclude that accurate
modelling of the canopy drag based on the WTR expansion required a second-order
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FIGURE 4. Correlations of approximations of the normal component of canopy drag in the
forest edge and forested hill flows. (a) Second-order and (b) third-order WTR summations (SUn

(3.10)) and LES results (FUn (2.5)).

approximation of the streamwise component and a fourth-order approximation of the
normal component. This may be compared with the standard RANS approach, which
was less accurate than the zeroth-order WTR for the streamwise component and does
not predict any drag in the normal direction.

4.3. Transport of TKE
As with canopy drag, there is evidence of convergence of the WTR approximation of the
effect on TKE transport in the horizontally homogeneous canopy flow, since the magnitude
of the terms decreased with order and their sum approached the LES results (figure 5a,b).
However, convergence was slower than for canopy drag (figure 2) and the third order was
required to capture 95.8 % of the LES results, compared to 83.5 % in the case of the second
order (figure 5b). Also, the WTR approximation could not improve on the reference RANS
model prediction of Silva Lopes et al. (2013):

F k−ε
k = −Cd a(z) βd|U |k, (4.3)

in which the constant βd = 4.0 was calibrated with this flow (figure 5c).
In the more complex cases, the flows over the forest edge and the forested hill, the

findings of the horizontally homogeneous canopy flow were confirmed, with the third
order providing a good approximation and the fourth order matching the LES results
(figure 6c,d). In these cases, the WTR approximation improved the reference RANS model

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.927


Modelling the flow within forests 910 A7-15

–8 –6 –4 –2 0

0

0.2

0.4

0.6

0.8

1.0

z/h

z/h

z/h

–8 –6 –4 –2 0

0

0.2

0.4

0.6

0.8

1.0

–8 –6 –4 –2 0

–8 –6 –4 –2 0

0

0.2

0.4

0.6

0.8

1.0

–Sk( j) h/u∗
3

sk(0)

sk(2)

sk(3)

sk(4)

Sk(0)
Sk(2)
Sk(3)
Sk(4)

Fk

Fk

Fk
k–ε

Fk

(a) (b)

(c)

–sk( j) h/u∗
3 –Fk h/u∗

3

FIGURE 5. Approximations of the contribution of canopy drag to TKE transport in the
horizontally homogeneous forest. (a) The WTR series terms up to the fourth order (sk (3.14))
and LES results (Fk (2.10)); (b) WTR summations up to the fourth order (Sk (3.13)) and LES
results; (c) reference RANS k–ε (Fk−ε

k (4.3)) and LES results.

predictions (figure 6e), which failed mainly at the edge of the forest and in the separation
on the lee side of the hill. However, we note that the third-order term requires velocity
correlations of the same order.

4.4. Transport of dissipation rate of TKE
The WTR approximation of the effect of canopy drag on the transport of the dissipation
rate of TKE includes only second- and higher-order terms (equations (3.17) and (3.18)).
As in the transport of momentum or TKE, the magnitude of the third-order term was
smaller than the second-order term and their sum approached the LES result in the
horizontally homogeneous canopy flow (figure 7a,b), indicating convergence of the series.
The second-order term of the series, (3.17b) and (3.18b), the first non-zero terms of the
series, yielded a result within 83.8 % of the peak value (figure 7b). The LES results were
mimicked by either the WTR third-order approximation (99.6 %) or the reference RANS
model prediction of Silva Lopes et al. (2013):

F k−ε
ε = −Cda(z)Cε5βd|U |ε, (4.4)

in which the constant Cε5 = 0.9, such as βd (4.3), was calibrated also with this flow
(figure 7c).

For the forest edge and forested hill flows, the second-order WTR approximation
was sufficient to improve the correlation of the reference RANS model, which showed
considerable dispersion (figure 8). However, we note that the second-order WTR
approximation requires knowledge of turbulent strain rate correlations and the third-order
approximation requires third-order statistics including the turbulent strain rate and velocity
fluctuations.
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FIGURE 7. Approximations of the contribution of canopy drag to the transport of the TKE
dissipation rate in the horizontally homogeneous forest. (a) The WTR series terms up to the
third order (sε (3.17) and (3.18)) and LES results (Fε (2.11)); (b) WTR summations up to the
third order (Sε (3.16)) and LES results (Fε (2.9)); (c) reference RANS k–ε (Fk−ε

ε k (1.3)) and
LES results (Fε (2.9)).

Additionally, in assessing the accuracy of the WTR approximation to the effect of
canopy drag on the transport of TKE dissipation rate, we must bear in mind that this
involves mainly small scales, which can be shown by the dependence of the WTR
approximation on the turbulent strain rate correlations (3.18c). This is the opposite of the
effect on the transport of momentum and TKE, which depends on velocity correlations
and concerns mainly large scales. As such, a grid refinement study was performed on
the horizontally homogeneous canopy flow, to check whether the accuracy of the WTR
approximation varied with resolved dissipation. Three different grid resolutions were
considered: low resolution (LR; 136 × 68 × 70), medium resolution (MR; 192 × 96 × 98)
and high resolution (HR; 272 × 136 × 138 nodes); i.e. the grid space was nearly two
times larger in the LR grid than in the HR grid. As expected, the small-scale part of
the WTR approximation (ss

ε) increased with the grid resolution (figure 9a), whereas
the large-scale part (sL

ε ), already properly resolved on the LR grid, remained almost
constant (figure 9b). Nevertheless, there was always a good agreement between the WTR
approximation determined using resolved LES fields and the LES results on the same grid.

As regards the grid refinement study (figure 9), if a major part of the dissipation were to
be resolved, we would expect that: (a) the agreement between the WTR approximation and
LES results would persist and (b) the small-scale part of the WTR approximation would
overshadow the large-scale part (cf. figure 9a with figure 9b). This latter consideration
can be used in the construction of a RANS model, based solely on the small-scale part.
We note, however, that if the grid resolution of the LES was increased to approach the
dissipative scales of the flow, the field-scale approach, used to model the forest canopy,
should be replaced by the plant-scale approach (Yue et al. 2007). In this approach, the local
canopy structure is taken into account instead, rather than a horizontally homogeneous
drag field.
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ε (1.3)).

In the cases of the forest edge and forested hill flows (figure 10), the large- and
small-scale contributions, determined using the resolved LES fields, were of a similar
magnitude and only their sum correlated well with LES results. This occurred because the
spatial resolution was not as good as it was for the horizontally homogeneous canopy flow.
This is why fewer small scales and, consequently, dissipation were resolved.

4.5. Comparison with conventional RANS models
The WTR approximations are similar to conventional RANS k–ε canopy models if certain
assumptions are made: (a) the TKE is much smaller than the kinetic energy of the mean
field: k � U2, Q ≈ U); (b) the Reynolds stress and its dissipation rate tensors are isotropic:
u′

iu
′
j = 2/3kδij and εij = 2/3εδij; and (c) the large-scale contribution to the effect on the

transport of TKE dissipation rate is much smaller than the small-scale part (see above):
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SL
ε � Ss

ε, Sε ≈ Ss
ε. Given these assumptions, the zeroth-order WTR approximation for

canopy drag and the second-order approximation for the effect on the transport of TKE
and its dissipation rate become

SU(0) = −Cda(z)|U |Ui, (4.5)

Sk(2) = Cda(z)
(− 8

3 |U |k) , (4.6)

Sε(2) = Cda(z)
(− 8

3 |U |ε) ; (4.7)

i.e. βd = 2.67 and Cε5 = 1.
The zeroth-order approximation for canopy drag (4.5) agrees with the conventional

approach (1.1). However, the second-order WTR approximation appears to underestimate
the effect on TKE and its dissipation rate when compared with the Silva Lopes et al.
(2013) reference RANS model (figures 5c and 7c), in which the coefficients (βd = 4.0 and
Cε5 = 0.9) were calibrated using LES. This is due, in large part, to the effect of the canopy
being split into various orders in the WTR approximation, whereas conventional models
try to account for it all with a single term, yielding larger coefficients (table 1). Also,
the isotropy assumption, although useful in simplifying the equations, is not appropriate
inside the canopy. It is sufficient, for instance, to consider the anisotropy commonly found
in the Reynolds stresses of homogeneous shear flows, u′u′ ≈ k, to obtain βd = 3.0 instead
of 2.67. In summary, we find that the differences are justified and there is no sign of lack
of accuracy in any of the approaches.

5. Summary and conclusions

The canopy-related terms in the transport equations for momentum, TKE and its
dissipation rate were approximated using a Taylor series expansion of the velocity
magnitude, with a velocity scale based on the total (mean flow and turbulent) kinetic
energy. A consistent mathematical formulation was developed in a Reynolds-averaged
formulation that, in the case of two-equation (k–ε) turbulence models, implies no
additional empirical model coefficients or any uncertainties associated with determining
the same. It was shown that in homogeneous canopy flows, the standard RANS
formulation is a zeroth-order approximation of momentum and a second-order
approximation of both TKE and its dissipation in the WTR formulation.

The conclusions drawn from LES of three canopy flows (over a horizontally
homogeneous forest, a sequence of forest stands and clearings, and a forested hill) were as
follows:

(i) The limitations inherent in the weak turbulence assumptions (i.e. turbulence
intensity much lower than mean velocity or low TKE compared with mean
kinetic energy) were overcome by reverting to a velocity scale derived from
the total kinetic energy. The model is robust and provided good results, even
where these assumptions are questionable, as is the case for non-homogeneous
and non-equilibrium flow regions, found near forest edges and on the lee side of
forested hills. In the three cases, the perturbative description was valid, leading to a
fast-converging series.

(ii) For an accurate representation of the canopy effects in a Reynolds-averaged
formulation, momentum in the streamwise direction must be approximated by up
to second-order terms.
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(iii) The present approach also shows the existence of a drag force perpendicular to the
streamwise flow direction. This force, which is about 20× lower than the force
along the streamwise direction, must be approximated by second- and third-order
terms.

(iv) The TKE requires third-order terms. In the case of the horizontally homogeneous
canopy, a 96 % agreement with the LES results was achieved, with the first 84 %
being the contributions of the zeroth- and second-order terms.

(v) The modelling of the transport of the TKE dissipation rate was validated under
conditions involving only a small fraction of the dissipation being resolved.
Nevertheless, a comparison of results obtained with different grid resolutions
indicates that the model is also valid and a third-order approximation yields a
100 % agreement with the LES results for the horizontally homogeneous canopy.
The series development also shows that the zeroth- and first-order terms are equal
to zero, and the second-order term, the lowest approximation of the TKE dissipation
rate, yields an accuracy of 84 % in the case of the horizontally homogeneous
canopy.

The novelty of this model is that it allows for the determination of canopy effects on
the transport of momentum, TKE and its dissipation rate, using a fast-converging series
expansion. This, which contrasts with the dimensional arguments used in other turbulence
models, may provide the insight required to develop more accurate approaches, thus
improving the accuracy of canopy flow prediction in the RANS formulation. We note
that although the k–ε model was considered here, the same approach can be applied to
second-order Reynolds stress transport models. Results of and assumptions inherent to
our model, such as not accounting for TKE wake production and volume fraction, and
the uncertainty of both drag coefficient and leaf area index are expected to be minor
factors in real life. In such applications, two main difficulties may be encountered: first,
our conclusions were based on a comparison of the magnitude of each term of the series
with the results of a well-controlled (numerical) experiment, which may differ from
laboratory or field measurements; and second, there is the issue of how to translate the
higher-order terms of our series into new approximations for canopy-related terms in the
RANS formulation, which will depend on the turbulence model being used. These topics
are worth addressing in future studies.
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