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Congruence testing for odd subgroups of the modular group

Thomas Hamilton and David Loeffler

Abstract

We give a computationally effective criterion for determining whether a finite-index subgroup
of SL2(Z) is a congruence subgroup, extending earlier work of Hsu for subgroups of PSL2(Z).

Recall that a finite-index subgroup of SL2(Z) is said to be a congruence subgroup if it is defined
by congruence conditions on the entries of its elements; formally, a subgroup is congruence if
it contains the subgroup Γ(N) of matrices congruent to the identity modulo N , and the least
such N is its level.

We are interested in the following question.

Question. Is there an efficient procedure that will determine whether a finite-index
subgroup of SL2(Z) is congruence?

One such algorithm follows from the following theorem, proved in [3], which is an extension
of a classical theorem of Wolfahrt.

Theorem 1 (Kiming–Schütt–Verrill). Let Γ 6 SL2(Z) be a finite-index subgroup, and let
d be the lowest common multiple of the widths of the cusps of Γ. If Γ is congruence, then its
level is either d or 2d.

(The case of level 2d can only occur if Γ is odd, that is does not contain −1.)
In principle, one can now determine whether Γ is congruence by calculating explicitly

a list of generators for Γ(N), where N = d or 2d as appropriate, and testing whether each
of these is contained in Γ. This approach is used in [3] in order to give explicit examples of
non-congruence lifts to SL2(Z) of congruence subgroups of PSL2(Z). However, the number
of generators of Γ(N) grows rather quickly with N , so this algorithm rapidly becomes
impractical for large values of N .

We present the following alternative approach to the above problem. As has been noted by
Hsu [2] and others, a convenient data structure for representing a subgroup of SL2(Z) of index
m is by the homomorphism SL2(Z)→ Sm given by left multiplication on the cosets SL2(Z)/Γ.
This, in turn, can be represented by two permutations giving the action of the generators
L = (1 0

1 1) and R = (1 1
0 1) of SL2(Z) on the cosets SL2(Z)/Γ.

The computer algebra package Sage contains a library of routines for working with subgroups
defined in this way, implemented by Vincent Delecroix and the second author based on an
earlier implementation by Chris Kurth.

Theorem 2. Let N = d if −1 ∈ Γ and N = 2d otherwise. Then there exists an explicit
list of relations LN in L and R (of length 67), such that Γ is congruence if and only if the
permutation representation of SL2(Z) corresponding to Γ satisfies the relations in LN .

Received 2 July 2013; revised 6 November 2013.

2010 Mathematics Subject Classification 20H05 (primary).

https://doi.org/10.1112/S1461157013000338 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000338


congruence testing for odd modular subgroups 207

This theorem has been proved for subgroups containing −1 by Hsu [2]; our proof follows
Hsu’s closely, except that we use the Kiming–Schütt–Verrill theorem (Theorem 1) in place of
the classical theorem of Wolfahrt.

Proposition 3. Let N > 1. There is an explicit finite set LN of words in L and R whose
image in SL2(Z) normally generates Γ(N) (that is, Γ(N) is the smallest normal subgroup of
SL2(Z) containing the elements in LN ).

Proof. See [2, Theorem 2.4]. The starting-point of the proof is the well-known fact that
SL2(Z) has the presentation

〈L,R | (LR−1L)2(R−1L)−3, (LR−1L)4〉

where L and R correspond to the matrices given above. Thus if L is any set of words in L and
R, the group

〈L,R | (LR−1L)2(R−1L)−3, (LR−1L)4,L〉 (1)

is the largest quotient of SL2(Z) in which the elements in the image of L map to the identity,
which is the quotient of SL2(Z) by the subgroup normally generated by the image of L. In
particular, the images of the elements of L normally generate Γ(N) if and only if (1) is a
presentation of the finite group SL2(Z/NZ).

Explicit presentations of the groups SL2(Z/NZ) for all N in terms of the generators L and
R are given in [2, Lemmas 3.3–3.5] (based on earlier work of Behr and Mennicke [1]), so it
suffices to take LN to be the set of relations appearing in these presentations.

Proof of Theorem 2. Let N be as defined in the statement of the theorem. We know that
Γ is congruence if and only if it contains Γ(N). Let Γ′ be the normal core of Γ, that is the
intersection of the conjugates of Γ in SL2(Z); then, since the elements of LN normally generate
Γ(N), it follows that Γ is congruence if and only if LN ⊂ Γ′.

However, Γ′ is precisely the kernel of the map φ : SL2(Z) → Sm giving the permutation
representation of Γ. So Γ is congruence if and only if φ is trivial on the elements of LN .

(One could clearly adapt this argument to work with other explicit descriptions of Γ as long
as one has an algorithm for computing whether a given element of SL2(Z) lies in the normal
core of Γ.)

We now reproduce, for the reader’s convenience, an explicit list of relations LN as in
Theorem 2, based on those given by Hsu.

• If N is odd, one may take LN to contain the single relation

(R2L−1/2)3 = 1,

where 1
2 is the multiplicative inverse of 2 mod N . This follows from the fact that for N

odd,

〈L,R | LN = 1, (LR−1L)2 = (R−1L)3, (LR−1L)4 = 1, (R2L−1/2)3 = 1〉

is a presentation of SL2(Z/NZ), by [2, Lemma 3.3]. The relations (LR−1L)2 = (R−1L)3

and (LR−1L)4 = 1 are redundant; they are automatically satisfied by the permutation
representation of SL2(Z) corresponding to Γ, since they are satisfied in SL2(Z) itself.
The relation LN = 1 is also automatically satisfied, since by definition N is divisible by
the widths of all of the cusps of Γ. (This case can, of course, only occur if −1 ∈ Γ and is
thus identical to the first case of Hsu’s Theorem 3.1.)
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• If N is a power of 2, let S = L20R1/5L−4R−1, where 1
5 is the multiplicative inverse of

5 mod N . Then one may take LN to consist of the three relations

(LR−1L)−1S(LR−1L) = S−1,

S−1RS =R25,

(SR5LR−1L)3 = (LR−1L)2.

As in the previous case, this follows from the fact that

〈L,R | LN = 1, (LR−1L)2 = (R−1L)3, (LR−1L)4 = 1,LN 〉
is a presentation of SL2(Z/NZ), by [2, Lemma 3.4], and the first three relations are
automatically satisfied in the permutation relation corresponding to Γ.

(Note that if we assume that −1 ∈ Γ, we may replace the last relation with
(SR5LR−1L)3 = 1, which is the relation appearing in Hsu’s Theorem 3.1; but for odd
subgroups we must use the slightly more complicated relation above.)

• If N = em where e is a power of 2, m is odd and e,m > 1, then let c, d be the unique
integers mod N such that c = 0 mod e, c = 1 mod m, d = 1 mod e, d = 0 mod m. Write
a = Lc, b = Rc, l = Ld, r = Rd and s = l20r1/5l−4r−1, where 1

5 is interpreted mod e.
Then we may take LN to consist of the seven elements

[a, r] = 1,

(ab−1a)4 = 1,

(ab−1a)2 = (b−1a)3,

(ab−1a)2 = (b2a−1/2)3,

(lr−1l)−1s(lr−1l) = s−1,

s−1rs= r25,

(lr−1l)2 = (sr5lr−1l)3.

As in the previous two cases, this follows from the presentation of the group
SL2(Z/NZ) ∼= SL2(Z/eZ)× SL2(Z/mZ) given in [2, Lemma 3.5].
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