
XV

The Higgs boson

On July 4, 2012, the LHC collaborations ATLAS and CMS announced the discov-
ery of a resonance which, despite limited statistics, seemed to have characteristics
expected of a Standard Model Higgs boson. Mass determinations presented at the
2013 Lepton-Photon Conference are

MH(GeV) =
{

125.5± 0.2 (stat) +0.5
−0.6(syst) [Ja (ATLAS collab.) 13]

125.7± 0.4 [De (CMS collab.) 13].
(1.1)

Since this resonance has a nonzero branching fraction for decay into two photons,
it must be a boson, one not having spin-one. In fact, current spin/parity analyses
are compatible with JP = 0+ but not with JP = 0−, 1+, 1−, 2+ [Aa et al. (ATLAS
collab.) 13b], [Ch et al. (CMS Collab.) 13]. Its couplings to bosons and fermions
appear to be consistent with Standard Model expectations, in particular that the
Higgs should couple to mass. At present, the overall precision is limited to about
25%, so an extended period of careful study will be necessary to reveal the anoma-
lous properties, if any, of this particle. In this chapter, we will consider the basics
of the Standard Model Higgs, with the intent of describing its phenomenology and
also addressing certain theoretical issues.

XV–1 Introduction

A central feature of the Standard Model is the spontaneous symmetry breaking in
the electroweak sector which gives mass to fermions and to the W± and Z0 gauge
bosons. Although a complex doublet of Higgs fields is initially introduced in the
Weinberg–Salam model, there remains following spontaneous symmetry breaking
precisely one physical Higgs state, a neutral scalar particleH 0. That is, if we define
the number of degrees of freedom for Higgs and gauge-boson states, respectively,
as NH and NG, then before the symmetry breaking we have NH = 4, NG = 8
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whereas afterwards we find NH = 1, NG = 11. To obtain these values, recall
that massive vector particles have three spin components whereas massless vector
particles have just two. Although the total of Higgs and gauge-boson degrees of
freedom remains fixed (NH +NG = 12), there is a transfer of three states from the
Higgs sector to the gauge-boson sector. These Higgs states become the longitudinal
spin modes of the W±, Z0 particles.

This transfer can be displayed analytically by first performing a contact trans-
formation to cast the two complex Higgs states ϕ0, ϕ+ in terms of four real fields
H 0 and χ = {χi} (i = 1, 2, 3)

� = U−1(χ)

(
0

(v +H 0)/
√

2

)
, (1.2)

where

U(χ) = exp(iχ · τ/v), (1.3)

and we recall that v = 1/
√

21/2GF � 246 GeV. One completes the procedure with
the gauge transformation,

�′ = U(χ)� =
⎛⎝ 0

(v +H 0)/
√

2

⎞⎠ ,
ψ ′L = U(χ)ψL, ψ ′R = ψR, B ′μ = Bμ,

τ

2
·W′

μ = U(χ)
τ

2
·WμU

−1(χ)+ ig−1
2 ∂μU(χ) · U−1(χ), (1.4)

for all fermion weak isodoublets ψL and weak isosinglets ψR. Within this unitary
gauge, the physical content of the theory is manifest, and the quantity �′ is seen to
contain a single Higgs field H 0.1 In the following, we shall employ this gauge but
with the primes in Eq. (1.4) suppressed.

XV–2 Mass and couplings of the Higgs boson

We have already specified in Chap. II how the Higgs bosonH fits into the Standard
Model. The various lagrangians written down there provide the basis for a complete
phenomenological portrait to be drawn for the H boson. In this section, and the
ones to follow, we present the theory for this program.

1 For notational simplicity, we shall hereafter omit the superscript ‘0’ and denote the Higgs field simply as H .
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436 The Higgs boson

Higgs mass term

Consider first the Higgs potential of Eq. (II–3.19) which, when expressed in terms
of the field H , becomes

V = −μ
2v2

4
+ μ2H 2

0 + λvH 3
0 +

λ

4
H 4

0 , (2.1)

where the parameters μ, λ are a priori unknown. The term quadratic in the Higgs
field determines the Higgs mass to be

MH =
√

2μ = v
√

2λ. (2.2)

This does not provide a numerical value for the Higgs mass MH because only the
quantity v, but not λ, is phenomenologically determined.

This fact places the burden of determining the Higgs mass on experiment. We
will interpret the LHC finding of an unstable boson as indeed the Standard Model
Higgs boson and for definiteness adopt the value

MH = (126.0± 0.5) GeV (2.3)

for subsequent discussion. If so, the remaining parameters in Eq. (2.1) become

μ = 89.1± 0.3 GeV and λ = 0.131± 0.001. (2.4)

The naturalness problem

Radiative corrections to the Higgs mass raise a question of the ‘naturalness’ of the
Standard Model. To motivate the discussion, let us first consider one-loop electro-
magnetic corrections to the electron mass. If we impose a cut-offe on the momen-
tum flowing through the loop, the mass shift,

me = me,0

[
1+ 3

2

α

π
ln

e

me,0
+ · · ·

]
, (2.5)

is obtained. The magnitude of this first-order correction, although cut-off depen-
dent, is generally tiny. Taking for e the entire mass of the observable universe,
e � 1079 GeV, results in only the modest mass shift me � 1.7me,0. This teaches
us that, with logarithmic behavior, the renormalization program of absorbing diver-
gences into renormalized parameters is not implausible.

However, radiative corrections to the Higgs mass are not as tame. We display
in Fig. XV–1 one-loop self-energy processes which shift the Higgs boson mass.
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(a) (b) (c)

Fig. XV–1 Some quadratically divergent Higgs self-energy diagrams.

Considering for definiteness diagram (c), which involves a Higgs loop with quartic
self-coupling, we have

−i�H(p) = −3iλ
∫

d4k

(2π)4
i

k2 −M2
H,0 + iε

. (2.6)

This expression is quadratically divergent, �H ∼ 2
H , where H is the cut-off

parameter for the above integral, and leads to a shift of the Higgs mass,

M2
H = M2

H,0 +
3

16

λ

π2
2
H . (2.7)

If H is as large as, say, the Planck mass EPlanck � 1019 GeV, then in order to
obtain a renormalized mass as given by Eq. (2.3), the parameter M2

H,0 must be
negative and have a magnitude which equals the correction up to 31 decimal places!
This is referred to as fine tuning. While technically possible, it is surely unnatural.
Including the other contributions of Fig. XV–1 we obtain the Higgs mass shift

M2
H = M2

H,0 +
3

16

λ

π2
2
H

[
M2
H + 2M2

W +M2
Z − 4m2

t

]
. (2.8)

It is possible to cancel this mass shift by arranging the value of MH contained
within the brackets in Eq. (2.8). This strategy givesMH � 314 GeV, which is ruled
out by experiment.

The inability to make sense of Higgs mass corrections is perhaps the most seri-
ous flaw in the fabric of the Standard Model. At present, there are no known com-
pelling mechanisms for curing this ailment. Accordingly, many physicists have
been motivated by this ‘unnaturalness problem’ to search for alternatives to the
Standard Model description, and to suggest that New Physics must exist not very
far above the weak scale v ∼ 250 GeV.

Higgs coupling constants

There are a variety of ways that the Higgs can interact, including vacuum energy,
Higgs self-couplings, Higgs couplings to massive particles, and finally Higgs
couplings to massless particles.
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438 The Higgs boson

Table XV–1. Higgs-boson coupling constants.

gf̄ fH gWWH gWWH 2 gZZH gZZH 2 gH 3 gH 4

mf

v

2M2
W

v

2M2
W

v2

2M2
Z

v

2M2
Z

v2

3M2
H

v

3M2
H

v2

Vacuum Higgs energy: The first term in V , the Higgs potential of Eq. (2.1), is a
constant energy density, which can be interpreted as a contribution (Higgs) to the
full cosmological constant . Inserting known values for μ and v, we have

|U(vac)
Higgs| = (Higgs) = μ2v2

4
� 1.2× 108 GeV4, (2.9a)

which is huge compared to the observed value [RPP 12],

|(obs)| � (2.3× 10−3 eV)4 = 2.8× 10−47 GeV4. (2.9b)

This should not, however, be viewed as a defect of the Higgs mechanism, as there
are many such contributions to the vacuum energy. Presumably, there is some over-
riding issue of physics which forces the suppression or cancelation of the vacuum
energy by so many orders of magnitude.

Higgs coupling to massive particles: Next, we express couplings of the Higgs
boson to particles which have nonzero mass. In cases where n identical fields
appear, a numerical factor 1/n! is introduced to account for the number of identical
fields. The set of all such coupling constants is collected in Table XV–1.

The Higgs potential of Eq. (2.1) contains cubic and quartic Higgs interactions,
which we express as

Lself = −gH 3

3! H
3 − gH 4

4! H
4. (2.10a)

There are also couplings of the Higgs to massive fermions. From Eq. (2.3) and
Eq. (II–3.20), we find for the interaction to fermion f ,

Lf f̄H = −gf̄ fHHψ̄fψf . (2.10b)

The catalog of Higgs particle interactions is extended by presenting its couplings
to the W± and Z0 bosons, including both trilinear and quadrilinear terms for each,

LWWH = W−
μ W

μ
+
[gWWH 2

2! H 2 + gWWHH
]
,

LZZH = ZμZ
μ

[
gZZH 2

(2!)2 H
2 + gZZH

2! H

]
, (2.10c)
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where we have employed Eqs. (II–3.18), (II–3.29), (II–3.32). Observe that each of
the couplings gH 4, gf̄ fH , gWWH 2, gZZH 2 are pure numbers whereas gH 3, gWWH ,

gZZH have the unit of energy.

Higgs coupling to massless particles: The coupling between the Higgs boson
and a particle depends on the particle’s mass. This means that at the basic level of
the Higgs lagrangian, there is no coupling to photons and gluons because these par-
ticles are massless. However, such couplings are induced through quantum effects.
This is a phenomenon we have seen already in Chap. IV, in which the photon-
photon interaction, γ γ → γ γ , although zero at a fundamental level, is described
to one-loop order by the Euler–Heisenberg effective lagrangian of Eq. (IV–8.5).

Higgs–photon–photon vertex: A Higgs boson will couple to a two-photon final
state through W±-boson and charged-fermion loops. The decay rate

�H→γ γ = M3
H

4π
·
∣∣∣∣∣∣ α8πv

[
A1(xW)+

∑
f=q,


Ncq
2
fA1/2(xf )

]∣∣∣∣∣∣
2

, (2.11)

contains the loop functions A1(x) and A1/2(x),

A1(x) = − 1

x2

[
2x2 + 3x + 3(2x − 1)f (x)

]
,

A1/2(x) = 2

x2
[x + (x − 1)f (x)] ,

f (x) =

⎧⎪⎪⎨⎪⎪⎩
arcsin2(

√
x) (x ≤ 1)

−1

4

(
ln

[
1+ (1− 1/x)1/2

1− (1− 1/x)1/2

]
− iπ

)2

, (x > 1)
(2.12)

where x is the dimensionless variable x ≡ M2
H/(4m

2) and the subscripts on
A1(x) and A1/2(x) denote the respective spins of the loop particles. The sum over
fermions f in Eq. (2.11) is taken over both quarks q and leptons 
.

The above procedure is based on calculating the decay amplitude from Feynman
diagrams as in Fig. XV–2. It is worthwhile to consider the possibility of an alter-
native approach. Throughout this book, we have emphasized the use of effective
field theories. Can we employ this method here, via a local effective lagrangian,
to describe the Higgs–photon–photon vertex? Note that the function f (x) defined
in Eq. (2.12) develops an imaginary part for m < MH/2, which is the case for
all the loop fermions except the t quark. The imaginary part signals that H would
be able to physically decay into any of the light fermion–antifermion loop pairs.
If so, the conversion of a Higgs into two photons is nonlocal and cannot possibly
be described with a local lagrangian defined at scale μ = MH . Although the W±

and t quark evade such a prohibition, the issue remains whether it would be a good
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(a) (b) (c)

Fig. XV–2 H → γ γ via (a) charged fermion, (b)–(c) W boson.

numerical approximation to use a local lagrangian for either. Let us compare the
loop functions A1 and A1/2 evaluated both in the heavy mass limit x → 0 and also
using the physical values xW � 0.60 and xt � 0.13,2∣∣∣∣A1(0)−A1(xW)

A1(0)

∣∣∣∣ � 0.16 vs.

∣∣∣∣A1/2(0)−A1/2(xt )

A1/2(0)

∣∣∣∣ � 0.03.

Since the difference between the infinite-mass and physical t-quark amplitudes is
only 3%, most would agree that an effective lagrangian description for the t-quark
contribution is appropriate, and we write

Leff = g(t)γ γHF
μνFμν with g(t)γ γ =

2α

9πv
, (2.13)

where α is the fine-structure constant and Fμν is the electromagnetic field strength
tensor (cf. Eq. (I–5.9)). Note that the heavy top quark evades the decoupling theo-
rem of Sect. IV–2 because the t t̄H vertex is proportional to the large mass
parameter mt .

An alternate derivation of Eq. (2.13) begins by considering the contribution of a
t t̄ loop to the photon vacuum polarization [ShVVZ 79],

�μν(q)

∣∣∣∣
t-quark

= (qμqν − q2gμν)

[
Ncq

2
t α

3π
ln
2

m2
t

+ · · ·
]
, (2.14)

where qt = 2/3 is the top-quark electric charge in units of e and we have chosen
regularization with cut-off  here (instead of the dimensional approach used else-
where in this book) to keep the notation compact. The photon vacuum polarization
of Eq. (2.14) can equivalently be expressed via the effective lagrangian,

L(t-loop)
ph. vac. pol. = −

1

4
FμνF

μν · q
2
t α

π
ln
2

m2
t

, (2.15)

2 For reference we note the expansions about x = 0: A1/2(x) � 4/3(1+ 7x/30+ 2x2/21+ · · · ) and

A1(x) � −7− 22x/15− 76x2/105+ · · · .
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as can be shown by taking its photon-to-photon matrix element. Now, writing the
top-quark mass term together with its Higgs interaction,

LHtt̄ = −
(
mt + mt

v
H
)
t̄ t = −mt

(
1+ H

v

)
t̄ t, (2.16)

suggests treating the Higgs field as a constant and thus formally extending the top-
quark mass as mt → mt (1+H/v). Inserting this into Eq. (2.15) and considering
only the term linear in H yields precisely the effective lagrangian of Eq. (2.13).
This ‘background field’ derivation is valid if the momenta involved are small com-
pared to the top-quark mass, which is not perfect but a good first approximation.3

Higgs–Z0–photon vertex: This process, too, occurs first as a loop amplitude
([CaCF 79], who assume MH < MZ and study Z0 → Hγ ; see also [BeH 85])
via triangle diagrams dominated by W±-boson and t-quark contributions. We refer
the reader to the literature for the explicit, somewhat cumbersome, analytic form
of the vertex.

Higgs–gluon–gluon interaction: The Higgs two-gluon amplitude has similarities
with the Higgs two-photon interaction. One calculates Feynman amplitudes for
triangle diagrams, although now summed over only quarks {q} since gluons couple
neither to leptons nor to the electroweak gauge bosons, leading to

�H→gg = 2M3
H

π
·
∣∣∣∣∣ αs

16πv

[∑
q

A1/2(xq)

]∣∣∣∣∣
2

. (2.17)

The top-quark amplitude is by far the largest in the above sum, and so we can
again turn to the effective lagrangian description. The contribution of a t t̄ loop to
the gluon vacuum polarization in cut-off regularization is

�μν(q)ab

∣∣∣∣
t-quark

= δab(q
μqν − q2gμν)

[
αs

6π
ln
2

m2
t

+ · · ·
]
, (2.18)

which leads, as explained earlier, to

L(t-loop)
gl. vac. pol. = −

1

4
Fa
μνF

aμν · αs
6π

ln
2

m2
t

, (2.19)

and finally, from Eq. (2.16), to

Leff = g(t)ggHF
aμνF a

μν with g(t)gg = −
αs

12πv
, (2.20)

3 For completeness, we take note of yet another derivation [ElGN 76] of Eq. (2.13) which uses the QED trace
anomaly (see Eq. (III–4.16) for the QCD version),

θ
μ
μ = αs

12π
FμνF

μν +mt t̄t,

taking into account only the t-quark part of the fermion contribution.
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where Faμν is the chromodynamic field strength tensor of Eq. (II–2.2a). This rep-
resents the linear term in an expansion in powers of the Higgs field H . Higher
powers provide the two-gluon coupling to an arbitrary number of Higgs bosons.
The quadratic term in this expansion would be a prediction for gg→ HH . There,
in addition to the direct coupling of Eq. (2.20), one encounters a pole diagram (i.e.
gg → H → HH ) which contains the triple Higgs coupling. The direct and pole
contributions cancel exactly at threshold and, more generally, the residual effect
remains small.

XV–3 Production and decay of the Higgs boson

Following the discovery of the top quark, finding the Standard Model Higgs boson
became a primary goal of experimental particle physics. The search strategy was
based on Standard Model predictions of both production and decay amplitudes. We
discuss each of these in turn, beginning with the topic of Higgs decay.

Decay

One begins calculation of a Higgs decay mode with the lowest-order amplitude,
and then incorporates higher-order QCD and electroweak (EW) corrections. These
higher-order effects are described, with many references, in [Dj 08]. Here, we dis-
play branching fraction predictions in Table XV–2 [He et al. 13], but restrict our
presentation here to only the lowest-order analysis (except for two decaysH → bb̄

and H → gg, which have especially large corrections). The major two-body Stan-
dard Model decay branching fractions in Table XV–2 correspond to a total width,

�
(tot)
H � 4.21 (±3.9%) MeV. (3.1)

The individual branching fractions in Table XV–2 are purely theoretical quantities.
An experimental reality at LHC is that detection of the modes bb̄, gg, cc̄ is greatly
inhibited by huge hadronic backgrounds. As a consequence, other modes (e.g. γ γ )
can play a central role in Higgs phenomenology at the LHC, despite their smaller
branching fractions.

Table XV–2. Two-body Higgs branching fractions.a

b̄b WW ∗b gg τ+τ− c̄c ZZ∗b γ γ γZ μ+μ−

56.1 23.1 8.48 6.15 2.83 2.89 0.23 0.16 0.02

aAll branching fractions are in % and the value MH = 126. GeV is assumed.
bThe asterisk denotes a virtual vector boson.
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Decay into fermion–antifermion pairs: For transitions of the type H → f f̄ , the
leading-order (LO) decay rate is

�
(LO)
H→f f̄

= Nc

8π

m2
f

v2
MH

(
1− 4x2

f

)3/2
, (3.2a)

where mf is the fermion mass (which arises from the Yukawa coupling), xf ≡
mf /MH and Nc = 1 for leptons and Nc = 3 for quarks. We already know that in
the Standard Model the Higgs coupling to a fermion–antifermion pair is linear in
the fermion mass mf . The factor of m2

f in Eq. (3.2a) reflects this and ensures that
the bb̄ mode is largest amongst all fermions with 2mf < MH (the mode H → t t̄

is kinematically forbidden).
Let us consider the H → bb̄ mode in a bit more detail. If Eq. (3.2a) is used

to determine the bb̄ decay rate and Eq. (3.1) is used for �(tot)
H , then a branching

fraction � 104% is predicted. This unphysical result is disconcerting to say the
least! The flaw in our numerical exercise is that we have ignored corrections to the
tree-level prediction of Eq. (3.2a). Ordinarily, one expects a ‘correction’ to be no
more than a few tens of percent and usually much smaller. This case is not like
that; it turns out that the most important correction is to replace the m2

f factor by

the squared running mass m2
f (μ) with μ = MH ,

�H→f f̄ =
Nc

8π

m2
b(MH)

v2
MH

(
1− 4x2

f

)3/2 [
1+ 5.67

αs(MH)

π
+ · · ·

]
, (3.2b)

where the O(αs) correction is also displayed. For the b quark, we have already
found below Eq. (XIV–1.12) that mb(MH) � 0.665 mb(mb), implying a corrected
H → bb̄ branching fraction of 56%. This means that all the remaining corrections
for this mode amount to a rather more modest effect. The moral of this lesson is to
not place unwarranted trust in tree-level estimates.

Decay into three-body states: Although the Higgs boson couples to the electroweak
gauge bosons, a Higgs with mass MH � 126 GeV is too light to decay into WW

and ZZ final states. However, a transition like H → WW ∗ → Wf f̄ ′ (or H →
Zf f̄ ) can occur, e.g., H → W+dū or H → W−cs̄ and so on. We shall consider
this possibility here. If dependence on fermion mass (such as mf /MH or mf /MW )
is ignored, the energy distribution of the final state W is [KeM 84]

d�
(LO)
H→Wf f̄ ′

dx
= 1

192π3

(
MW

v

)4

MH

(x2 − 4ε2)1/2

(1− x)2
(
x2 − 4ε2x + 8ε2 + 12ε4

)
,

(3.3)

where x = 2EW/MH and ε = MW/MH . Integration over the W -boson energy
yields
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�
(LO)
H→Wf f̄ ′ =

1

192π3

(
MW

v

)4

MHF(ε)

F (ε) = 3(1− 8ε2 + 20ε4)

(4ε2 − 1)1/2
arccos

[
3ε2 − 1

2ε3

]
− (1− ε2)

[
47

2
ε2 − 13

2
+ 1

ε2

]
− 3

(
1− 6ε2 + 4ε4

)
ln ε. (3.4)

Thus far, we have kept the final state fixed as Wf f̄ ′. To obtain the inclusive
rate �H→W±X, we sum over all distinct final states (like the ones displayed above
Eq. (3.3)) to find

�
(LO)
H→W±X =

3

32π3

(
MW

v

)4

MHF(ε). (3.5)

The case of H → Zf f̄ is obtained from the above relations via insertion of a
factor ηZ = 7

12 − 10
9 sin2 θw + 40

9 sin4 θw.

Decay into four-body states: The degrees of freedom appearing in Table XV–2 are
those occurring at the primary vertex, at which the Higgs decay process begins.
However, these are often not the final states which are actually detected. For exam-
ple, the quark–antiquark states will hadronize into jets whereas the vector gauge
bosons will quickly decay and be observed as four-fermion final states, e.g., as in
final states containing leptons and antileptons. We do not display analytic formu-
lae here for such modes, but numerical examples are displayed in Table XV–3.
The leptons and neutrinos there are summed respectively over 
 = e, μ, τ and
ν = νe, νμ, ντ .

Decay into massless final-state particles: The general leading-order H → γ γ

decay rate is given in Eq. (2.11). Approximating this with the W -boson and top-
quark contributions gives

�
(LO)
H→γ γ �

α2

256π3
· M

3
H

v2

∣∣∣∣A1(xW)+Ncq
2
t A1/2(xt )

∣∣∣∣2, (3.6)

where the quantities A1(xW) and A1/2(xt ) are the loop functions defined in
Eq. (2.11), with arguments xW = M2

H/(4M
2
W) and xt = M2

H/(4m
2
t ). Although the

Table XV–3. Four-body Higgs branching fractions.a

(qqqq) (qq
ν
)b (qqνν) (qq
+
−) (
+
−
+
−)

11.8 3.38 0.81 0.27 0.03

aAll branching fractions are in % and the value MH = 126. GeV is assumed.
bHere, 
 = e, μ.
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top-quark contribution dominates that of the other fermions (due to its much larger
Yukawa coupling to the Higgs), that of the W -boson is even larger, |Ncq

2
t A1/2(xt )/

A1(xW)| � 0.22.
For the transition H → gg, decay products would appear as jets consisting

of light hadrons. The H → gg decay rate has already been given in Eq. (2.17).
Approximating this with the dominant top-quark contribution in the heavymt limit
yields the tree-level expression,

�
(LO)
H→gg =

α2
sM

3
H

72π3v2
. (3.7)

Virtual gluon exchanges will modify the above. Unlike the case for H → γ γ the
next-to-leading-order H → gg amplitude will experience gluon self-interactions
such as triple-gluon vertices and turns out to have a large numerical effect
[SpDGZ 95],

�H→gg � �
(LO)
H→gg

[
1+

(
95

4
− 7

6
nf

)
αs(MH)+ . . .

]
� 1.64 �(LO)

H→gg, (3.8)

with nf = 5 and αs(MH) given previously in Eq. (II–2.79).

Production

Next, we consider the most important of the mechanisms at LHC energies for
producing the Higgs boson in the inclusive process p + p → H + X, where X
represents a sum over all the other final-state particles. The scattering which yields
the Higgs production will involve the basic degrees of freedom (partons) occur-
ring within a proton, the quarks and gluons. Because the partons are not physical
entities, the cross section must be expressed as

σ =
∑
i,j

∫ 1

0
dx1 dx2 fi(xi,Q)fj (x2,Q)σ̂ij , (3.9)

where the indices i, j refer to the two initial-state protons and the quantities fi
and fj are parton distribution functions (‘PDFs’). A hadron’s PDF f (x,Q) gives
the probability density for finding a parton carrying a fraction x of the hadronic
longitudinal momentum at momentum reference scale Q. Given the difficulty pre-
sented by nonperturbative QCD, a PDF is commonly inferred from experimental
data, e.g., as with

fi(x,Q) = Nxαi (1− x)βi gi(x). (3.10)

where αi, βi are fit parameters. The function gi(x) is defined to approach constants
at x = 0, 1 e.g., gi(x) = 1+εi√x+Dix+Eix2 and itself contains the fit parameters
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(a) (b) (c) (d)

Fig. XV–3 Higgs production via: (a) gg fusion, (b) VBF, (c) HV, (d) t t̄H .

εi,Di, Ei . The parton cross section σ̂ij is calculated at leading order from various
Standard Method processes and corrected by both QCD and EW perturbations.

Within this phenomenological framework, one has at the Higgs mass scale and
LHC energies the following Standard Model mechanisms, depicted to leading order
in Figure XV–3 and listed here according to cross-section magnitude:

(1) Gluon–gluon fusion (gg fusion): gg→ t t̄ → H

(2) Vector–boson fusion (VBF): qq → qq + V ∗V ∗ → qq +H
(3) Vector–boson-associated production (HV): qq̄ → V ∗ → H + V
(4) t t̄ associated-production (t t̄H ): gg→ t t̄ +H ,

Numerical values [He et al. 13] for each of these contributions at the energies√
s = 8, 14 TeV appear in Table XV–4. Table XV–4 contains not only cross-section

values but also uncertainties for each, given numerically in per cent. These arise
mainly from aspects of QCD, such as uncertainties in QCD parameters (e.g. αs ,
mc, etc.), parton PDFs and a significant uncertainty from the uncalculated higher-
order QCD corrections.

The gluon–gluon fusion reaction proceeding via top-quark loops is the domi-
nant component of the p + p→ H + X cross section.4 It also has the interesting
property of being sensitive to certain types of virtual heavy particles. We saw in
the derivation of Eq. (2.20) that the top-quark contribution to the triangle graph for
H → gg does not decouple, despite having 4m2

t 
 M2
H , because the coupling

Table XV–4. Standard Model Higgs production cross sections.a

√
s (TeV) gg Fusion VBF HW HZ t t̄H

8 18.97 (+7.2%
−7.8%) 1.57 (+0.3%

−0.1%) 0.69 (±1.0%) 0.41 (±3.2%) 0.13 (+3.8%
−9.3%)

14 49.85(+19.6%
−14.6%) 4.18(+2.8%

−3.0%) 1.50(+4.1%
−4.4%) 0.88(+6.4%

−5.5%) 0.61(+14.8%
−18.2%)

aAll cross sections are in pb units; the value MH = 126 GeV is used for
√
s = 8 (TeV)

and MH = 125 GeV for
√
s = 14 (TeV).

4 The next most important contribution, that of the b-quark loop, is estimated at leading order to be at most a
10% effect.
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between t t̄H is proportional to mt . Thus, what if there were a very heavy fourth
generation of Standard Model fermions (a situation often denoted as SM4) with
all else the same (i.e. same Standard Model couplings, only one physical Higgs
boson) as with the known fermions? The new generation would contain two new,
very heavy quarks, say u4, d4, which likewise would not decouple in the H → gg

vertex. The H → gg amplitude would then be about a factor three larger than
in the Standard Model case, and the gluon–fusion production cross section about
nine times as large. Moreover, using LHC and Tevatron data as input, it has been
concluded from an analysis of Higgs decay modes that SM4 is excluded at more
than 5σ [EbHLLMNW 12].

Earlier, in the discussion following Eq. (3.1), we pointed out that detection of
final states like bb̄, gg, cc̄ at the LHC, where the gg → H is the dominant pro-
duction mechanism, is greatly hindered by hadronic backgrounds. However, a bb̄
final state can be relatively more accessible if the Higgs particle is predominantly
produced in association with a vector boson (V = W,Z) or a t t̄ pair, a strategy
which has been pursued by the detectors CDF and D0 (Tevatron) and ATLAS and
CMS (LHC). This can lead to detection of H → bb̄ via more easily identifiable
configurations like

HW → bb̄
ν
, HZ→ bb̄

̄, HW,HZ→��ET bb̄

where 
 = e, μ and ��ET represents missing transverse energy. Some promising
results have been obtained thus far, e.g., a reported excess of events at 3.1σ with
MH = 125. GeV [Aa et al. (CDF and D0 Collabs.) 13] and a > 3σ significance
in the combined τ τ̄ + bb̄ channels reported by the CMS collaboration at the 2013
Lepton–Photon Conference.

Comparison of Standard Model expectations with LHC data

Statistical data analyses have been performed to test the extent to which collected
data agree with the Standard Model Higgs boson scenario. Such testing can be done
directly by experimental collaboration or as a theoretically motivated exercise:

(1) Experimental: One can define a global signal strength factor μi for a given
final state ‘i’ by folding together the production cross section and branching
fraction for the observed signal relative to the Standard Model prediction,

μi =
[∑

j σj→H BrH→i

]
obs[∑

j σj→H BrH→i

]
SM

. (3.11)

There is a label ‘j ’ because a given final state ‘i’ might be summed over a
subset of Higgs production processes ‘i’. The value μ = 0 corresponds to
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the background-only hypothesis whereas μ = 1 corresponds to the Standard
Model Higgs boson signal in addition to the background. Announced results
from the LHC detectors have been found, thus far, to be statistically consistent
with the Standard Model hypothesis.

(2) Theoretical: There are a number of ways to parameterize couplings to include
non-Standard Model behavior. Suppose Standard Model Higgs couplings to
fermion f and to vector boson V are generalized to have the forms [ElY 12],

gf =
√

2
mf

v
→√

2
(mf

M

)1+ε
, gV = 2

M2
V

v
→ 2

M
2(1+ε)
V

M(1+2ε)
, (3.12)

where ε and M are purely phenomenological parameters. In the Standard
Model, they become ε = 0 and M = v � 246 GeV. A global fit to LHC
data yields results consistent with these values, ε = 0.05 ± 0.08 and M =
241± 18 GeV.

Another procedure is to consider an effective lagrangian for the electroweak
symmetry-breaking sector, which modifies couplings to vector mesons and
fermions in terms of universal parameters ‘a’ and ‘c’.

Leff =
∑

V=W,Z
ηVM

2
V V

†
μV

μ

[
1+ 2a

H

v

]
−
∑
i

mif̄ifi

[
1+ cH

v

]
+ · · ·

(3.13)

where ηW = 1, ηZ = 1/2, and the ellipses represent a sum over all remaining
Standard Model contributions as well as possible higher-order terms in the field
variable H . In the Standard Model, we have a = c = 1. Fits to the current
dataset again yield results consistent with Standard Model expectations [ElY
12, EsGMT 12].

The above parameterizations are just two examples of Higgs-related
phenomenology. These tests, and others, will continue into the future as the
Higgs database expands.

XV–4 Higgs contributions to electroweak corrections

Prior to the discovery of a new boson at the LHC, direct Higgs searches yielded
only upper bounds, e.g., as with MH < 114.4 GeV obtained at LEP2. How-
ever, the calculation of quantum corrections to Standard Model predictions came
to play a central role in particle phenomenology and Higgs physics in particular.
The procedure is straightforward; a collection of observables (MW, . . . ) is mea-
sured and then compared to predictions expressed in terms of a set of input para-
meters (Gμ, α, . . . ) including the Higgs mass MH (cf. Sect. XVI–6). Although
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the dependence on Higgs mass in such analyses is somewhat weak, being loga-
rithmic ∼ lnM2

H at leading order, it has continued to show for quite some time
that the Higgs boson is ‘light’. A recent �χ2 fit gives [Ba et al. (Gfitter group)
12] MH = 94+25

−22 GeV. That this value is consistent with the LHC determinations
of MH is generally regarded as a noteworthy success of the Standard Model. To
observe the role of the Higgs boson in this procedure, let us next consider a few
specific examples of such corrections.

The corrections 
ρ and 
r

Higgs contributions to �ρ: We begin with the so-called effective weak mixing
angle

s̄2
w = 1− M2

W

M2
Z

+ c2
w�ρ, (4.1)

which is discussed at length in Sect. XVI–1. The corrections to s̄2
w are contained

within the quantity �ρ. For arbitrary MH , the one-loop Higgs contribution to �ρ
is

�ρ
1-loop
H = −3

4

(
M2
W

4π2v2

)
f (M2

H/M
2
Z), (4.2a)

where

f (x) = x

[
ln c2

w − ln x

c2
w − x

+ ln x

c2
w(1− x)

]
. (4.2b)

The leading dependence on MH for MH 
 MW is logarithmic,

�ρ
1-loop
H ∼ −3

4

(
M2
W

4π2v2

)
s2

w

c2
w

ln
M2
H

M2
W

, (4.3)

as are all the other leading one-loop Higgs contributions.5 A term like lnM2
H/M

2
W

does not respond sensitively to changes in M2
H , so the shift �ρ1-loop

H by itself does
not lead to a precise estimate for MH .

There are also multi-loop Higgs contributions. In contrast to the lnM2
H/M

2
W

logarithmic dependence of the one-loop amplitude, these also contain power-law
dependence on MH ,

�ρ
2-loop
H ∼ 0.1499

(
M2
W

4π2v2

)2
s2

wM
2
H

c2
wM

2
W

, (4.4a)

5 It is, however, not the case that one-loop corrections for all the remaining Standard Model particles are
logarithmic, e.g., �ρ has a O(Gμm2

t ) dependence on the t-quark mass (viz. Sect. XVI–6).
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Table XV–5. Higgs contribution to �ρ.

Order: One-loop Two-loop Three-loop

−1.8× 10−3 8.1× 10−7 −6.2× 10−8

and the three-loop amplitude gives

�ρ
3-loop
H ∼ −1.728

(
M2
W

4π2v2

)3
s2

wM
4
H

c2
wM

4
W

. (4.4b)

Observe that common to all terms is the coefficient,

M2
W

4π2v2
� 0.0027. (4.5)

An extra power of this small quantity will accompany each additional loop and thus
suppress the multi-loop contributions, at least for moderate values of MH . Note
also that the two-loop and three-loop amplitudes have opposite sign. The values of
the one-loop, two-loop, and three-loop amplitudes are summarized in Table XV–5
using MH = 126. GeV. The one-loop amplitude is dominant and gives an accurate
estimate of the Higgs contribution to �ρ.

Higgs contributions to�r: A second class of Standard Model corrections affects
the relation between the Fermi constant and MW , given to leading order by
Eq. (II–3.43). Upon using Eq. (II–3.42) and Eq. (II–3.33), we can express this as

M2
W

(
1− M2

W

M2
Z

)
= πα√

2Gμ

. (4.6)

The one-loop Higgs correction to this relation,

M2
W

(
1− M2

W

M2
Z

)
= πα√

2Gμ

(
1+�r1-loop

H

)
, (4.7)

is given by

�r
1-loop
H = 11

48π2
· M

2
W

v2

(
ln
M2
H

M2
W

− 5

6

)
. (4.8)

Custodial symmetry

As part of our discussion of chiral symmetry in Chap. IV, we obtained a repre-
sentation of the linear sigma model by expressing an SU(2)L × SU(2)R invariant
lagrangian (cf. Eq. (IV–1.4)) in terms of two chiral fermions ψL,ψR and a 2 × 2
matrix � = σ + iτ ·π of four scalar fields. The SU(2)L× SU(2)R transformation
properties were ψL → LψL, ψR → RψR and �→ L�R† with L,R in SU(2).
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Somewhat analogously, we can express the Higgs doublet as a matrix H via the
construction6

H = 1√
2

(
�̃ �

) ≡ 1√
2

(
ϕ0∗ ϕ+

−ϕ− ϕ0

)
, (4.9)

where � is the Higgs field of Eq. (II–3.16) and �̃ is its conjugate.7 This will be
convenient for considering transformations of both SU(2)L and SU(2)R.

Even though this chapter is, for the most part, a discussion/celebration of the
M � 125 GeV particle, which could well be the Standard Model Higgs boson,
we shall, for the remainder of this section, instead emphasize the symmetry aspect
of the Higgs sector. In the notation introduced above, a Higgs lagrangian invariant
under SU(2)L × U(1)Y gauge symmetry is

LHiggs = Tr
[
(DμH)∗DμH

]− V (H†H), (4.10a)

where the covariant derivative is

DμH = (∂μ + i g1

2
Bμτ3 + ig2

�τ
2
· �Wμ)H, (4.10b)

and the potential has the form

V (H†H) = −μ2 Tr
[
H†H

]+ λ (Tr
[
H†H

])2
. (4.10c)

The matrix τ3 in Eq. (4.10b) accounts for the opposite relative weak hypercharge
of� and its conjugate �̃. That the lagrangian LHiggs of Eq. (4.10a) is indeed gauge-
invariant can be verified by noting

SU(2)L : H → LH and DμH → L(DμH) U(1)Y : H → He−iτ3θY . (4.11)

Actually, the potential energy V (H†H) of Eq. (4.10c) (but not the kinetic part in
Eq. (4.10a)) is invariant under the larger set of SU(2)L× SU(2)R transformations.

Thus far, we have simply used a new notation to reproduce what we already
know. In order to learn something new, however, consider the limit g1 → 0. There
is now present the symmetry, SU(2)R, under which

SU(2)R : H → HR† and DμH → (DμH)R†. (4.12)

Thus, for the combined SU(2)L× SU(2)R transformations, we have H → LHR†,
like the sigma model matrix� mentioned at the beginning of this section. Although
true, the above analysis is incomplete; we must address the Higgs spontaneous

6 In the following, we adopt the general approach of [SiSVZ 80] and [Wi 04].
7 In the language of group theory, the conjugate spinor �̃ = iτ2�

∗ is equivalent to �.
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symmetry breaking of Eq. (II–3.25), for which the ground-state configuration of H
becomes

〈H〉 = 1

2

(
v 0
0 v

)
, (4.13)

with v ≡ (μ2/λ)1/2 as in Eq. (II–3.24). Although this ground state does not respect
the full SU(2)L × SU(2)R symmetry,

L〈H〉 �= 〈H〉, 〈H〉R† �= 〈H〉, (4.14a)

it does remain invariant under SU(2)L+R transformations, i.e., those having
R = L,

L〈H〉L† = 〈H〉. (4.14b)

This SU(2)L+R invariance is often referred to as custodial symmetry [SiSVZ 80].
In Chap. II, the basis of our discussion of the electroweak sector was the Higgs

effect, i.e., the spontaneous breaking of the gauge symmetry SU(2)L × U(1)Y .
Here, let us instead use elementary group theory to see what the g1 = 0 world,
with its exact SU(2)L+R global symmetry, would be like.8 Eq. (II–3.31) shows that
setting g1 = 0 would cause the weak mixing angle to vanish, θw → 0, and so from
Eq. (II–3.30) for Z0 → W3.

It follows from Eq. (I–5.17) that the three W-boson fields would transform
as an isotriplet under the (global!) SU(2)L transformations, and as an isosinglet
under SU(2)R (since g1 = 0). They would thus transform as an isotriplet under
SU(2)L+R and, since the SU(2)L+R symmetry is exact, the W triplet would be
degenerate. The above remarks imply the equality

ρ = (MW/(MZ cos θw))
2 = 1 (in the g1 → 0 limit). (4.15a)

When viewed as a statement of invariance, this equality is a consequence of the
SU(2)L+R symmetry, which is called ‘custodial’ for this reason. As we then return
to the real world of g1 �= 0 and allow for higher-order Standard Model corrections,
we would expect corrections to ρ = 1 to be modest [SiSVZ 80],

ρ = 1+O(α)+O(α(m2
u −m2

d)/M
2
W). (4.15b)

XV–5 The quantum Higgs potential and vacuum stability

Our treatment of the Higgs potential has thus far been at the classical level. We have
simply taken the quadratic and quartic terms that appear in the bare lagrangian,

8 For example, the electric charge would vanish (cf. Eq. (II–3.42)), so modest mass shifts would occur, e.g., the
leading-order contribution to pion mass splitting would vanish, etc.
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minimized the energy, and found the vacuum expectation value and the Higgs
mass. However, quantum effects modify this form significantly, most importantly
through a top-quark loop. Even more remarkably, the presently indicated value of
the Higgs and top masses indicate that we are very close to the border where the
Higgs potential is actually unstable. In this section, we explore the nature of the
quantum effects. Our focus is on the role of the top quark, which is the major
contributor to the potential instability.

The Higgs potential describes the vacuum energy as a function of a constant
Higgs field. Since the top-quark mass and the Higgs Yukawa coupling to the top
quark are related, it is convenient to define a background field h(x) = v + H(x).
In the following we take H (and hence h) as constant and thus omit any spacetime
dependence,

−Lt = �t√
2
(v +H)t̄t ≡ �t√

2
ht̄t ≡ mt(h)t̄ t, (5.1)

wheremt(h) = �th/
√

2 is the field-dependent mass. We then calculate the vacuum
energy as a function of mt(h). This can be done relatively simply by studying the
t t̄ contribution to the vacuum matrix element of the energy-momentum tensor Tμν ,

〈0|Tμν |0〉top = −Nc

∫
ddp

(2π)d
1

2
Tr

[
(γμpν + γνpμ) i

/p −mt(h)+ iε
]

= −12
∫

ddp

(2π)d
pμpν

i

p2 −m2
t (h)+ iε

= δV (h)gμν, (5.2)

where the important minus sign comes from the Feynman rule for a closed fermion
loop. This leads to a result

δV (h) = 3m4
t (h)

16π2

[
2

4− d − γ + ln 4π − ln
m2
t (h)

μ2
d

+ 3

2

]
, (5.3)

with μd being the scale that enters in dimensionally regularized integrals.9 The
divergence is proportional to m4

t (h) ∼ h4 and thus goes into the renormalization
of the λϕ4 term in the Higgs potential. In the MS scheme, one then arrives at the
potential,

V (h) = −1

2
μ2h2 + 1

4
λ(μd)h

4 − 3m4
t (h)

16π2

[
ln
m2
t (h)

μ2
d

− 3

2

]
. (5.4)

The −m4
t (h) lnm2

t (h) ∼ −h4 lnh2 term from the loop diagram is the key new
feature.
9 In this context we add the subscript to μd to avoid confusion with the −μ2ϕ2 term in Higgs potential.
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We note that the logarithmic term produces an instability for large enough values
of the field h. No matter what the coefficient λ(μd) of the h4 term is, the −h4 lnh2

term eventually will overpower it and lead to a potential that is unbounded below at
large enough values of h. However, New Physics (NP) beyond the Standard Model
could modify this result, for example by generating an effective operator

−LNP = 1

2
(ϕ†ϕ)3 = 1

82
h6. (5.5)

At the very least, such effects should be generated at the Planck scale  ∼ MP ,
so that we should not be concerned if the apparent instability occurs beyond the
Planck scale. However, if the instability occurs at a lower scale, it implies either
that the vacuum is at best meta-stable – a very dramatic conclusion – or that other
New Physics must come in before the Planck scale – also important.

To use the quantum effective potential, one minimizes the energy with the va-
cuum expectation value constrained to equal 246 GeV and the top-quark mass
equal to its physical value, and determines the Higgs mass parameter from the
quadratic term in the expansion. However, unlike at tree level, the curvature of the
potential near the minimum does not give the physical Higgs mass. In order to get
the Higgs pole mass one must include finite momentum effects from the vacuum
polarization diagrams.

Given the physical values of these parameters, indications are that the potential
is close to being unstable below the Planck scale. A more detailed treatment must
include the effects of the Higgs itself and of the other particles. The state of the art
includes the inclusion of more loops and the use of running couplings [De et al.
12]. Moreover, if the seesaw mechanism is at play for neutrino masses, the neutrino
Yukawa couplings provide an extra unknown destabilizing influence [CaDIQ 00].
It remains very interesting that the parameters of the Standard Model place us
so close to this prediction of an unstable Higgs potential, implying yet another
suggestion of New Physics below the Planck scale.

XV–6 Two Higgs doublets

Earlier in this chapter we briefly discussed the issue of a very heavy fourth quark
generation, assumed to otherwise resemble the observed three generations. On the
one hand, it would introduce new particles and thus lie beyond the Standard Model;
on the other, it would respect the twin pillars of gauge symmetry and spontaneous
symmetry breaking of a scalar doublet on which the Standard Model is based.
Here, we proceed analogously by briefly considering the replacement of a single
Higgs doublet � by two Higgs doublets (�1,�2) having the same SU(2)⊗ U(1)
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quantum numbers.10 A two-Higgs-doublet theory would enlarge the spectrum of
Higgs bosons and also considerably enrich the content of the Higgs potential.

Spectrum: Since each Higgs doublet corresponds to four real fields as in Eq. (1.2),
then two Higgs doublets will amount to eight real fields. Of these, three will become
the longitudinal degrees of freedom of the Z0 and W± gauge bosons. There will
also be five spinless Higgs particles: a charged pair (H±), two CP = +1 neutrals
(H, h), and one CP = −1 neutral (A). If we associate H with the Higgs boson
of the one-doublet theory, then the two-doublet model predicts the four new parti-
cles h,A,H±. At present, there is no experimental evidence for any of these four.
Current lower-mass bounds are in the range of roughly 100 GeV for each [RPP 12].

Consider, for example, charged Higgs particles [Le 73] whose rich phenomeno-
logy was realized early on [DoL 79, GoY 79]. The H± particles can be sought
directly or indirectly:

(1) Direct: Charged Higgs-pair production, e+e− → H+H− would arise via H±

coupling to photons and Z0 bosons. A charged Higgs could also couple semi-
weakly to the known fermions with strength proportional to the fermion mass.
Thus, at the LHC, a study [Aa et al. (ATLAS collab.) 13a] of gg → t t̄

followed by a decay chain such as

t → H+b→ cs̄ b and t̄ → H−b̄→ c̄s b̄

has yielded sharp upper limits on Brt→H±b for the mass range 90 < MH

(GeV) < 150.

(2) Indirect: A charged Higgs could contribute as a virtual particle, as with the
leptonic decay of a B meson,

BrB+→
+ν
 = Br(SM)

B+→
+ν


[
1− tan2 β

m2
B

M2
H±

]2

,

where tanβ ≡ 〈ϕ0
2〉/〈ϕ0

1〉.

Higgs potential: The Standard Model Higgs potential energy of Eq. (II–3.19)
is based on one quadratic mass term and one quartic Higgs self-coupling. The
most general renormalizable SU(2) ⊗ U(1) two-Higgs-doublet version has three
quadratic mass terms and seven quartic Higgs self-couplings,

10 The possibility of two Higgs-doublets is usually associated with supersymmetry, but this is not necessary.
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456 The Higgs boson

V2-Higgs = m2
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†
1�1 +m2

22�
†
2�2 −

[
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12�
†
1�2 + h.c.

]
+ λ1

2

(
�

†
1�1
)2 + λ2

2

(
�

†
2�2
)2

+ λ3
(
�

†
1�1
)(
�

†
2�2
)+ λ4

(
�

†
1�2
)(
�

†
2�1
)+ [λ5

2

(
�

†
1�2

)2 + h.c.

]
+ [λ6�

†
1�2 + h.c.

]
�

†
1�1 +

[
λ7�

†
1�2 + h.c.

]
�

†
2�2. (6.1)

Since this most general structure has the potential to produce overly large flavor-
changing neutral currents (FCNCs) or gross violations of custodial symmetry, it
cannot be realized in Nature without restrictions on the ten free parameters. A great
deal of research on V2-Higgs has been reported in the literature; two recent works cit-
ing many earlier contributions are [MaM 10] and [HaO 11]. Two additional items of
interest deserve mention. One is that the above potential energy allows for CP vio-
lation. A careful discussion appears in Chapter 22 of [BrLS 99]. Another involves
the vexing strong CP problem of QCD. It has been shown that introduction of a
‘Peccei–Quinn’ global U(1)PQ symmetry [PeQ 77], which becomes spontaneously
broken, can lead to a solution of the problem. The two-Higgs framework provides
a natural platform for the U(1)PQ symmetry.

Problems

(1) The rho parameter
(a) Show that for an arbitrary number of Higgs multiplets (〈ϕi〉0 �= 0,

(i = 1, . . .)), the rho parameter becomes

ρ0 =
∑

i [(Iw)
2
i + (Iw)i − (I 2

w3)i]〈ϕi〉20
2
∑

i (I
2
w3)i〈ϕi〉20

.

(b) Given two Higgs fields, with quantum numbers Iw = −Iw3 = 1/2 and
Iw = 1, Iw3 = 0 respectively, and with nonvanishing vacuum expectation
values 〈ϕ1/2〉 and 〈ϕ1〉, obtain a bound for |〈ϕ1〉/〈ϕ1/2〉| assuming an exper-
imental value ρ0 = 1.0004± 0.0003.

(2) Higgs–gluon coupling
In the text we used the background field method to show that, at lowest order
in the momenta, the effective Higgs coupling to gluons is

Leff = αs

24π
ln

(
h2

v2

)
Fa
μνF

aμν,

with h = v + H . As mentioned briefly in the text, this coupling implies a
cancelation in the Standard Model prediction for the reaction in which two
gluons produce two Higgs bosons, which makes the residual effect small.
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In addition to the direct coupling from the above effective lagrangian, there
is a pole diagram of GG → H → HH , which utilizes the triple Higgs cou-
pling. Show that these two contributions cancel exactly at threshold.

(3) Higgs sector and the cosmological constant
The Higgs sector makes several contributions to the cosmological constant, ,
which is defined as the energy density of the vacuum. The observed value of
the cosmological constant is  = Uvac = 2.8 × 10−47 GeV4. In Eq. (2.9)
we displayed one contribution that is 51 orders of magnitude larger than the
observed value. Other calculable contributions also come from the Higgs sec-
tor. For example, show that if one changes the up-quark Yukawa coupling by
a few parts in 10−43, one changes the cosmological constant by 100%. The
leading change is linear in the Yukawa coupling, and to uncover this you may
use the effective lagrangians of Chap. VII. Specifically, compare the Yukawa
coupling’s effect on the vacuum expectation value of the lagrangian to the con-
tribution of the Yukawa coupling to the mass of the pion, expressing the result
in terms of Fπ , mπ and ratios of the quark masses.
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