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SEMI-ORTHOGONAL F R A M E WAVELETS A N D F R A M E
MULTI-RESOLUTION ANALYSES

HONG O H K I M , R A E YOUNG KIM AND J A E KUN LIM

We first characterise semi-orthogonal frame wavelets by generalising the character-
isation of orthonormal wavelets. We then characterise those semi-orthogonal frame
wavelets that are associated with frame multi-resolution analyses. This is a generali-
sation of a result of Wang and another result of Papadakis. Finally, we illustrate our
results by an example.

1. INTRODUCTION

It is well-known that most wavelets are associated with multi-resolution analyses,
whereas there exist some 'pathological' wavelets that are not associated with any multi-
resolution analyses. We are going to be more clear about what we mean. Let ip £ L2(M)
be an orthonormal wavelet if it generates a wavelet orthonormal basis, that is, {tpjk :=
DjTkip : j , k € Z} is an orthonormal basis of L2(R), where D : L2(R) -> L2(R) is
the unitary dilation operator denned by Df(x) := 2ll2f{2x), and Tt is the translation
operator defined by Ttf(x) := f(x — t) for t € K. The following useful commutation
relation holds:

(1) DnTt=T2-ntD
n, or TtD

n = DnT2^t.

We recall the characterisation of orthonormal wavelets in [5, 6, 7, 14]:

THEOREM 1 . ijj e L2(M) is an orthonormal wavelet if and only if

(a)

(b) S|V)(2Ja;)| = 1 for almost everywhere x € R;
>€Z
OO ^ 5^

(c) Y, i>{1jx) ip (2j(x + 2mn)) = 0 for almost everywhere x e R, rn € 2Z + 1.
j=o

We use the following form of the Fourier transform: For / € Ll(R) D L2(R) define
f(x) :— JRf(t)e~'xt dt and extend the Fourier transform A to be \/27r times a unitary
operator from L2(R) onto L2(R). The most efficient way to construct an orthonormal
wavelet is to construct it from an orthonormal multi-resolution analysis ([7]).

Received 4th April, 2001

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 8A2.00+0.00.

35

https://doi.org/10.1017/S0004972700020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020037


36 H.O. Kim, R.Y. Kim and J.K. Lim [2]

D E F I N I T I O N 2: A family {Vj}_,eZ of closed subspaces of L2(R) is said to be a multi-

resolution analysis if

(i) Vj C Vj+i for each j G Z;

(ii) D(Vj) = Vj+1 and T^Vp) = Vo;

(Hi) U Vj = L2(R) and f] Vj = {0};
jez jez

(iv) There exists ip € Vo such that {7*^ : A: G Z} is an orthonormal basis for

It is well-known that given a multi-resolution analysis there exists tp G Vt 0 VQ such that
{^/t : J, A G Z} is an orthonormal basis for L2(R) ([7]). On the other hand, suppose
that an orthonormal wavelet tp is given. Let Vj := span {ipik : k G Z, / < j} for j 6 Z.
Then it is easy to see that if there exists <p G Vo, called the scaling function, such that
{Tk<p : A; G Z} is an orthonormal basis for Vo, then {Vj}jeZ is a multi-resolution analysis.
In this case we say that %l> is associated with a multi-resolution analysis. It is established
that most 'nice' wavelets are associated with multi-resolution analyses [7, Chapter 7].
For example, any compactly supported orthonormal wavelet is associated with a multi-
resolution analysis ([7, Corollary 3.15, Chapter 7]). On the other hand, there are some
'pathological' orthonormal wavelets that are not associated with multi-resolution analyses
([14, p. 77], [6]). Hernandez and Weiss along with Wang ([7, 14]) characterised those
orthonormal wavelets that are associated with multi-resolution analyses. Let T denote
the circle group which can be identified with [—TT, TT).

THEOREM 3 . An orthonormal wavelet %j) is associated with a multi-resolution

analysis if and only if J2 ^2 V)(2-7'(x + 2kir)) — 1 for almost every x £T.
j^ifcez1 '

A sequence {/; : i G / } of elements of a Hilbert space H is said to be a frame for H if
there exist positive constants A and B such that for each / G V. A ^ ^ | ( / , / i ) | ^ B. If

{/, : i G / } is a frame for 7i, then there exists another frame {/,• : i G /} for "H, called the

dual frame, such that for any / G % f = ]£(/> ftjfi- Hence we can expand any vector

by a frame. Moreover, unlike orthonormal basis, a frame can be redundant. In some
situations this redundancy is positively sought after. See [7] for more details on frames.
Papadakis ([13]) proved the following.

THEOREM 4 . Any orthonormal wavelet ip is associated with a generalised multi-

resolution analysis in the sense that there exists a countable (finite or countably infinite)

subset $ ofV0 such that {Tktp : k G Z, <p G $} is a frame for Vo.

In this paper we generalise Theorem 1, Theorem 3 and Theorem 4 to semi-orthogonal
wavelet frames and frame multi-resolution analyses (see Theorems 7 and 11). First, let us
introduce some definitions in order to clarify what we are going to show, ip G L2(R) is said
to be a frame wavelet if it generates a wavelet frame for £2(R), that is, {ipjk : j , k G Z}
is a frame for L2(R). It is said to be a semi-orthogonal frame wavelet if the wavelet frame
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it generates is semi-orthogonal in the sense that (ipjk,ipim) = 0 if j'• ^ I. {Vj}j€z is said
to be a frame multi-resolution analysis if Condition (iv) in Definition 2 is replaced by the
following.

(iv)' There exists ip £ Vo such that {Tk<p : k £ Z} is a frame for Vo.

It is said to be a finite frame multi-resolution analysis if Condition (iv) in Definition
2 is replaced by the following.

(iv)" There exists a finite subset $ C V J such that {Tkip : k £ Z, ip £ $ } is a frame
for Vo.

If <£ is countably infinite we say that {V^}j6z is an infinite frame multi-resolution

analysis. Frame multi-resolution analyses were introduced in [1] with an intention to
apply the theory to analyse narrow band signals. The fundamental existence problem
concerning frame multi-resolution analyses was solved independently in [2] and [10], and
some extension of the theory can be found in [11].

In Section 2 we generalise Theorem 1 in the sense that we find equivalent conditions
for ip to be a semi-orthogonal frame wavelet. Then a generalisation of both Theorem 3
and Theorem 4 is presented in Section 3. The idea is to apply shift-invariant space theory
([3, 4, 8]) to the problem of association of a wavelet with a multi-resolution analysis.
Our solution to the problem of the association of a Riesz wavelet, that is, {ipjk • j , k £ Z}
is a Riesz basis of L2(K), with a multi-resolution analysis is reported in [12]. Finally, we
illustrate our results by an example.

2. SEMI-ORTHOGONAL FRAME WAVELETS

We first characterise semi-orthogonal frame wavelets as a generalisation of the char-
acterisation of orthonormal wavelets by Gripenberg ([5]), Ha, Kang, Lee and Seo ([6]),
and Hernandez and Weiss, and also Wang ([7, 14]). The following two propositions are
well known. See [7, Theorem 1.6, Chapter 7] and [9, Theorem A3], respectively.

PROPOSITION 5 . Let ip £ L2(R). Then {tpjtk : j , k e Z} is a tight frame with
frame bound 1 for L2(R), that is,

(2) £ |< / .<M| 2 = 11/11'. forallfeL*(R),

if and only ifip satisfies (b) and (c) of Theorem 1.

PROPOSITION 6 . Let ip £ L2(R) and let Wo = span{tpo,k : k e Z}. Then
{ibo,k : k e Z} is a frame for WQ if and only if there exist positive constants A, B such
that

(3) A ^ ||^||x|&(Z) < B for almost every x £ T \ N,

where ip\x :— (ip(x - 2vk))keZ and N := {x £ T : rp^x = 0}. In this case, A and B are
frame bounds for {ipo,k '• k £ Z} .
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Now, we state and prove our characterisation of semi-orthogonal frame wavelets.

THEOREM 7 . Let ip e L2(R) and define ip* by

0, otherwise.

Then the following statements are equivalent:

(a) {i>j,k '• js k 6 Z} is a semi-orthogonal frame wavelet with frame bounds A
and B;

(b) There exist positive constants A,B such that ip satisfies (3) and

(4) ^2\xp*{2jx)\2 = 1, for almost every i £ l ,

(5) ^2 :ip{2jx):ij?(2j(x + 2pn)) = 0, for almost every x € K, p € 2Z + 1;

(c) There exist positive constants A,B such that ip satisfies (3), (5) and

(6) ^2$(x + 2kir)ip(2:'(x + 2kTr)) = 0, almost every x 6 R, j ^ 1,

(7) A ^ ~^2\ip(2jx)\2 ^ B, for almost every x £ R.
jez

PROOF: Let Wj = spEn{ipjik : k G Z} and V7;* = spJT{^*fc : fc G Z}. Note that
Ŵ- = W*.

(a) ^> (b): Suppose that ip is a semi-orthogonal frame wavelet with frame bounds
A and B , that is,

Take f € Wo. Since WjLWy for j ^ j ' by the semi-orthogonality, we have

which is equivalent to (3) by Proposition 6.

Since W^'s are orthogonal to each other and

(8) ^2\ij?(x - 2?rA;)|2 = 1, for almost everywhere x€T\N,
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{̂ "* k b,*ez ' s a t'ght frame with frame bound 1 for L2(K). Hence (4) and (5) are satisfied

by Proposition 5.

(b) => (c): From (3), we have

(9) TTI^)! 2 <* \^*(x)\2^ \$(x)\2'foralmostevervxeR-

Hence, by Condition (4) we have

A ^ ^ | ^ ( 2 > a ; ) | 2 ^ B, for almost everywhere x € R,

which shows (7). From the definition of ip*, we see that {ip*k : A; € Z} is a tight frame
for WQ with frame bound 1. By Proposition 5, {ip*k : j , k e Z} is also a tight frame
with frame bound 1 for L2(R). Since ip* is in Wo, it follows from the tightness of both
{T/'O,* •k&Z} and {^*fc : j , ke Z} that

fcez

Therefore, (ip*,ipjk) = 0 for j ^ 0. We argue as in [7, Section 3.1] below:

0 = (P,pjik) = ± Jj?(x)
= — f :p{2jx)2j/2:4?(x)eikx dx.

2TT , /R

Thus, we have

/ • 2 ( ( + 1 ) T T/ • 2 ( ( + 1 ) T T

= J2 ip*(2jx)ip*(x)eikx

<6Z Ja"

dx

for all A: e Z when j ^ 1. This shows that

E ^*(x + 2kn)^? (2j(x + 2kn)) - 0, for almost every i £ l , ; ^ 1.

Therefore, we have

Thus, ip satisfies Condition (6).

(c) =s> (a): Condition (3) implies that {ipj* '• k e Z} is a frame for Wj by Proposition
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6, and Condition (6) shows that Wo is orthogonal to Wj for j ^ 0. By means of change
of variables, i$j,k,il>i,m) = (ipo,k-2J-<m,'<Pi-j,o), fr°m which Wj ± Wt follows for j ^ I.
Therefore, {ipjik • j , k 6 Z} is a frame of W :~ spzn{ipj,k : j , k 6 Z}. We claim that
W = L2(R). It suffices to show that {ipjtk} is a frame for L2(K). As in [7, Proposition
1.19, Chapter 7],

2n J_c

(10) =

00

since 0p(x) := ^ip*(2'x)il>*(2l(x + 2jm)) = 0 by (5). From (7) and (9), we have
1=0

iez

Thus we obtain from (10),

That is, {tplk} is a frame for L2(M) and hence spans L2(R). Therefore, W = uWf =
L2(R). ' D

3. FRAME MULTIRESOLUTION ANALYSES

In this section we characterise those semi-orthogonal frame wavelets which are as-
sociated with frame multi-resolution analyses. This association problem can best be
understood by the theory of shift-invariant spaces. We first introduce briefly those parts
of shift-invariant space theory that will be used directly in this paper. The theory has
a rich history, and is well-known to approximation theorists. The interested reader may
consult [3, 4, 8] and the references therein. A closed subspace S of L2(R) is said to
be shift-invariant if Tkf e 5 for any / € S and k € Z. Let $ c L2(R). Then
5 := <S($) := spzn{Tk<p : tp £ $, k 6 Z} is clearly shift-invariant. The length of 5
is defined to be min{#$ : 5 = 5(<E>),$ C L2(R)}, where # $ means the cardinality of $.
It is established in [3, Section 3] that the length of a shift-invariant subspace of L2(R)
is at most countable. For / € L2(R), let f\\x :- (f{x - 2-nk))^, which is in £2(Z) for
almost every i £ l For x € T, A C L2(R) we let A\\x := {f]\x : f € A}.
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LEMMA 8 . Let S be a shift-invariant subspace of L2(K), and A its length which

may be infinite. Then there exists 3> C L2(R), with cardinality A, such that {Tkf : k G

Z, / G $ } is a frame for 5 . Moreover, ifS = S ( # ) for some * C L2(R), then

A = ess-sup{dim S\\x : x G T}

= ess-sup{dimspan v^z : x G T}.

PROOF: The first part of the theorem follows from [4, Theorem 3.3] and the remark
following it. The equations concerning A follow from [3, Theorem 3.5] and [4, Proposition
1.5]. D

Suppose that tp generates a semi-orthogonal wavelet frame, that is, {D^TktjJ : j , k £
R} is a frame for L2(K) and (D>Tkip, DlTmif>) = 0 if j ^ I. Let W, := span {DlTkip : k €
Z}, and Vj := ® W, for j , / e Z. Then it is easy to see that {DlTktp : k G Z} is a frame for

«j"

Wi for each / G Z, and that L2(R) = ® Wj. It is also easy to see that ip is associated with
iez

a frame multi-resolution analysis if and only if there exists tp G VJ> such that {T^i^ : /c G Z}

is a frame for Vo; ̂  is associated with a finite frame multi-resolution analyses if and only
if there exists {(pi,<p2, • • •, <pn} C Vo such that {Tk<Pi : k G Z, 1 ^ i ^ n} is a frame for
Vo; ip is associated with an infinite frame multi-resolution analysis if and only if there
exists {(fii : i G N} such that {Tkfi : i G Z} is a frame for Vo.

LEMMA 9 . Vo is shift-invariant.

P R O O F : First note that V / = © W ; . Equation (1) implies that , for each I G Z,

/ G Wt if and only if T2-imf G Wi for each m G Z, that is, Wt is 2~'Z-shift-invariant

space. In particular, Wt is shift-invariant for I ^ 0. This implies that Vj,1 is shift-invariant.

Hence so is Vo by [3, Corollary 3.4]. D

LEMMA 1 0 . Vo = S({D^ : j < 0}) .

PROOF: Let V£ := S{{D^ : j < 0}) . Note that Vo = spM {D^Tkrp :j<0, k G Z}

by the definition of Vo, and that VJf = span {TkD
jtp : j < 0, A; G Z} = span {I>J'T2,-fc^ :

j < 0, /c G Z} by the definition of the shift-invariant space and Equation (1). Vo, however,

is shift-invariant by Lemma 9. Hence

Vo = s p a n {TiDjTkil> : j < 0 , k , l e X }

= s p a n {DjT2il+ktP : j < 0 , k , l e Z }

- span {EPTvrt : j < 0, / G Z} = Vo'.

The following theorem gives a generalisation of both [7, Theorem 3.2, Chapter 7] and
the main result in [13]. We note that the last part of the following theorem is Theorem 3.
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THEOREM 1 1 . Suppose tp generates a semi-orthogonal wavelet frame. Let, for

zeT,
D(x) := dim span {{DjiP)$x : j < 0},

and
A :- ess-sup{£>(z) : x € T},

which may be infinite. Then ip is associated with a frame multi-resolution analysis if and
only if A = 1; and it is associated with a finite frame multi-resolution analysis if and
only if X < oo. In this case there exists {<pi,<P2,- • • ,fx} C Vo such that \Tkipi : k € Z,
1 ^ i ^ A} is a frame for Vo. It is associated with an infinite frame multi-resolution
analysis if X = oo. Suppose, furthermore, that ip generates an orthonormal basis. Then

and it is associated with an orthonormal multi-resolution analysis if and only ifD(x) = 1

for almost everywhere i g T .

P R O O F : First note that A is the length of the shift-invariant space Vo by Lemma 10
and Lemma 8. Suppose that tp is associated with a frame multi-resolution analysis. Then
there exists <p € Vo such that {Tkip : k e Z} is a frame for Vo. Hence V"o = S((f). Hence
A = 1 by Lemma 8. Suppose, on the other hand, that A = 1. Then there exists <p e Vo

such that {T^ip : k € Z} is a frame for Vo by Lemma 8. The statements about finite and
infinite frame multi-resolution analyses follow similarly. Now suppose that ip generates an
orthonormal basis. Equation (11) follows from [7, Equation (3.8), Chapter 7]. Suppose
that V is associated with an orthonormal multi-resolution analysis. Then there exists
<p € Vo whose translates form an orthonormal basis of Vo. Hence Vo = S(tp). Moreover,
D{x) = dimspan{^||x} by [4, Proposition 1.5]. It is well-known that ||v?||z||^(Z) = 27r ^ 0
for almost every x € T. Hence D(x) — 1 for almost every x € T. Suppose, on the other
hand, that D(x) = 1 for almost every x € T. Then there exists <p e Vo whose translates
form an orthonormal basis for Vo by [3, Theorem 3.2]. D

We illustrate our results by considering an example t/ja E L2(R) defined by ipa

= X[-2a,-a) + X[a,2a) for a > 0. That is,

tpa{x) - (2/TTZ) cos(3ax/2) sin(aa;/2).

If a — n, ipn is the well-known Shannon wavelet.

For 0 < a ^ n/2, we shall show that that tpa is a semi-orthogonal frame wavelet by
checking the conditions in Theorem 7 (b). We see that

{2jx) = 1, for almost everywhere x 6 K.
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Since ^ ( s ) t £ ( 2 ' z ) = 0 for j > 1,

V " ^ ( z + 2fc7r)^(2J(a: + 2kir)) = 0, for almost everywhere i e l , j ^ 1.
fcez

We can check that

where TV = [-vr, - 2a ) U [-a, a) U [2a, TT). Finally, we check Condition (5). Let 2jx 6
[-2a, - a ) U [a, 2a) for j ^ 0 and let p € 2Z + 1. If p ^ 1, then 2Ja; + 2p2J7r ^ 2Jx + 2?r ^
- 2 a + 2?r ^ 7T ^ 2a. If p < - 1 , then 2jx + 2p2jn ^ 2jx - 2TT < 2a - 2n < - 2 a . We have

^,{2jx)i)'a{2j{x + 2pir)) = 0 for j ^ 0 and p G 2Z + 1,

and hence
^ ^ ^ = 0 , p € 2 Z + l .

Therefore, we have shown that ipa is a semi-orthogonal frame wavelet for 0 < a ^ TT/2
by Theorem 7. We can also check that tpa is not a semi-orthogonal frame wavelet if
7r/2 < a < 7 r o r a > 7 r b y using Theorem 7.

Now, we show that ipa is associated with a frame multi-resolution analyses for 0 <
a ^ TT/2 by applying Theorem 11. If x € [-n, -a)u[a,7r), we see that ip(2j(x + 2nk)) = 0
for k G Z and j ^ 1 and so D(x) = 0 . If x G [-a, a)\{0} then 2^x e [-2a, - a ) U [a, 2a)
for some j x ^ 1 and so tp{2j(x + 2kn)) = SjjxSOik; hence D(x) = 1. Therefore A = 1 and
so ipa is associated with a frame multi-resolution analysis by Theorem 11.
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