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It is shown that an invertible disjointness preserving operator from a uniformly complete vector lattice onto a
normed vector lattice has a disjointness preserving inverse and is necessarily order bounded.
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Introduction

Throughout this paper E and F are Archimedean vector lattices and all mappings
under consideration are supposed to be linear. The operator T:E-*F is called
disjointness preserving (d-homomorphism) whenever xt Lx2 (i.e., \x^\ A | X 2 | = 0 ) in E
implies TxY 1 Tx2 in F.

In the problem section of [6] Y. A. Abramovich raises the following question: if E, F
are vector lattices and T:E-*F is invertible and disjointness preserving, is T~1:F-*E
disjointness preserving as well? The plausibility of an affirmative answer to this question
(at least in the case that E and F are Banach lattices) is justified by a recent result of K.
Jarosz [8] who shows that a one-to-one disjointness preserving operator (separating in
his terminology) from C(X) onto C(Y) (with X and Y compact Hausdorff spaces) is
necessarily continuous ( = norm bounded) and has therefore a disjointness preserving
inverse.

The main purpose of the present paper is to generalize this result to the effect that an
invertible disjointness preserving operator from a Banach lattice E onto a normed
vector lattice F has a disjointness preserving inverse and is necessarily norm bounded.
Actually we shall consider a somewhat more general situation when £ is a uniformly
complete vector lattice, F is a normed vector lattice and T: E-*F is bijective and
disjointness preserving and we will prove that T"1: F-*E is disjointness preserving as
well and moreover that T is order bounded.

In [2] Y. A. Abramovich, A. I. Veksler and A. V. Koldunov introduce the so-called d-
isomorphisms (T:E^F is termed a ^-isomorphism whenever xt lx2 in EoTxx ± Tx2

in F). Observe that a ^-isomorphism is necessarily injective. Surjective d-isomorphisms
are precisely the invertible disjointness preserving operators for which the inverse is also
disjointness preserving. In Theorems 4, 5 and Added in Proof of the same paper [2] it is
stated that a d-isomorphism T from a Banach lattice onto a normed vector lattice is
norm bounded. Our result shows that the assumption that T~l is disjointness
preserving is superfluous.
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Finally, we prove that any invertible disjointness preserving operator from a discrete
vector lattice onto an arbitrary vector lattice has a disjointness preserving inverse.

For the sake of simplicity we restrict our attention in this paper to real vector lattices.
The extension to complex vector lattices is obtained via standard arguments. For
unexplained terminology and unproved results we refer to the standard textbooks [3, 9,
11, 15, 16].

1. Preliminaries

In this section we collect some properties of disjointness preserving operators which
will play an important role in the sequel.

Once more, let E, F be (Archimedean) vector lattices. It is easily verified and well-
known that T:E-*F is disjointness preserving if and only if |Tx| = |T|x|| for all xeE.
This implies immediately that T is already disjointness preserving whenever Xj A x2=0
in E implies Txl ± Tx2 in F.

The following result, due to M. Meyer [12], deals with a description of order
bounded disjointness preserving operators (called Lamperti operators by W. Arendt in
[4]). For more elementary proofs, see S. J. Bernau [5] and B. de Pagter [14].

Theorem 1.1. Let E, F, be vector lattices and T: E-*F order bounded and disjointness
preserving.

(i) There exist lattice homomorphisms T+, T~: E-*F such that T=T+ — T~.
Furthermore,

T+x=(Tx)+, T-x=(Tx)-(xeE+)

and hence {Tx)+ A (Ty)~ = 0 (x,yeE+).
(ii) The modulus \T\ exists, \T\ is a lattice homomorphism, \T\ = T+ + T~ and

In fact, both (i) and (ii) characterize order bounded disjointness preserving operators.
Notice that a disjointness preserving operator is therefore order bounded if and only if
it is regular. In the next proposition we present another characterization of order
bounded disjointness preserving operators. It is due to W. Arendt [4, Theorem 2.4] in
the case that E, F are Banach lattices.

Proposition 1.2. Let E, F, be vector lattices and T:E-*F. Then the following are
equivalent.

(i) T is order bounded and disjointness preserving.

(ii) j x t l ^ ^ l in E implies |Tx1|^|Tx2| in F.
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Proof. (i)=>(ii). By Theorem 1.1, \T\ exists. Since |T|^0, |x t |^ |JC2| implies |T||x!|
| | | | | | | |
(ii)=>(i). Obviously, (ii) implies the order boundedness of T. Moreover, if I X J ^ X J I in

£, then i T x ^ l r x j l in F. Choosing x ,=x (xeE) and x2 = |x| we get that |Tx| = |r|x||
for all xe£, so T is disjointness preserving. D

The next theorem has been proved by P. T. N. McPolin and A. W. Wickstead in [10,
Theorem 2.1]. For previous versions of this result involving two sequences instead of
one we refer to Y. A. Abramovich [1] and B. de Pagter [14].

Theorem 13. Let E, F be vector lattices and T: E-*F disjointness preserving. If, for
every sequence {xB}"=1 in E+ which converges to 0 relatively uniformly, / \ " = 1 |Txn|=0,
then T is order bounded.

It follows immediately that if E and F are normed vector lattices and T:E-*F is
norm bounded and disjointness preserving then T is order bounded. Conversely, if E is
a Banach lattice, F is a normed vector lattice and T:E-*F is order bounded and
disjointness preserving then T is norm bounded, as any order bounded operator from a
Banach lattice into a normed vector lattice is norm bounded. Hence, in the latter case
order boundedness, norm boundedness and regularity are equivalent for disjointness
preserving operators.

If E, F are vector lattices and T:E-*F is bijective, order bounded and disjointness
preserving, then | r | is a lattice isomorphism from E onto F implying that T~1:F->E is
also order bounded and disjointness preserving (cf. [7, Theorem 1]).

In [14] the second author introduces for every operator T:E-*F (E,F vector lattices)
the so-called ideal of order boundedness AT of T. By definition, AT is the union of all
ideals A in E with the property that the restriction T/A is order bounded. It is easily
verified that AT is an ideal of £ and that T/AT is order bounded. Clearly, AT is then the
largest ideal in £ on which T is order bounded and it is not difficult to see that

/lT = {xe£:T[0,|x|] is order bounded}.

The following result stems from the same paper [14, Theorem 8 and Corollary 9] and
will play a key role in our considerations.

Theorem 1.4. / / £ is a uniformly complete vector lattice. F is a normed vector lattice
and T:E-*F is disjointness preserving, then AT is order dense in E (i.e.,for every 0 < x e £
there exists yeAT such that

2. The main results

In this section we present the main result of this paper (Corollary 2.2 and
Theorem 2.3).
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Theorem 2.1. / / E is a uniformly complete vector lattice, F is a normed vector lattice
and T:E-*F is injective and disjointness preserving, then Txl L Tx2 implies xl ±x 2 in E.

Proof. Since I T X ^ I T I X J U and |7"x2| = |T|x2|| we may assume without loss of
generality that x t ^ 0 and x 2 ^ 0 . Suppose contrary to what we claim that xt A x2>0.
The order denseness of AT (Theorem 1.4) yields that 0 < w ^ x , A X2 for some 0<we.4r .
By the Archimedean property of E there exists A>1 such that y = (kw—xl — x 2 ) + >0
and certainly yeAT as y^kw. The latter implies also that y^k(xt A X2). Put
u = kw A xt eAT and v = kw A x2eAT. Since y^Aw, the inequalities

(1)

are obvious.
Observe that it follows from

and y ±(xl + x2 — Xw)+ that

y A X 1 1 ( X 1 - M ) , 3 ; A X2±(X2-V) (2)

(the second statement in (2) can be verified in a similar fashion). Next we show that

\T(y A x^TxtUny A X2)\£\TX2\. (3)

Indeed, since T is order bounded and disjointness preserving on AT, Proposition 1.2
and (1) imply \T(y A xJl^lTul. By (2), T(y A XX) 1 T(xt-u). Hence

gives

\T(y A x1)\ = (\Tx1\ + \T(xl-u)\i A \T(y A XX)|

Z\TXl\ A \T(y A Xl)\z\TXl\.

The second inequality in (3) can be treated analogously.

Since {Tx^ A | rx 2 |=0 , it is an immediate consequence of (3) that

T(y A Xl) 1 T(y A X2). (4)

Furthermore, since A> 1 and y^X(xt A X2) we clearly have

y A x^k(y A x2). (5)
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Since T is order bounded on AT, (5) gives

\T(y A Xl)\^X\T(y A x2)\. (6)

Combining this with (4) we get T(y A x ,)=(). But T is one-one, so y A X^=0. On the
other hand, §<y^kw^kxu a contradiction. It follows that Xj A X2 = 0 and the proof is
complete. •

Corollary 2.2. / / E is a uniformly complete vector lattice, F is a normed vector lattice
and T:E^F is bijective and disjointness preserving, then T~1:F^E is disjointness
preserving as well.

Theorem 23. / / E is a uniformly complete vector lattice, F is a normed vector lattice
and T:E-*F is an invertible disjointness preserving operator, then T is order bounded.

Proof. We have to show that |x1|^|x2| in E implies |Tx1|^|Tx2| in F. Using that
ITJC^ITIXJ I , |TX2| = |T|X2| | we may assume O^Xjgx^

First we claim that for each 0^

(\TXl\-\Tx2\)
+LT((y-x2)

 + ). (7)

Let u = y A Xi and v=y A X2. Then O^u^veAT and hence |Tu|^|Tu|. Since xt — u =
(Xi— y)+ ^(x2—y)+ and x2 — u=(x2—y)+, we have Xj —M J.(_y —x2)

+ as well as x2 — v ±
(y—x2)

+. Consequently,

Tx 1 -T«lT( (y-x 2 ) + ) , rx 2 -7 '»17X(3 ' -x 2 ) + ) . (8)

Using one of the Birkhoff inequalities (that \a+ — b+\S-\a—b\ for all a, beF) and the
triangle inequality we get

This inequality together with (8) yields (7).
Next we claim that the set

= {T((y-x2)
+):OZyeAT}
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is order dense in F. To this end, pick O^qeF such that qLT((y—x2)
+) for all

0^yeAT. Since T is surjective there exists O^peE that satisfies <jf = |Tp|, so Tp L
T((y—x2)

 + ) for all 0^yeAT. By Theorem 2.1, p A (y-x2)
+=0 for all O^yeAT. But

AT is order dense in E by Theorem 1.4, so p A ( Z — X 2 ) + = 0 for all 0 ^ z e £ . Choosing
z=p + x2 we find that p=0 and hence q = 0, showing that B is order dense in F. By (7),
( |Txi |- |Tx2 |)+ is disjoint from B and so ( |Tx1|- |Tx2|)+=0, i.e., |Tx1|^|Tx2| and we
are done. •

Corollary 24. If E is a Banach lattice, F is a normed vector lattice and T:E-*F is
bijective and disjointness preserving, then T is norm bounded (and T~l is disjointness
preserving).

The following example (obtained jointly with A. W. Wickstead) shows that the
uniform completeness of E in Theorem 2.3 is not redundant. It is modification of an
example due to M. Meyer [13].

Example 2.5. Let E = F = PL[0,1), the vector lattice of all piecewise linear functions
on [0,1), i.e., fePL[0,1) if and only if there exists a partition

0 = xo<Xj <••• <xB_1<xn = l

(n depending on / ) such that / is linear on each interval [xI_1,xi)(i=l,...,n).

Observe that PL[0,1) is a normed vector lattice (with respect to the supremum norm)
that has the principal projection property, but is not uniformly complete. Define D:
PL[0, l)-PL[0,1) by

(Df)(x) = /;(x)(0 ^ x < 1, / e PL[0,1)),

where f'T stands for the right derivative of / Observe that D is band preserving (so
certainly disjointness preserving), not order bounded and that D2 = 0, Let T = I + D.
Then T is bijective, T~1=I—D and hence T is an invertible disjointness preserving
operator which is not order bounded. Notice that both T and T"1 are even band
preserving.

In our final result we shall describe one more situation in which any invertible
disjointness preserving operator has a disjointness preserving inverse.

Theorem 2.6. If E and F are vector lattices, E is discrete and T:E-*F is invertible and
disjointness preserving, then T~1:F^>E is also disjointness preserving.

Proof. By hypothesis, E contains a maximal disjoint system of atoms {ea}aeS. The
band {ea}

dd generated by ea is a projection band and satisfies

Denote the band projection of E onto {«„}** by PJ^oeS). We have to show that
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X!,x2e£+, Txi J. Tx2 implies x, A X 2 = 0 . Since P ^ Lx1 — Paxl and T is disjointness
preserving we have TPax1LT(x1 — Paxi) (actually we use here that T maps compo-
nents onto components!). Hence. Tx1 = TPax1+(Txi-TPax1) implies |Tx1| = |TP<rx1| +
Txl-TPaxl\ and thus ^ P ^ I ^ T x ! ! . Similarly iTP^Igf rx j ) . Therefore [TP^x^ A
TPax2\=0, as TxiLTx2. On the other hand, Pax1=aea,Pax2 = flea

 f o r appropriate
<x,0eR. Consequently, TPax1 = aTea and TPax2 = fiTea. Since aTeaLpTea and Teff/0
(because T is one-one) we find a=0 or /?=0 which results in P<rx1 = 0 or Pax2=0. It
follows that Pff(xi A x2) = Paxi A P , , X 2 = 0 for all aeS, i.e., x, A x2 A ea = 0 for all a.
But the band generated by {ea}aeS is the whole of E, so xt A X2 = 0 which is the desired
result. •

The corresponding question for band preserving operators was dealt with by A. W.
Wickstead and the first author in [7], where they showed that the inverse of a bijective
band preserving operator on a uniformly complete vector lattice is band preserving as
well.

We are grateful to the referee for some valuable remarks.
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