Hamiltonian Properties of Generalized Halin Graphs

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Shabnam Malik, Ahmad Mahmood Qureshi, and Tudor Zamfirescu

Abstract. A Halin graph is a graph $H=T \cup C$, where T is a tree with no vertex of degree two, and C is a cycle connecting the end-vertices of T in the cyclic order determined by a plane embedding of T. In this paper, we define classes of generalized Halin graphs, called k-Halin graphs, and investigate their Hamiltonian properties.

1 Introduction

A Halin graph is a graph H which is the union of a tree $T \neq K_{2}$ with no vertex of degree 2 and a cycle C connecting the end-vertices of T in the cyclic order determined by a plane embedding of T. Halin graphs are planar, 3-connected, and possess rather strong Hamiltonian properties. They are 1-Hamiltonian, i.e., they are Hamiltonian [2] and remain so after the removal of any single vertex, as Bondy showed (see [4]). Moreover, Barefoot proved that they are Hamiltonian connected, i.e., they admit a Hamiltonian path between every pair of vertices [1]. Bondy and Lovász [3] and, independently, Skowrońska [6] proved that Halin graphs on n vertices are almost pancyclic; more precisely, they contain cycles of all lengths $l(3 \leq l \leq n)$ except possibly for a single even length. Also, they showed that Halin graphs on n vertices whose vertices of degree 3 are all on the outer cycle C must be pancyclic, i.e., they must contain cycles of all lengths from 3 to n, thus proving a conjecture of Malkevitch [5]. Can we generalize the notion of a Halin graph such that some of its Hamiltonian properties are preserved? In the present paper this is what we do. We generalize Halin graphs in the following way.

A 2-connected planar graph G without vertices of degree 2, possessing a cycle C such that
(i) all vertices of C have degree 3 in G,
(ii) $G-C$ is connected and has at most k cycles
is called a k-Halin graph. The cycle C is called the outer cycle of G. The vertices and cycles in $G-C$ are called inner vertices and, respectively, inner cycles of G.

A 0-Halin graph is a usual Halin graph. Moreover, the class of k-Halin graphs is contained in the class of $(k+1)$-Halin graphs $(k \geq 0)$. Thus we get a nested sequence of generalized Halin graphs. We shall see that, as expected, the Hamiltonicity

[^0]of k-Halin graphs steadily decreases as k increases. Indeed, a 1-Halin graph is still Hamiltonian, but not necessarily Hamiltonian connected, a 2-Halin graph is not always Hamiltonian but still traceable, while a 3-Halin graph is not even necessarily traceable. The property of being 1-Hamiltonian, Hamiltonian connected or almost pancyclic is not preserved, even by 1-Halin graphs. However, Bondy and Lovász' result about the pancyclicity of Halin graphs with no inner vertex of degree 3 remains true even for 3-Halin graphs.

2 Hamiltonicity of 3-Halin Graphs

The graph obtained from a Halin graph by deleting a vertex x from its outer cycle is called a reduced Halin graph [3]. The three neighbouring vertices of x, whose degrees reduce by one, are called the end-vertices of the reduced Halin graph. Lemma 1 of [3] tells us the following.

Lemma 2.1 In any reduced Halin graph each pair of end-vertices is joined by a Hamiltonian path.

Lemma 2.1 will allow us to contract any reduced Halin subgraph of a graph G to a single vertex of degree 3, whenever we study Hamiltonian properties of G.

A path in a k-Halin graph will be called an inner path, if it has its end-vertices on distinct inner cycles and no other vertex on any inner or outer cycle.

We call a k-Halin graph $(k \geq 1)$ simple if it is spanned by the union of all its inner paths and cycles and the outer cycle. Thus, a 1-Halin graph is simple if it has an inner cycle C_{1} (besides the outer cycle C), and is spanned by $C \cup C_{1}$.

Theorem 2.2 Every 1-Halin graph is Hamiltonian.
Proof If the 1-Halin graph is also Halin, then it is Hamiltonian. Now let G be a 1Halin graph with C_{1} and C as its inner and outer cycles respectively (see Figure 1).

Figure 1

Let a be a vertex on C_{1} and let $b \notin C_{1}$ be a neighbour of a. If $b \notin C$, the union of all paths from b to C, which do not contain a, is a tree T_{b}. This tree plus the edges on C between its leaves defines a reduced Halin graph H_{b}. We replace H_{b} by a single vertex $b^{\prime} \in C$, adjacent with $a \in C_{1}$. If $b \in C$, we keep the edge $a b$. After doing
this with all vertices of C_{1}, G reduces to a simple 1-Halin graph consisting of the two cycles C and C_{1}, and of edges between the two cycles, such that the outer cycle has only vertices of degree 3 (see Figure 2). A Hamiltonian cycle in this graph is shown in Figure 2.

Figure 2

Remark. A 1-Halin graph is not necessarily Hamiltonian connected. Indeed, Figure 3 shows a bipartite 1-Halin graph G with 4 black and 4 white vertices. A path between any pair of white vertices will have one more white vertex than black, so it cannot be Hamiltonian.

Figure 3: 1-Halin graph

A 2-Halin graph is not necessarily Hamiltonian. Indeed, Figure 4 shows a bipartite 2-Halin graph on 15 vertices. Such a graph has no Hamiltonian cycle.

Recall that a graph admitting a spanning path is called traceable, and the path is called Hamiltonian.

Theorem 2.3 Every 2-Halin graph is traceable.
Proof If the 2-Halin graph is also 1-Halin, then, by Theorem 2.2, it is Hamiltonian, hence traceable. Now let G be a 2-Halin graph with inner cycles C_{1} and C_{2} and outer cycle C, as shown in Figure 5.

Lemma 2.1 allows us to reduce G to a simple 2-Halin graph, that is, the union of C, C_{1}, C_{2}, and the unique path P between C_{1} and C_{2} in $G-C$ (possibly reduced to a vertex), plus edges between C and $C_{1} \cup C_{2} \cup P$ (see Figure 6). Let $a_{1} \in C_{1}$

Figure 4: 2-Halin graph

Figure 5
and $a_{2} \in C_{2}$ be the endpoints of P. We claim that there is a Hamiltonian path in G between the neighbour b_{1} or c_{1} of a_{1} on C_{1} and the neighbour b_{2} or c_{2} of a_{2} on C_{2}. This is illustrated in Figure 6, where a path between b_{1} and b_{2} is realized. Accordingly, G is traceable.

Figure 6

Remark. A 3-Halin graph is not necessarily traceable. Indeed, Figure 7 shows a 3Halin bipartite graph G with 22 vertices coloured in two colours, 12 black and 10 white.

Figure 7: 3-Halin graph

3 Pancyclicity of 3-Halin Graphs

A graph on n vertices is called almost pancyclic, if it contains cycles of all lengths from 3 to n except possibly for one single length. Let us call m-almost pancyclic an almost pancyclic graph without cycles of length m.

As announced in the Introduction, we show here that all 3-Halin graphs without inner vertices of degree 3 are pancyclic, thus extending the corresponding result of Bondy and Lovász [3] on Halin graphs. We shall make use of the following central result of [3].

Lemma 3.1 Every Halin graph is almost pancyclic. If the Halin graph H is m-almost pancyclic, then m is even and H must contain one of the three types of subgraphs depicted in Figure 8.

Type I

Type II

Type III

Figure 8: $(m=12)$

Theorem 3.2 Every 3-Halin graph without inner vertices of degree 3 is pancyclic.
Proof Let G be a 3-Halin graph without inner vertices of degree 3. There are at most 3 inner cycles in G. Choose an edge in each of them, such that no pair of edges has a common point. The total number of chosen edges can be two if the union of the 3 inner cycles is a cycle plus a chord. Delete these chosen edges. The resulting Halin graph H has at most 6 inner vertices of degree 3 .

Figure 9

By Lemma 3.1, H is almost pancyclic. Assume cycles of length m are missing. Then, by Lemma 3.1, m is even and H must contain a reduced Halin graph of one of the types I, II, or III (Figure 8).

Suppose first that $m=4$. Then H must contain a reduced Halin graph H^{\prime} as described in Figure 9.

Figure 10

Figure 11

The point x of H^{\prime} has degree 3. Hence it must belong in G to an edge e which has been deleted to obtain H. If the other endpoint of e is a vertex like x, i.e., a nonendpoint of a subgraph of H isomorphic to H^{\prime}, then G has a cycle of length 4, and is therefore pancyclic. So, assume that the other endpoint of e is not a vertex like x. Since there are at most 3 edges like e, there are at most 3 vertices like x. But 4 -almost pancyclic Halin graphs (see Figure 10) have more than 3 vertices like x if they are different from the graph $H^{\prime \prime}$ of Figure 10. In case $H=H^{\prime \prime}$, the vertex o must, on one hand, have degree at least 4 in G, but can, on the other hand, be no endpoint of any further edge of G. Thus, in any case we obtain a contradiction.

Suppose now that $m=6$. The smallest 6 -almost pancyclic Halin graph is shown in Figure 11. This graph has 8 inner vertices of degree 3, so it cannot be H.

Figure 12

Figure 13

If $m=8$, then, by Lemma 3.1, H must contain one of the reduced Halin subgraphs of Figure 12. Thus H has at least 6 inner vertices of degree 3, but they cannot be endpoints of only 3 edges in G, excepting the cases shown in Figure 13. In these cases, however, G has cycles of length 8 , and is therefore pancyclic.

If $m \geq 10$, then the reduced Halin graph which must, by Lemma 3.1, appear in H has at least 8 inner vertices of degree 3 , which is impossible.

Figure 14

The 37-Halin graph of Figure 14 has no cycle of length 4 and shows that not every k-Halin graph with no inner vertex of degree 3 must be pancyclic. So we are led to the following question.

Which is the maximal number k for which every k-Halin graph with no inner vertex of degree 3 is pancyclic?

References

[1] C. A. Barefoot, Hamiltonian connectivity of the Halin graphs. Congr. Numer. 58(1987) 93-102.
[2] J. A. Bondy, Pancyclic graphs: recent results. In: Infinite and Finite Sets. Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam, 1975, pp. 181-187.
[3] J. A. Bondy and L. Lovász, Lengths of cycles in Halin graphs. J. Graph Theory 9(1985) 397-410.
[4] L. Lovász and M. D. Plummer, On a family of planar bicritical graphs. Proc. London Math. Soc. 30(1975) 160-176.
[5] J. Malkevitch, Cycle lengths in polytopal graphs. In: Theory and Applications of Graphs, Lectures Notes in Math. 642. Springer Berlin. 1978 pp. 364-370.
[6] M. Skowrońska, The pancyclicity of Halin graphs and their exterior contractions, In: Cycles in Graphs, North-Holland Math. Stud. 115. North-Holland, Amsterdam, 1985, pp. 179-194.

Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Town, Lahore, Pakistan e-mail: shabnam.malik@gmail.com sirahmad@gmail.com
Faculty of Mathematics, University of Dortmund, 44221 Dortmund, Germany,
and
Institute of Mathematics, Romanian Academy, Bucharest, Romania
e-mail: tzamfirescu@yahoo.com

[^0]: Received by the editors January 11, 2008.
 AMS subject classification: Primary: 05C45; secondary: 05 C 38 .
 Keywords: k-Halin Graph, Hamiltonian, Hamiltonian connected, traceable.
 (c)Canadian Mathematical Society 2009.

