Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T22:04:09.314Z Has data issue: false hasContentIssue false

On the Electrical and Photoluminescence Properties of Erbium Doped ZnO Thin Film

Published online by Cambridge University Press:  12 June 2012

Liang-Chiun Chao
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 106.
Chung-Chi Liau
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 106.
Wan-Chun Chang
Affiliation:
Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 106.
Get access

Abstract

Er doped ZnO (Er:ZnO) thin films with Er concentration from 0.1 to 3.6 at. % were prepared by dual beam ion beam sputter deposition at room temperature. Experimental results show that as Er concentration increases from 0.1 to 1.1 at. %, the resistivity of the as-deposited Er:ZnO film decreases from 560 Ω·cm to a minimum of 0.23 Ω·cm, while further increasing Er concentration to 3.6 at. % results in increase of the resistivity to 4.2 kΩ·cm. The as-deposited Er:ZnO with Er concentration of 1.1 at.% also exhibits the highest carrier concentration of 2.3×1019 cm-3. None of the as-deposited Er:ZnO films show 1.5 μm emission without post-growth annealing. Er:ZnO film with Er concentration at 0.5~1.1 at.% shows the strongest 1.5 μm emission after annealing at 700 ~ 900°C, while all the Er:ZnO film becomes semi-insulating after annealing. The discrepancy between the processing conditions for optimized carrier concentration and optimized optically activated Er ions may due to the formation of the pseudo-octahedral structure after annealing that favors the 1.5 μm emission.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kenyon, A. J., Prog. Quantum Electron. 26, 225 (2002).10.1016/S0079-6727(02)00014-9Google Scholar
2. Peaker, A. R., Mater. Res. Soc. Symp. Proc. 866, V1.1.1 (2005).10.1557/PROC-866-V1.1Google Scholar
3. MicheL, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y. H., Poate, J. M. and Kimerling, L. C., J. Appl. Phys. 70, 2672 (1991).10.1063/1.349382Google Scholar
4. Coffa, S., Priolo, F., Franzò, G., Bellani, V., Carnera, A. and Spinella, C., Phys. Rev. B 48, 11782 (1993).10.1103/PhysRevB.48.11782Google Scholar
5. Mais, N., Reithmaier, J. P., Forchel, A., Kohls, M., Spanhel, L. and Müller, G., Appl. Phys. Lett. 75, 2005 (1999).10.1063/1.124897Google Scholar
6. Schmidt, T., Müller, G., Spanhel, L., Kerkel, K. and Forchel, A., Chem. Mater. 10, 65 (1998).10.1021/cm9702169Google Scholar
7. Yang, W. C., Wang, C.W., Chang, J. C., Hsu, H.C., Nee, T. E., Chen, L. J. and He, J. H., J. Nanosci. Nanotechnol. 8, 3363 (2008).10.1166/jnn.2008.164Google Scholar
8. Pérez-Casero, R., Gutiérrez-Llorente, A., Pons-Y-Moll, O., Seiler, W., Defourneau, R. M., Defourneau, D., Millon, E., Perrière, J., Goldner, P. and Viana, B., J. Appl. Phys. 97, 054905 (2005).10.1063/1.1858058Google Scholar
9. Komuro, S., Katsumata, T., Morikawa, T., Zhao, X., Isshiki, H. and Aoyagi, Y., Appl. Phys. Lett. 76, 3935 (2000).10.1063/1.126826Google Scholar
10. Wang, J., Zhou, M. J., Hark, S. K., and Li, Q., Tang, D., Chu, M. W. and Chen, C. H., Appl. Phys. Lett. 89, 221917 (2006).10.1063/1.2399340Google Scholar
11. Chao, L. C., Tsai, D. Y. and Shih, Y. R., Nucl. Instr. and Meth. B 267, 2874 (2009).10.1016/j.nimb.2009.06.102Google Scholar
12. Chao, L. C., Chang, C. W. and Tsai, D. Y., Appl. Surf. Sci. 255, 6525 (2009).10.1016/j.apsusc.2009.02.045Google Scholar
13. Ishii, M., Komuro, S., Morikawa, T. and Aoyagi, Y., J. Appl. Phys. 89, 3679 (2001).10.1063/1.1355284Google Scholar