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Representations of Non-Negative
Polynomials, Degree Bounds and
Applications to Optimization

M. Marshall

Abstract. Natural sufficient conditions for a polynomial to have a local minimum at a point are con-

sidered. These conditions tend to hold with probability 1. It is shown that polynomials satisfying these

conditions at each minimum point have nice presentations in terms of sums of squares. Applications

are given to optimization on a compact set and also to global optimization. In many cases, there are

degree bounds for such presentations. These bounds are of theoretical interest, but they appear to

be too large to be of much practical use at present. In the final section, other more concrete degree

bounds are obtained which ensure at least that the feasible set of solutions is not empty.

Fix an algebraic set V in Rn, where R is a real closed field. Let A denote the coor-
dinate ring of V , i.e.,

A = R[V ] :=
R[x]

I(V )
,

where I(V ) denotes the ideal of polynomials vanishing on V . The reader may assume,

for simplicity, that V = Rn, so A = R[x]. Fix a quadratic module M in A, i.e., a subset
M of A satisfying M + M ⊆ M, 1 ∈ M, and f 2M ⊆ M for all f ∈ A, and let

K = {p ∈ V | ∀g ∈ M g(p) ≥ 0}.

We often assume, in addition, that MM ⊆ M, i.e., that M is a quadratic preordering.

One is especially interested in the case where M is finitely generated (as a quadratic
module or as a quadratic preordering). In this case, K is the basic closed semial-

gebraic set {p ∈ V | gi(p) ≥ 0, i = 1, . . . , s}, where g1, . . . , gs are generators for
M.

One is especially interested in the case R = R. The quadratic module M is said to

be archimedean if for each f ∈ A there exists an integer k ≥ 1 such that k − f ∈ M.
Results of Putinar [14] and Jacobi [2] show that if R = R and the quadratic module

M is archimedean, then for all f ∈ A, f > 0 on K ⇒ f ∈ M. When M is a

quadratic preordering which is finitely generated, the arithmetic hypothesis “M is
archimedean” is equivalent to the geometric hypothesis “K is compact” [21]. This

result extends to quadratic modules in various ways [3]. Scheiderer [20] showed that
if M is archimedean, then

f ∈ M + ( f 2) and f ≥ 0 on K =⇒ f ∈ M.
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See [9] for another proof of this. Applications of this result are given in [17, 19,
20]. The proof of [9, Theorem 2.3] shows that if R = R, V is irreducible, M is

archimedean, the zeros of f in K are non-singular points of V , and certain “boundary
hessian conditions” hold at each zero of f in K , then f ∈ M+( f 2) (and consequently,

if we also assume f ≥ 0 on K , then f ∈ M).

We prove that the above stated version of [9, Theorem 2.3] continues to hold when

the hypothesis “R = R and M is archimedean” is replaced by the hypothesis “M is

a finitely generated preordering”. The proof of this result is, in fact, simpler than
the proof of [9, Theorem 2.3]. Using standard ideas from model theory, this yields

degree bounds for the presentation of f as an element of M + ( f 2) in this case. The

result has application to global optimization, yielding a new class of polynomials f

such that f − f∗ is contained in
∑

R[x]2 + I, where f∗ is the minimum value of f on

Rn and I is the gradient ideal of f , cf. [10], and again we obtain degree bounds for the
presentation. Exploiting other degree bounds in [13,22], we show that if R = R, M is

a finitely generated preordering, K is compact, and f ≥ 0 on K , then there are degree

bounds for the presentation of f as an element of M in terms of the presentation of
f as an element of M + ( f 2). This has application to the optimization algorithm in

[5]. We also consider the likelihood of the boundary hessian conditions holding in

case the algebraic set V and the boundary of K in V are sufficently well behaved. The
conclusion is that, in a suitable sense, these conditions hold with probability 1. In

the final section, we determine concrete degree bounds for the algorithms in [5, 10],
which ensure that the feasible set of solutions obtained is not the empty set.

1 The Condition f ∈ M + ( f 2)

The condition f ∈ M + ( f 2) does not by itself imply f ≥ 0 on K .

Example 1.1 If the zero set of f is disjoint from K and either M is a finitely gen-
erated quadratic preordering, or R = R and M is a quadratic module which is

archimedean, then −1 ∈ M + ( f 2) (so M + ( f 2) = A).

Indeed, in the quadratic preordering case this follows from the Positivstellensatz.

In the quadratic module case it follows using [7, Corollary 3.4.4], for example.

If we know also that the set K is semialgebraic (which is automatically true if M

is finitely generated) and each semialgebraically connected component of K contains

a point p satisfying f (p) ≥ 0, then f ≥ 0 on K . This is clear from the following
observation, and is particularly striking if K is semialgebraically connected, e.g., if

K = V = Rn.

Proposition 1.2 The condition f ∈ M + ( f 2) implies the following equivalent condi-

tions:

(i) The closed set {p ∈ K | f (p) ≥ 0} is (relatively) open in K.

(ii) Every zero of f in K is a local minimum of f on K.

Proof Suppose f = σ + h f 2, i.e., f (1 − h f ) = σ with σ ∈ M, h ∈ A. Thus

f (p)(1−h(p) f (p)) ≥ 0 on K . If p ∈ K satisfies f (p) < 0, then h(p) f (p) ≥ 1. Since
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the inequality h f ≥ 1 defines a closed set disjoint from the zero set of f , the result
follows.

One is interested in knowing when the converse of Proposition 1.2 holds. In view
of Example 1.1, we are mainly interested in the case where the zero set of f has non-

empty intersection with K .

We fix some terminology. Given f , g1, . . . , gs ∈ A, and setting

K = {p ∈ V | gi(p) ≥ 0, i = 1, . . . , s},

we say f satisfies BHC (boundary hessian conditions) at the point p in K if p is a

non-singular point of V and there is some 0 ≤ k ≤ d, where d := dim(V ), and
some 1 ≤ v1 < · · · < vk ≤ s such that gv1

, . . . , gvk
are part of a system of local

parameters at p, and the standard sufficient conditions for a local minimum of f |L at
p hold, where L is the subset of V defined by gv1

(x) ≥ 0, . . . , gvk
(x) ≥ 0. This means

that if t1, . . . , td are local parameters at p chosen so that ti = gvi
for i ≤ k, then

in the completion R[[t1, . . . , td]] of A at p, f decomposes as f = f0 + f1 + f2 + · · ·
(where f j is homogeneous of degree j in the variables t1, . . . , td with coefficients

in R), f1 = a1t1 + · · · + aktk with ai > 0, i = 1, . . . , k, and the quadratic form

f2(0, . . . , 0, tk+1, . . . , td) is positive definite.

Theorem 1.3 For any irreducible V ⊆ R
n, and any f , g1, . . . , gs ∈ A := R[V ], if f

satisfies BHC at each zero of f in K := {p ∈ V | gi(p) ≥ 0, i = 1, . . . , s} and the

quadratic module M in A generated by g1, . . . , gs is archimedean, then f ∈ M + ( f 2)

(and consequently, if we also assume f ≥ 0 on K, then f ∈ M).

Proof This follows from the proof of [9, Theorem 2.3].

We note also the following variant of Theorem 1.3.

Theorem 1.4 For any real closed field R and any irreducible V ⊆ Rn, and any

f , g1, . . . , gs ∈ A := R[V ], if f satisfies BHC at each zero of f in

K := {p ∈ V | gi(p) ≥ 0, i = 1, . . . , s},

then f ∈ M + ( f 2), where M denotes the quadratic preordering in A generated by

g1, . . . , gs.

Proof Consider the ideal J = (M + ( f 2))∩−(M + ( f 2)). As in the proof of [9, The-

orem 2.3], it suffices to show that A/ J has Krull dimension ≤ 0. For if this is the case,
then there are just finitely many minimal prime ideals over J, each corresponding

to a zero of f in K . Using the fact that f satisfies BHC at each zero of f in K , and

[9, Lemma 2.2], we see that f ∈ M + Ik holds for each such minimal prime I over J

and each k ≥ 1. By the Chinese Remainder Theorem, A/ J ∼=
∏

I A/(Ik + J) holds for

k sufficiently large. As in the proof of [9, Theorem 1.3], this implies f ∈ M + ( f 2).
So we fix a prime ideal I of A minimal subject to the condition I ⊇ J, and we try

to prove A/I ∼= R. Let L denote the quotient field of A/I. By [9, Lemma 1.2],

(M + I) ∩ −(M + I) = I, so M extends naturally to a proper preordering of L.
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Fix an ordering ≤ of L non-negative on this preordering, and let R′ denote the real
closure of L at ≤. We claim that Z(I) (the set of real zeros of I) is the Zariski closure

of Z(I) ∩ K . Fix any g ∈ A, g 6= 0 on Z(I). Then g /∈ I, so g 6= 0 in R′. Also gi ≥ 0 in
R′, i = 1, . . . , s. By the transfer principle, there exists p ∈ Z(I) such that p ∈ K and

g(p) 6= 0. This proves the claim.

See also [17, Remark 3.12]. On the other hand, the BHC assumption implies that

Z( f ) ∩ K is discrete, i.e., finite. Since Z(I) ⊆ Z( f ), this forces Z(I) ∩ K to be finite.

Thus the algebraic set Z(I) = Z(I) ∩ K is zero-dimensional. Since the prime ideal
I is real (because I = (M + I) ∩ −(M + I)), it follows that A/I is real and has Krull

dimension zero. By Hilbert’s Nullstellensatz, this implies A/I ∼= R.

Note. 1. There is no assumption in Theorem 1.4 that K is bounded or that f ≥ 0
on K .

2. There is no claim that Theorem 1.4 holds when M is just the quadratic module

generated by g1, . . . , gs. In fact, this is false in general (although it is true if R = R

and M is archimedean, or if dim(V ) ≤ 2).

Example 1.5 (i) Let M be the quadratic module in R[x, y, z] generated by x, y and
(1 + xy)(z − x2 − y2). The associated basic closed set K is defined by x ≥ 0, y ≥ 0,

z ≥ x2 + y2. One checks that z ≥ 0 on K , the unique zero of z in K occurs at

(0, 0, 0) and z satisfies BHC at (0, 0, 0). We claim that z /∈ M + (z2). For suppose
z = σ0 +σ1x +σ2 y +σ3(1 + xy)(z−x2 − y2) + hz2 with h ∈ R[x, y, z] and σi a sum of

squares in R[x, y, z]. Setting z = 0, this yields 0 = σ0+σ1x+σ2 y−σ3(1+xy)(x2 +y2),
where σi := σi(x, y, 0). A standard valuation-theoretic argument shows that the

quadratic module in the function field R(x, y) generated by x, y and −(1 + xy) is

proper, so this forces σi = 0, i.e., z2 divides σi , for each i. This, in turn, implies that
z2 divides z, a contradiction.

(ii) An even simpler example is obtained by looking at the quadratic module in
R[x, y, z] generated by x, y and −(1 + xy). In this example, K is the empty set and

z /∈ M + (z2).

An advantage of Theorem 1.4 over Theorem 1.3 is that it yields degree bounds for

presentations f = σ + h f 2, σ ∈ M, h ∈ R[V ].

Corollary 1.6 Given positive integers n, d, δ, there exists a positive integer ℓ such that

for each real closed field R and each irreducible algebraic set V of dimension d in Rn

defined by polynomial equations hi = 0, i = 1, . . . , t, where hi ∈ R[x] has degree ≤ δ,

and each basic closed set K in V defined by polynomial inequalities g j ≥ 0, j = 1, . . . , s,

and each f , where f , g1, . . . , gs ∈ R[V ] are represented by polynomials of degree ≤ δ, if

f satisfies BHC at each zero of f in K, then f has a presentation f = σ+h f 2, where σ is

a sum of terms of the form w2gi1
· · · gik

, k ≥ 0, 1 ≤ i1 < · · · < ik ≤ s, where w ∈ R[V ]

is represented by a polynomial of degree ≤ ℓ.

Proof This follows using the standard ultraproduct argument. We sketch the proof.

If the result is false, then there are positive integers n, d, δ such that for each pos-

itive integer ℓ there is a real closed field Rℓ, an irreducible algebraic set Vℓ in Rn
ℓ of

dimension d defined by polynomial equations hiℓ = 0, i = 1, . . . , t , deg(hiℓ) ≤ δ,
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a basic closed semialgebraic set Kℓ in Vℓ defined by polynomial inequalities g jℓ ≥ 0,
j = 1, . . . , s, deg(g jℓ) ≤ δ, and a polynomial fℓ with deg( fℓ) ≤ δ, such that fℓ satis-

fies BHC at each zero of fℓ in Kℓ. But fℓ has no presentation fℓ = σℓ + hℓ f 2
ℓ where σℓ

has a presentation as a sum of terms w2gi1ℓ · · · gikℓ with deg(w) ≤ ℓ.

Consider an ultraproduct R =
∏

ℓ Rℓ/U where U is a non-principal ultrafilter on

N. Define hi, g j , f in R[x] in the obvious way, by patching together the hiℓ (resp.
g jℓ, resp. fℓ) coefficientwise. Define V ⊆ Rn to be the algebraic set defined by the

polynomial equations hi = 0 and K ⊆ V to be the basic closed semialgebraic set in

V defined by the inequalities g j ≥ 0. One checks that V is irreducible, dim(V ) =

d, every zero of f in K is a non-singular point of V , and f satisfies BHC at each

such zero. It follows from Theorem 1.4 that f has a presentation f = σ + h f 2 with
σ, h ∈ R[x], σ a sum of terms w2gi1

· · · gik
. Take σℓ, hℓ and the wℓ to be the associated

elements of Rℓ[x] for each ℓ. Then the set of ℓ such that fℓ = σℓ + hℓ f 2
ℓ and σℓ is

the sum of the corresponding terms w2
ℓgi1ℓ · · · gikℓ belongs to the ultrafilter U (so, in

particular, there are arbitrarily large ℓ in this set). Since the wℓ have bounded degree,

(since deg(wℓ) ≤ deg(w)) this contradicts our assumptions.

The bound implied by Corollary 1.6 is purely theoretical in nature. There is no

claim that this bound is in any sense “good”.

Before continuing on, we pause to consider briefly the overall relationship between
the various conditions discussed so far:

(i) f satisfies BHC at each zero of f in K .
(ii) f ∈ M + ( f 2).

(iii) The closed set {p ∈ K | f (p) ≥ 0} is (relatively) open in K , (i.e., it is a union

of connected components of K).
(iv) Every zero of f in K is a local minimum of f on K .

Here, V is assumed to be irreducible, and M is the quadratic preordering generated
by g1, . . . , gs. By Theorem 1.4 (i) ⇒ (ii). By Remark 1.2 (ii) ⇒ (iii) ⇔ (iv). Of

course, (iv) ⇒ (i) is false in general but, at the same time, it seems clear intuitively

that (iv) ⇒ (i) is true “with high probability”.

2 Application to Global Optimization

Fix f ∈ R[x] and denote by I the gradient ideal of f in R[x], i.e., the ideal in R[x]

generated by the partial derivatives
∂ f
∂xi

, i = 1, . . . , n. In [10, Theorem 3.1] it was
shown that if f achieves a minimum value f∗ on Rn and the ideal I is radical, then

f − f∗ ∈ ∑
R[x]2+I. (Actually, the result [10] is stated only in the case R = R, but the

proof given carries through for any real closed R.) Using Theorem 1.4 one can show
that this same conclusion can be obtained with a somewhat different hypothesis.

Theorem 2.1 Suppose f ∈ R[x] achieves a minimum value f∗ on Rn and that the

matrix (
∂2 f

∂xi∂x j
(p)) is positive definite for each minimum point p of f on Rn. Then

f − f∗ ∈ ∑
R[x]2 + I, where I denotes the gradient ideal of f in R[x].

Example 2.2 The polynomial f (x) = 6x2 + 8x3 + 3x4 satisfies the hypothesis of

Theorem 2.1 but its gradient ideal is not radical. The polynomial f (x, y) = x2 does
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not satisfy the hypothesis of Theorem 2.1, but its gradient ideal is radical.

Suppose deg( f ) = m, f = f0 + f1 + · · · + fm, fi homogeneous of degree i. As in
[8, §5], we say f is stably bounded below on Rn if f remains bounded from below on

Rn for all sufficiently small perturbations of the coefficients of f (equivalently, if fm

is positive definite).

Later, we show that the set of polynomials stably bounded below on Rn and satis-

fying the hypotheses of Theorem 2.1 is open and dense in the set of all polynomials

stably bounded below on Rn; see Theorem 4.4. In concrete terms, this means that
one might expect the hypothesis of Theorem 2.1 to hold rather frequently.

Proof of Theorem 2.1 Replacing f by f − f∗, we reduce to the case f∗ = 0. As

explained [10, Theorem 3.3], there are (complex) algebraic sets Wi , i = 0, . . . , t and

corresponding ideals Ji , i = 0, . . . , t in R[x] such that Wi is the set of complex zeros
of Ji ,

⋂t
i=0 Ji = I, Ji + J j = (1) for i 6= j (so the Chinese Remainder Theorem

applies), W0 has no real points, and Wi has a real point and f is constant on Wi for

i = 1, . . . , t . We may assume f (Wi) = νi with ν1 > · · · > νt = 0. As explained [10],
there exists σi ∈

∑
R[x]2 such that f ≡ σi mod Ji for i = 0, . . . , t − 1. It remains

to show the same holds for i = t . By Theorem 1.4, f = σ + h f 2, i.e., f (1 − h f ) = σ,
for some σ ∈ ∑

R[x]2 and some h ∈ R[x]. Since f = 0 on Wt , f m ∈ Jt for some

positive integer m. It follows from this that 1 − h f is a unit and a square modulo Jt .

Multiplying the equation f (1 − h f ) = σ by the inverse of 1 − h f modulo Jt , this
yields σt ∈

∑
R[x]2 satisfying f ≡ σt mod Jt as required.

Remark 2.3. The proof of Theorem 2.1 shows that if f ≥ 0 on Z(I), then f ∈
∑

R[x]2+I+( f 2) if and only if f ∈
∑

R[x]2+I. This is similar in form to Scheiderer’s
main theorem [20] (if f ≥ 0 on K , then f ∈ M + ( f 2) if and only if f ∈ M), taking

K = the set of real zeros of I and M =
∑

R[x]2 + I. But there is no requirement here

that the real closed field R be the field of real numbers or that the basic closed set K

be compact.

As in the case of Theorem 1.4, there is a result on degree bounds to accompany
Theorem 2.1.

Corollary 2.4 Given positive integers n, δ, there exists a positive integer ℓ such that,

for each real closed field R and for each polynomial f ∈ R[x] of degree ≤ δ, if f achieves

a minimum value f∗ on Rn, and the matrix (
∂2 f

∂xi∂x j
(p)) is positive definite for each min-

imum point p of f on Rn, then f − f∗ = σ +
∑n

i=1 hi
∂ f
∂xi

, where σ ∈ ∑
R[x]2 and

h1, . . . , hn ∈ R[x], have degree bounded by ℓ.

Proof The proof here is even simpler than the proof of Corollary 1.6, and will be
omitted.

We remark that since [10, Theorem 3.1] is valid for any real closed field, and since

the hypothesis is expressible in terms of first order formulas, one also has degree
bounds in this case. In either case, the degree bounds are purely theoretical in nature.

If I is radical and the set of complex zeros of I is finite, then one has concrete degree

bounds as described [11].
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Example 3.4 of [10] shows that even if f is stably bounded from below on R
n and

the set of complex zeros of the gradient ideal I is finite, the conclusion of Theorem 2.1

(or of [10, Theorem 3.3]) does not hold in general, without some extra hypothesis
on f . At the same time, and in contrast to this, [10, Theorem 3.5] shows that for any

f , if f is strictly positive on Z(I), then f is a sum of squares modulo I. If f is strictly

positive on the set of real zeros of I and the set of complex zeros of I is finite, then as
explained in [6, Theorem 23], one can compute degree bounds for the presentation

f ≡ σ mod I, σ a sum of squares, using Gröbner basis techniques.

We remark that the assumption that f achieves a minimum value on R
n is restric-

tive. The minimum value of f on Z(I) need not equal the infimum of f on R
n, e.g.,

consider f (x, y) = x2 + (xy − 1)2. In [23] it was explained how the algorithm in [10]
can be modified to handle the case where f is bounded from below on R

n but does

not achieve a minimum value on R
n.

3 Degree Bounds in the Compact Case

We assume in this section that M is the quadratic preordering generated by g1, . . . , gs.
We assume that R = R and that K = {p ∈ V | gi(p) ≥ 0, i = 1, . . . , s} is compact.

Scheiderer proved that if dim(K) ≥ 2, there is no degree bound for the degree of a
presentation of an element f ∈ M depending only on n, V , g1, . . . , gs and the degree

of f [18]. Prestel proved that if f > 0 on K , then there is a degree bound for the

presentation of f as an element of M depending only on n, V , g1, . . . , gs, the degree

of f and
‖ f‖

f∗
, where ‖ f ‖ is the norm of f and f∗ is the minimum value of f on K

[13, Theorem 1] [22, Theorem 3].
We assume f ≥ 0 on K and that f has some fixed presentation f = σ + h f 2

with σ ∈ M, h ∈ A. By Scheiderer [20], this implies f ∈ M. We establish degree

bounds for the presentation of f as an element of M in terms of the degree of the
presentation of σ and and the degree and the norm of f and h. The key result is the

following variant of [4, Basic Lemma].

Lemma 3.1 For any real N > 0, there exist elements α, β in the preordering generated

by N − t and 1
2

+ t in the polynomial ring R[t] such that 1 = αt + β(1 + t). Moreover,

α and β can be chosen so each term in their presentations has degree ≤ k, where k is the

least integer ≥ ln 2
ln(1+1/2N)

.

Note that for any reasonably large N, ln 2
ln(1+ 1

2N
)
≈ 2 ln 2 · N ≈ 1.4N.

Proof Clearly 1 = (1−rt)(1+t)+(−1+r(1+t))t for any r. Take r =
1
N

∑k−1
i=0 ( N−t

N
)i ,

α = 1 − rt , β = −1 + r(1 + t), where k is the least integer ≥ ln 2
ln(1+1/2N)

. Note that

α = 1 − rt = 1 − rN
(

1 − N − t

N

)

= 1 −
(

1 −
( N − t

N

) k)

=

( N − t

N

) k

,

so α has the required form. Also, if t 6= 0, then r =
1−α

t
, so

β = −1 + r(1 + t) = −1 +
(1 + t)(1 − α)

t
=

1 − (1 + t)α

t
=

1 − (1 + t)( N−t
N

)k

t
.
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By [4, Theorem 4.1], it suffices to show that β ≥ 0 on the closed interval [− 1
2
, N].

Let γ = 1− (1 + t)( N−t
N

)k. Clearly γ(0) = 0. The definition of k implies γ(− 1
2
) ≤ 0.

Computing the derivative of γ, we see that γ is decreasing on (−∞,− k−N
k+1

] and in-

creasing on [− k−N
k+1

, N]. The definition of k implies k > N. It follows that γ ≤ 0 on
[− 1

2
, 0] and γ ≥ 0 on [0, N], so β ≥ 0 on [− 1

2
, N].

Combining Lemma 3.1 with [22, Theorem 3] yields the following.

Corollary 3.2 Suppose V is an algebraic set in R
n, K is a compact subset of V defined

by inequalities gi ≥ 0, i = 1, . . . , s, f ≥ 0 on K, and f has a presentation f = σ + h f 2,

σ ∈ M, h ∈ R[V ], where M denotes the quadratic preordering in R[V ] generated by

g1, . . . , gs. Then there exists an integer ℓ ≥ 1 depending only on n, V , g1, . . . , gs, the

degree and the norm of f and h and the degree of the presentation of σ as an element

of M, such that f has a presentation as a sum of terms of the form w2gi1
. . . gik

, k ≥ 0,

1 ≤ i1 < · · · < ik ≤ s, where w ∈ R[V ] is represented by a polynomial of degree

≤ 1
2
(ℓ − ∑k

j=1 δi j
).

Proof Write f as f = σ + h f 2
= σ + (m + h) f 2 − m f 2

= σ ′ − m f 2 where σ ′ :=

σ + (m + h) f 2. We know that m + h ∈ M for m > 0 sufficiently large. Then m and
the degree of the presentation of m + h depend on n, V , g1, . . . , gs and the norm and

the degree of h. Similarly, we have N −m f ∈ M for N > 0 sufficiently large. Choose
α, β in the preordering in R[m f ] generated by N −m f and 1

2
+m f , as in Lemma 3.1,

so that 1 = αm f + β(1 + m f ). Then

f = αm f 2 + β f (1 + m f ) = αm f 2 + βσ ′.

Since 1
2

+ m f is ≥ 1
2

on K , 1
2

+ m f belongs to M, so this yields a presentation of f as

an element of M. The degrees of the presentations of α and β in terms of N − m f

and 1
2

+ m f depend on N as in Lemma 3.1. The degree of the presentation of 1
2

+ m f

is bounded using [22, Theorem 3].

Note that one might expect to have bounds on the degree of the presentation of
σ and on the degree of h using Corollary 1.6. Unfortunately, one does not expect to

have much control over the norm of h in general.

4 Likelihood of BHC

We assume here that V is an irreducible algebraic set in Rn, d := dim(V ), and K is the

basic closed semialgebraic set in V defined by g1 ≥ 0, . . . , gs ≥ 0, g1, . . . , gs ∈ R[V ].
We deal with the case where the following condition holds for each point p of K :

(∗) p is a non-singular point of V and there exist 0 ≤ k ≤ d and 1 ≤ v1 < · · · <
vk ≤ s such that gv1

, . . . , gvk
is part of a system of local parameters at p and, in a

neighbourhood of p in V , K is defined by the k inequalities gv1
≥ 0, . . . , gvk

≥ 0.

Note: (∗) is not a condition on K . rather, it is a condition on the particular pre-

sentation g1 ≥ 0, . . . , gs ≥ 0 of K .
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Lemma 4.1 Suppose p ∈ K is a non-singular point of V , u1, . . . , ud is a system of

local parameters at p with ui ≥ 0 on K, i = 1, . . . , ℓ, and f ∈ R[V ] decomposes as

f = a0 + a1u1 + · · · + aℓuℓ +
∑d

i, j=1 ai juiu j + · · · with ai > 0, i = 1, . . . , ℓ and
∑

i, j>ℓ ai juiu j positive definite. Suppose t1, . . . , td is another system of local parameters

at p such that K is defined locally at p by ti ≥ 0, i = 1, . . . , k. Then ℓ ≤ k and, after

reindexing t1, . . . , tk suitably, f = b0 + b1t1 + · · · + bℓ ′tℓ ′ +
∑d

i, j=1 bi jtit j + · · · with

bi > 0, i = 1, . . . , ℓ ′ and
∑

i, j>ℓ ′ bi jtit j positive definite, for some ℓ ≤ ℓ ′ ≤ k.

Proof Say uν = rν1t1 + · · · + rνdtd +
∑d

i, j=1 rνi jtit j + · · · , ν = 1, . . . , ℓ. Since uν has

a local minimum on K at p, rνi = 0 for i > k and rνi ≥ 0 for i ≤ k. Reindexing

t1, . . . , tk suitably, we can assume that for i > ℓ ′, rνi = 0 for each ν and, for i ≤ ℓ ′,
rνi > 0 for some ν and that u1, . . . , uℓ, tℓ+1, . . . , td is a system of local parameters at

p. Since the hypothesis does not depend on how u1, . . . , uℓ is completed to a system

of parameters at p, we can assume ui = ti for i > ℓ. The linear part of f (as a power

series in t1, . . . , td) is b1t1 + · · · + bℓ ′tℓ ′ where bi =
∑ℓ

ν=1 aνrνi > 0, i = 1, . . . , ℓ ′.
∑

i, j>ℓ ′ bi jtit j is the quadratic part of the power series in tℓ ′+1, . . . , td obtained from

the power series of f by setting t1 = · · · = tℓ ′ = 0. It is easy to see that this is just
∑ℓ

ν=1 aν

∑

i, j>ℓ ′ rνi jtit j +
∑

i, j>ℓ ′ ai jtit j . Since ℓ ′ ≥ ℓ, the second term is positive

definite. Also
∑

i, j>ℓ ′ rνi jtit j is positive semidefinite for each ν (since uν has a local

minimum on K at p) and aν > 0, so the first term is positive semidefinite. This

proves
∑

i, j>ℓ ′ bi jtit j is positive definite.

Denote by Pm,n the set of all polynomials of degree ≤ m in n variables x1, . . . , xn

with coefficients in the real closed field R. This is a finite dimensional vector space
over R and, as such, has natural Euclidean topology. The same holds true for the

image of Pm,n in R[V ] under the natural map R[x] → R[V ]. For what we do here,

we could work either with Pm,n or with the image of Pm,n in R[V ].

Lemma 4.2 If f ∈ Pm,n satisfies BHC at some point p in K satisfying (∗), then for

any f ∈ Pm,n sufficiently close to f and any q ∈ K sufficiently close to p, if f has a local

minimum at q, then f satisfies BHC at q.

Proof By (∗) we have local parameters t1, . . . , td at p such that K is defined locally at

p by t1 ≥ 0, . . . , tk ≥ 0, where {t1, . . . , tk} is some subset of {g1, . . . , gs}, k ≥ 0. By

Lemma 4.1, f = a0 + a1t1 + · · · + aℓtℓ +
∑d

i, j=1 ai jtit j + · · · with ai > 0, 1 ≤ i ≤ ℓ,
∑

i, j>ℓ ai jtit j positive definite, 0 ≤ ℓ ≤ k. Since q is close to p, q is a non-singular

point of V , δi := ti(q) is close to 0, and t ′1, . . . , t ′d is a system of local parameters at

q, where t ′i := ti − δi . Say f = b0 + b1t ′1 + · · · + bdt ′d +
∑d

i, j=1 bi jt
′
i t ′j + · · · . Since f

is close to f and q is close to p, bi is close to ai and bi j is close to ai j . In particular,

bi > 0 for 1 ≤ i ≤ ℓ and
∑

i, j>ℓ bi jt
′
i t ′j is positive definite. Since q ∈ K , δi ≥ 0,

i = 1, . . . , k. Since f has a local minimum on K at q, bi = 0 if i > k, bi = 0 for
all 1 ≤ i ≤ k with δi > 0 and bi ≥ 0 for all 1 ≤ i ≤ k with δi = 0. Reindexing

tℓ+1, . . . , tk we can assume bi > 0 and δi = 0 for i = 1, . . . , ℓ ′ and bi = 0 for i > ℓ ′,
ℓ ≤ ℓ ′ ≤ k. Since t ′i = ti ∈ {g1, . . . , gs}, i = 1, . . . , ℓ ′ and

∑

i, j>ℓ ′ bi jt
′
i t ′j is positive

definite (since ℓ ′ ≥ ℓ) the result is now clear.
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Lemma 4.3 Suppose f ∈ Pm,n achieves its minimum on K at a point p ∈ K and that

(∗) holds at p. Then there exists g ∈ P2,n such that g(p) = 0, g(q) > 0 for q ∈ K ,

q 6= p, and f + δg satisfies BHC at p for each δ > 0.

Proof Choose a system of local parameters t1, . . . , td at p so that K is defined locally

at p by t1 ≥ 0, . . . , tk ≥ 0, t1, . . . , tk ∈ {g1, . . . , gs}. Since f has a minimum at p, f =

a0+a1t1+· · ·+aktk+
∑d

i, j=1 ai jtit j+· · · with ai ≥ 0,
∑

i, j>k ai jtit j positive semidefinite.
Choose local generators td+1, . . . , tn for the ideal I(V ) at p so that t1, . . . , tn is a system

of local parameters at p in Rn. Making a suitable affine change in coordinates, we can
assume p = 0, ti = xi+ terms of degree ≥ 2 for i = 1, . . . , n. It is easy to see that for

ǫ > 0 sufficiently close to zero, the open sphere with center

(−ǫ, . . . ,−ǫ
︸ ︷︷ ︸

k times

, 0, . . . , 0
︸ ︷︷ ︸

d − k times

,−ǫ, . . . ,−ǫ
︸ ︷︷ ︸

n − d times

)

and radius ǫ
√

n − d + k has empty intersection with the set K . Take g = 2ǫ
∑

j≤k x j +

2ǫ
∑

j>d x j + ‖x‖2. Viewed as a power series in t1, . . . , td in the natural way, g has

the form g = 2ǫ
∑k

i=1 ti +
∑d

i=1 t2
i + ǫ

∑d
i, j=1 tit j for some bi j ∈ R (coming from the

degree 2 parts of the various xi−ti). Since the quadratic form
∑

i>k t2
i +ǫ

∑

i, j>k bi jtit j

is positive definite for ǫ sufficiently close to 0, the result is clear.

If K is bounded, every f ∈ Pm,n achieves a minimum value on K . Since we would

also like to say something in the case when K is unbounded, we must restrict a bit the
sort of elements of Pm,n that we consider, in general. We consider the following two

sets:

Bm,K := { f ∈ Pm,n | ∃N, ǫ > 0 such that ∀x ∈ K, ‖x‖ ≥ N ⇒ f (x) ≥ ǫ‖x‖m}
Cm,K := { f ∈ Bm,K | f satisfies BHC at each minimum of f on K}.

The set Bm,K consists of all f ∈ Pm,n which remain bounded below on K for small

perturbations of the coefficients of f . This is straightforward to check. If K is
bounded, then Bm,K = Pm,n. If K = V = Rn, then Bm,K consists of all polynomials

of degree m in Pm,n which are stably bounded below on Rn in the sense of [8, §5] (so
Bm,K = ∅ if m is odd).

Theorem 4.4 The set Bm,K is open in Pm,n. If V is irreducible and (∗) holds at each

point p of K, then the set Cm,K is open in Pm,n. If, in addition, m ≥ 2, then Cm,K is dense

in Bm,K .

Proof Suppose f ∈ Bm,K . Thus we have N, ǫ > 0 such that x ∈ K , ‖x‖ ≥ N ⇒
f (x) ≥ ǫ‖x‖m. Write f as f (x) =

∑

|α|≤m aαxα where xα := xα1

1 . . . xαn
n , |α| :=

α1 + · · · + αn. Suppose g =
∑

α bαxα with |bα − aα| ≤ δ for each α where

δ :=
ǫ

2
∑m

i=0 ni
.
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Then for x ∈ K , ‖x‖ ≥ max{1, N},

g(x) = f (x) +
∑

α

(bα − aα)xα ≥ f (x) −
∑

α

|bα − aα| · |xα|

≥ f (x) − δ
∑

α

|xα| ≥ f (x) − δ

m∑

i=0

(|x1| + · · · + |xn|)i

≥ f (x) − δ

m∑

i=0

ni‖x‖i ≥ f (x) − δ

m∑

i=0

ni‖x‖m

≥
(

ǫ − δ

m∑

i=0

ni
)

‖x‖m
=

ǫ

2
‖x‖m.

This proves that Bm,K is open. Each f ∈ Bm,K achieves a minimum on K at some

point p ∈ K (assuming K 6= ∅). The last assertion is clear from this, using Lem-
ma 4.3. It remains to check that Cm,K is open. Fix f ∈ Cm,K . Replacing f by f − f∗
where f∗ := the minimum value of f on K , we may assume f∗ = 0. Since f satisfies
BHC at each minimum point, f has only finitely many minimum points in K , say

p1, . . . , pk are the minimum points. By Lemma 4.2 we have an open ball Bi about pi

such that, for g ∈ Pm,n sufficiently close to f , g satisfies BHC at each minimum point
of g in K ∩ Bi . We also have N, ǫ > 0 such that ∀x ∈ K , ‖x‖ ≥ N ⇒ f (x) ≥ ǫ‖x‖m.

We may assume N ≥ 1. Let B denote the closed ball centered at the origin with

radius N. Let δ > 0 be the minimum value of f on K ∩ (B\⋃k
i=1 Bi). Choose

g ∈ Pm,n so close to f that g(p1) < min{ǫ/2, δ/2}, g(x) ≥ δ/2 on K ∩ (B\⋃k
i=1 Bi),

g(x) ≥ (ǫ/2)‖x‖m on K\B, and g satisfies BHC at each minimum point of g in

K ∩ (
⋃k

i=1 Bi). Then each minimum of g on K occurs in some Bi , so g satisfies BHC

at each minimum point.

Corollary 4.5 Suppose V is irreducible, K is bounded, and (∗) holds at each point p

of K . Then the set

Cm,K := { f ∈ Pm,n | f satisfies BHC at each minimum of f on K}

is open and dense in Pm,n (assuming m ≥ 2).

Corollary 4.6 Let

Bm,n := { f ∈ Pm,n | deg( f ) = m, f is stably bounded below on Rn},
Cm,n := { f ∈ Bm,n | BHC holds at each minimum point of f on Rn}.

Then Cm,n is open and dense in Bm,n.

In view of Theorem 1.3, Corollary 4.5 says something about the likelihood of

f − f∗ ∈ M holding, where f∗ denotes the minimum value of f on K and M denotes

the quadratic module in R[V ] generated by g1, . . . , gs. Of course, the hypothesis (∗)
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of Corollary 4.5 applies in a wide variety of cases. For example, it holds if V = Rn and
K is the closed ball defined by ‖x‖ ≤ 1 or the hypercube [−1, 1]n (with the obvious

presentation).
Similarly, Corollary 4.6 says something about the likelihood of f − f∗ ∈

∑
R[x]2 + I holding, where I is the gradient ideal of f and f∗ is the minimum value

of f on Rn, given that f is stably bounded below on Rn.

5 Bounds Which Ensure a Non-Empty Feasible Set

Fix f ∈ R[x]. Set

f∗ = inf{ f (p) | p ∈ R
n}, fsos = sup

{
λ | λ ∈ R, f − λ ∈ ∑

R[x]2
}

.

Decompose f as f = f0 + · · · + fm where fi is homogeneous of degree i, fm 6= 0.
Assume m > 0. A necessary condition for f∗ 6= −∞ is that (m is even and) fm is

positive semidefinite. A sufficient condition for f∗ 6= −∞ is that f is stably bounded
from below on R

n, i.e., that fm is positive definite. Moreover, in this situation, f

achieves a minimum value on R
n.

Clearly fsos ≤ f∗. If n = 1, m = 2, or n = 2 and m = 4, then fsos = f∗. For all
other choices of n and m there exists f such that fsos < f∗. This was known already to

Hilbert in 1888. One would like to know how closely fsos approximates f∗ in general.

As a first step, one would at least like to know when fsos 6= −∞, i.e., when there exists
λ ∈ R such that f − λ is a sum of squares.

Denote by Πm,n the set of all positive semidefinite forms of degree m in x1, . . . , xn

and by Σm,n the subset of Πm,n consisting of all elements of Πm,n which are sums of

squares. Then Πm,n and Σm,n are closed cones in the R-vector space consisting of all

forms of degree m in the variables x1, . . . , xn.

Proposition 5.1 A necessary condition for fsos 6= −∞ is that fm is a sum of squares.

A sufficient condition for fsos 6= −∞ is that fm is an interior point of the cone Σm,n.

Example 5.2 (i) The Motzkin polynomial f = 1− 3x2y2 + x4 y2 + x2 y4 satisfies
f∗ = 0, fsos = −∞ and f6 = x4 y2 + x2 y4 ∈ Σ6,2. This shows that the necessary

condition on Proposition 5.1 is not sufficient.

(ii) If f = (x − y)2, then f∗ = fsos = 0 and f2 = (x − y)2 is a boundary point of
Σ2,2. This shows that the sufficient condition in Proposition 5.1 is not necessary.

(iii) Let f = 1 − 3x2 y2 + x4 y2 + x2 y4 + ǫ(x6 + y6), ǫ > 0. Here, f∗ =
ǫ

1+ǫ . Since
f6 = x4 y2 +x2 y4 +ǫ(x6 + y6) is an interior point of the cone Σ6,2, fsos 6= −∞. Observe

however that fsos → −∞ as ǫ → 0. For, if this were not the case, then there would

be some real number N such that for any choice of ǫ > 0, f + N is a sum of squares.
Letting ǫ → 0, this would contradict the conclusion in (i).

Regarding interior points of Σm,n, we make use of the following.

Proposition 5.3 (i) Suppose f is an interior point of Σm,n and g ∈ Σm,n. Then g is

an interior point of Σm,n if and only if g − ǫ f ∈ Σm,n for some real ǫ > 0.

(ii) (x2
1 + · · · + x2

n)m/2 and xm
1 + · · · + xm

n are interior points of Σm,n.
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Remark 5.4. In [12], f∗ is approximated by computing fsos in a large number of ran-
dom instances with fm = xm

1 + · · · + xm
n . Since xm

1 + · · · + xm
n is an interior point

of Σm,n, Proposition 5.1 explains why −∞ was never obtained as an output in these
computations. (But it does not explain the high degree of accuracy that was observed,

which is still a bit of a mystery.)

We sketch proofs of Proposition 5.1 and Proposition 5.3.

Proof of Proposition 5.3 Let m = 2k. The proof of (i) is trivial. To show p :=

(x2
1 + · · ·+ x2

n)k is an interior point of Σm,n we must show that if we modify p by terms
of degree m the form bxα, with |b| sufficiently small, we remain in Σm,n. Now p is a

sum of terms axα, where a is positive and xα is a square (of a monomial of degree k)

and, furthermore, all such terms appear in the expansion of p. Thus the result is clear
for terms of the form bxα where xα is a square. If xα is not a square, write xα

= xβxγ

where xβ , xγ have degree k, and use the identity ±2xα
= (xβ ± xγ)2 − (x2β + x2γ).

Lemma 5.5 x2k
0 − 1

2k−1 (
∑n

i=0 x2
i )k + (

∑n
i=1 x2

i )k is a sum of squares.

Proof Dehomogenizing, we can assume x0 = 1. Let

H(t) = 1 − 1

2k−1
(1 + t)k − tk.

Then H(t) has minimum value 0 on the interval [0,∞), which occurs at t = 1. Thus

H(t) ∈ ∑
R[t]2 +

∑
R[t]2t . Substituting t = x2

1 + · · · + x2
n yields the result we

want.

Using Lemma 5.5 and induction on n, one checks easily that xm
1 + · · · + xm

n −
ǫ(

∑n
i=1 x2

i )k is a sum of squares, where

ǫ :=
1

2(k−1)(n−1)
.

According to Proposition 5.3(1), this implies that xm
1 + · · · + xm

n is also an interior
point of Σm,n.

Proof of Proposition 5.1 The first assertion is trivial. Suppose f has degree m = 2k

and fm is an interior point of Σm,n. For each term cxα of degree < m appearing in f

where xα is not a square, write xα
= xβxγ where xβ has degree < k and xγ has degree

≤ k. If xβ , xγ both have degree < k, write cxα as
|c|
2

(xβ ± xγ)2 − |c|
2

(x2β + x2γ). If xγ

has degree k, write cxα as
|c|
2

( 1
δ xβ ± δxγ)2 − |c|

2
( 1

δ2 x2β + δ2x2γ), where δ > 0 is close

to zero. In this way, one is reduced to the case where xα is a square for each term cxα

of degree < m appearing in f . Write fm as fm = g + ǫ(
∑n

i=1 x2
i )k, g ∈ Σm,n, ǫ > 0.

Scaling suitably, we can assume ǫ = 1. Lemma 5.5 implies that the polynomial

(5.1) x2k
0 − 1

2k−1 − 1

k−1∑

i=1

(
k

i

)

x2i
0 (x2

1 + · · · + x2
n)k−i + (x2

1 + · · · + x2
n)k

is a sum of squares. Taking x0 to be a real number which is so large that the coeffi-

cients of the monomials in x1, . . . , xn coming from the middle term of (5.1) (these are
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negative numbers) are ≤ the coefficients of the corresponding monomials appearing
in f , and using the fact that (5.1) is a sum of squares, we see that f − f0 + xm

0 is a sum

of squares.

We now explain how Proposition 5.1 combines with [15, Theorem 3.12] to yield
degree bounds which ensure the existence of feasible solutions for the optimization

method described in [10]. We use notation from [15]. If p is a form of (even) degree
m in n variables, with coefficients in R,

ǫ(p) :=
inf{p(u) | u ∈ Sn−1}
sup{p(u) | u ∈ Sn−1} .

Corollary 5.6 Suppose f ∈ R[x] is stably bounded from below on R
n, deg( f ) =

m > 0, and r > nm(m−1)
(4 log 2)ǫ( fm)

− n+m
2

. Then there exist h1, . . . , hn ∈ R[x] of degree

≤ 2r + 1 and λ ∈ R such that f +
∑n

i=1 hi
∂ f
∂xi

− λ ∈ ∑
R[x]2.

Proof Decompose p := fm as p = p + δ(
∑n

i=1 x2
i )m/2, δ > 0. For δ close to zero, the

form p is positive definite. By [15, Theorem 3.12], (
∑n

i=1 x2
i )r p is a sum of squares

for r ≥ nm(m−1)
(4 log 2)ǫ(p)

− n+m
2

. Since ǫ(p) → ǫ(p) as δ → 0, this proves that (
∑n

i=1 x2
i )r p

is an interior point of Σm+2r,n, for r as in the statement of Corollary 5.6. Combining

this with the fact that the highest degree term of 1
m

∑n
i=1 xi

∂ f
∂xi

is precisely p, we see

that the highest degree term of

f = f +
(( n∑

j=1

x2
j

) r

− 1
) 1

m

n∑

i=1

xi
∂ f

∂xi

is an interior point of Σm+2r,n. The result follows now by applying Proposition 5.1 to
the polynomial f , and taking hi =

1
m

xi((
∑n

j=1 x2
j )

r − 1).

One might suspect that the bound given by Corollary 5.6 is not the best possible.

At the same time, it is not clear, to the author at least, how one can improve on it in
general. Of course, if p is an interior point of Σm,n, we can take r = 0.

If the set of complex zeros of the gradient ideal of f is finite, there is a simpler
bound.

Corollary 5.7 Assume the set of complex zeros of the gradient ideal I of f is finite,

and let e be the least even integer ≥ m such that, for each i = 1, . . . , n, xe
i is a linear

combination of monomials of degree < e modulo I. Then there exists h ∈ I of degree e

and λ ∈ R such that f + h − λ ∈
∑

R[x]2.

Proof By assumption, there exists g ∈ R[x] of degree < e such that
∑n

i=1 xe
i + g ∈

I. The highest degree term of f = f +
∑n

i=1 xe
i + g − 1

m

∑n
i=1 xi

∂ f
∂xi

is
∑n

i=1 xe
i ,

which is an interior point of Σe,n, by Proposition 5.3. The result follows by applying

Proposition 5.1 to the polynomial f , taking h =
∑n

i=1 xe
i + g − 1

m

∑n
i=1 xi

∂ f
∂xi

.
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In particular cases, one can compute the integer e using Gröbner basis techniques.
The bound in Corollary 5.7 may be better than the bound in [6, Theorem 23] in

certain cases (e.g., if fm =
∑n

i=1 xm
i , then e = m) but, at the same time, of course,

the conclusion of Corollary 5.7 is considerably weaker than the conclusion in [6,

Theorem 23].

We now turn our attention to the optimization method in the compact case de-

scribed in [5]. Again, we look for degree bounds which ensure the existence of feasi-

ble solutions. We begin with the special case where the compact set in question is the
closed ball defined by the single inequality

∑n
i=1 x2

i ≤ N.

Proposition 5.8 Suppose f ∈ R[x], deg( f ) = m, and N > 0. Then there exists

λ ∈ R and σ, τ ∈ ∑
R[x]2 such that f − λ = σ + τ(N − ∑n

i=1 x2
i ), where σ and

τ(N −
∑n

i=1 x2
i ) each have degree ≤ m (resp. m + 1) if m is even (resp. if m is odd).

Proof Let f =
∑

aαxα, where xα := xα1

1 · · · xαn
n . The construction of λ, σ, and τ is

completely algorithmic. Let λ = −P where

P :=
∑

α

|aα|(
√

N)α1+···+αn ,

and α runs through all indices such that xα is not a perfect square and aα 6= 0, or xα is
a perfect square and aα < 0. Replacing the variables x1, . . . , xn by y1, . . . , yn, where

yi =
xi√
N

, we are reduced to proving the result when N = 1. Clearly it suffices to

consider the case where f is itself a monomial, say f = axα. We can assume further

that either xα is a non-square and a = ±1 or xα is a square and a = −1. One makes

use of the identity

1 − x2
j =

∑

i 6= j

x2
i +

(

1 −
n∑

i=1

x2
i

)

.

To handle the case where xα is a square, use the identity

1 − u2v2
=

1

2
(1 + u2)(1 − v2) +

1

2
(1 − u2)(1 + v2),

and induction on m. To reduce from the case where xα is not a square to the case

where xα is a square, use the identity

1 ± uv =
1

2
(u ± v)2 +

1

2
(1 − u2) +

1

2
(1 − v2),

where u and v have the same degree if m is even, and deg(u) = deg(v) + 1 if m is odd.
The details are left to the reader.

Finally we consider the case where the compact set K in question is defined by

finitely many polynomial inequalities gi ≥ 0, i = 1, . . . , s. If we assume the asso-

ciated quadratic module is archimedean, then we have a relation N −
∑n

i=1 x2
i =
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σ0 + σ1g1 + · · · + σsgs, for some N > 0, where the σi are sums of squares. Applying
Proposition 5.8, this yields

f − λ = σ + τ
(

N −
n∑

i=1

x2
i

)

= (σ + τσ0) + (τσ1)g1 + · · · + (τσi )gi .

We have good degree bounds on σ and τ , given by Proposition 5.8, but since the de-
grees of the σi may be large, the overall degree bound obtained in this way may not be

good. Of course, one way to get around this (and at the same time to ensure that the

quadratic module is archimedean) is to simply add the inequality N −
∑n

i=1 x2
i ≥ 0

to our description of K .
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