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We stabilize the flow past a cluster of three rotating cylinders – the fluidic pinball – with
automated gradient-enriched machine learning algorithms. The control laws command
the rotation speed of each cylinder in an open- and closed-loop manner. These laws
are optimized with respect to the average distance from the target steady solution
in three successively richer search spaces. First, stabilization is pursued with steady
symmetric forcing. Second, we allow for asymmetric steady forcing. And third, we
determine an optimal feedback controller employing nine velocity probes downstream.
As expected, the control performance increases with every generalization of the search
space. Surprisingly, both open- and closed-loop optimal controllers include an asymmetric
forcing, which surpasses symmetric forcing. Intriguingly, the best performance is achieved
by a combination of phasor control and asymmetric steady forcing. We hypothesize that
asymmetric forcing is typical for pitchfork bifurcated dynamics of nominally symmetric
configurations. Key enablers are automated machine learning algorithms augmented with
gradient search: explorative gradient method for the open-loop parameter optimization
and a gradient-enriched machine learning control (gMLC) for the feedback optimization.
Gradient-enriched machine learning control learns the control law significantly faster than
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previously employed genetic programming control. The gMLC source code is freely
available online.

Key words: flow control, machine learning, wakes

1. Introduction

We stabilize the wake behind a fluidic pinball using a hierarchy of model-free self-learning
control methods from a one-parametric study of open-loop control to a gradient-enriched
machine learning feedback control. Flow control is at the heart of many engineering
applications. Traffic alone profits from flow control via drag reduction of transport vehicles
(Choi, Jeon & Kim 2008), lift increase of wings (Semaan et al. 2016), mixing control for
more efficient combustion (Dowling & Morgans 2005) and noise reduction (Jordan &
Colonius 2013).

The control logic is a critical component for performance increases after the actuators
and sensors have been deployed. The hardware is typically determined from engineering
wisdom (Cattafesta & Shelpak 2011). The control law may be designed with a rich arsenal
of mathematical methods. Control theory offers powerful methods for control design with
large success for model-based stabilization of low-Reynolds-number flows or simple first-
and second-order dynamics (Rowley & Williams 2006). Transport-related engineering
applications are at high Reynolds numbers and, thus, associated with turbulent flows.
So far, turbulence has eluded most attempts for model-based control albeit for a few
simple exceptions (Brunton & Noack 2015). Examples relate to first- and second-order
dynamics, e.g. the quasi-steady response to quasi-steady actuation (Pfeiffer & King 2012),
opposition control near walls (Choi, Moin & Kim 1994; Fukagata & Nobuhide 2003),
stabilizing phasor control of oscillations (Pastoor et al. 2008) and two-frequency crosstalk
(Glezer, Amitay & Honohan 2005; Luchtenburg et al. 2009). In general, control design
is challenged by the high dimensionality of the dynamics, the nonlinearity with many
frequency crosstalk mechanisms and the large time delay between actuation and sensing.

Hence, most closed-loop control studies of turbulence resort to a model-free approach.
A simple example is extremum seeking (Gelbert et al. 2012) for online tuning of one or few
actuation parameters, like amplitude and frequency of periodic actuation. More complex
examples involve high-dimensional parameter optimization with methods of machine
learning, such as evolutionary strategies (Koumoutsakos, Freund & Parekh 2001) and
genetic algorithms (Benard et al. 2016). Even regression problems for nonlinear feedback
laws have been learned by genetic programming (Ren, Hu & Tang 2020) and reinforcement
learning (Rabault et al. 2019).

Genetic programming control (GPC) has been pioneered by Dracopoulos (1997) over
20 years ago and has been proven to be particularly successful for nonlinear feedback
turbulence control in experiments. Examples include the drag reduction of the Ahmed
body (Li et al. 2018) and the same obstacle under yaw angle (Li et al. 2019), mixing
layer control (Parezanović et al. 2016), separation control of a turbulent boundary layer
(Debien et al. 2016), recirculation zone reduction behind a backward facing step (Gautier
et al. 2015) and jet mixing enhancement (Zhou et al. 2020), just to name a few.
Genetic programming control has consistently outperformed existing optimized control
approaches, often with unexpected frequency crosstalk mechanisms (Noack 2019). Genetic
programming control has a powerful capability to find new mechanisms (exploration)
and populate the best minima (exploitation). Yet, the exploitation is inefficient leading
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to increasing redundant testing of similar control laws with poor convergence to the
minimum. This challenge is well known and will be addressed in this study.

As a benchmark control problem, we chose the fluidic pinball, the flow around three
parallel cylinders one radius apart from each other (Noack et al. 2016; Chen et al. 2020;
Deng et al. 2020). The triangle of centres points in the direction of the flow. The actuation
is performed by rotating each cylinder independently. The flow is monitored by nine
velocity probes downstream. The control goal is the complete stabilization of the unstable
symmetric steady Navier–Stokes solution. This choice is motivated by several reasons.
First, already the unforced fluidic pinball shows a surprisingly rich dynamics. With
increasing Reynolds number the steady wake becomes successively unstable in a Hopf
bifurcation, a pitchfork bifurcation, another Hopf bifurcation before, eventually, a chaotic
state is reached. Second, the cylinder rotations may encapsulate the most common wake
stabilization approaches, such as Coanda forcing (Geropp & Odenthal 2000), base bleed
(Wood 1964; Bearman 1967), low-frequency forcing (Pastoor et al. 2008), high-frequency
forcing (Thiria, Goujon-Durand & Wesfreid 2006), phasor control (Roussopoulos 1993)
and circulation control (Cortelezzi, Leonard & Doyle 1994). Third, the rich unforced and
controlled dynamics mimics nonlinear behaviour of turbulence while the computation of
the two-dimensional flow is manageable on workstations. To summarize, the fluidic pinball
is an attractive all-weather plant for non-trivial multiple-input multiple-output (MIMO)
control dynamics.

This study focuses on the stabilization of the unstable symmetric steady solution of
the fluidic pinball in the pitchfork regime, i.e. for asymmetric vortex shedding. This goal
is pursued under symmetric steady actuation, general non-symmetric steady actuation
and general nonlinear feedback control. We aim to physically explore the actuation
mechanisms in a rich search space and to efficiently exploit the performance gains
from gradient-based approaches. This multi-objective optimization leads to innovations
of hitherto employed parameter optimizations and regression solvers as a beneficial side
effect.

The manuscript is organized as follows. Section 2 introduces the fluidic pinball problem
and the corresponding direct numerical simulation. Section 3 reviews and augments
machine learning control strategies. In § 4 a hierarchy of increasingly more complex
control laws is optimized for wake stabilization. Section 5 discusses design aspects of
the proposed methodology. Section 6 summarizes the results and indicates directions for
future research.

2. The fluidic pinball – a benchmark flow control problem

In this section we describe the fluid system studied for the control optimization – the fluidic
pinball. First we present the fluidic pinball configuration and the unsteady two-dimensional
Navier–Stokes solver in § 2.1, then the unforced flow spatio-temporal dynamics in § 2.2
and finally the control problem for the fluidic pinball in § 2.3.

2.1. Configuration and numerical solver
The test case is a two-dimensional uniform flow past a cluster of three cylinders of same
diameter D. The centre of the cylinders form an equilateral triangle pointing upstream.
The flow is controlled by the independent rotation of the cylinders along their axis. The
rotation of the cylinders enables the steering of incoming fluid particles, like a pinball
machine. Thus, we refer to this configuration as the fluidic pinball. In our study we choose
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the side length of the equilateral triangle equal to 1.5D. The distance of one radius gives
rise to an interesting flip-flopping dynamics (Chen et al. 2020).

The flow is described in a Cartesian coordinate system, where the origin is located
midway between the two rearward cylinders. The x-axis is parallel to the streamwise
direction and the y-axis is orthogonal to the cylinder axis. The velocity field is denoted
by u = (u, v) and the pressure field by p. Here, u and v are, respectively, the streamwise
and transverse components of the velocity. We consider a Newtonian fluid of constant
density ρ and kinematic viscosity ν. For the direct numerical simulation, the unsteady
incompressible viscous Navier–Stokes equations are non-dimensionalized with cylinder
diameter D, the incoming velocity U∞ and the fluid density ρ. The corresponding
Reynolds number is ReD = U∞D/ν. Throughout this study, only ReD = 100 is considered.

The computational domain Ω is a rectangle bounded by [−6, 20] × [−6, 6] and
excludes the interior of the cylinders,

Ω = {[x, y]ᵀ ∈ R2 : [x, y]ᵀ ∈ [−6, 20] × [−6, 6] ∧ (x − xi)
2

+ ( y − yi)
2 ≥ 1/4, i = 1, 2, 3}. (2.1)

Here [xi, yi]ᵀ, with i = 1, 2, 3, are the coordinates of the cylinder centres, starting from
the front cylinder and numbered in a mathematically positive direction,

x1 = −3/2 cos(30◦), y1 = 0,

x2 = 0, y2 = −3/4,

x3 = 0, y3 = 3/4.
(2.2)

The computational domain Ω is discretized on an unstructured grid comprising 4225
triangles and 8633 nodes. The grid is optimized to provide a balance between computation
speed and accuracy. Grid independence of the direct Navier–Stokes solutions has been
established by Deng et al. (2020).

The boundary conditions for the inflow, upper and lower boundaries are U∞ = ex while
a stress-free condition is assumed for the outflow boundary. The control of the fluidic
pinball is carried out by the rotation of the cylinders. A non-slip condition is adopted on
the cylinders: the flow adopts the circumferential velocities of the front, bottom and top
cylinder specified by b1 = UF, b2 = UB and b3 = UT . The actuation command comprises
these velocities, b = [b1, b2, b3]ᵀ. A positive (negative) value of the actuation command
corresponds to counter-clockwise (clockwise) rotation of the cylinders along their axis.
The numerical integration of the Navier–Stokes equations is carried out by an in-house
solver using a fully implicit finite-element method. The time integration is performed with
an iterative Newton–Raphson-like approach. The chosen time step of 0.1 corresponds to
about 1 % of the characteristic shedding period. The method is third-order accurate in time
and space and employs a pseudo-pressure formulation. The solver has been employed in
recent fluidic pinball investigations for reduced-order modelling (Noack et al. 2016; Deng
et al. 2020) and for control (Ishar et al. 2019). We refer to Noack et al. (2003, 2016) for
further information on the numerical method. The code is accessible on GitLab upon email
request.

The initial condition for the numerical simulations is the symmetric steady solution. The
symmetrical steady solution is computed with a Newton–Raphson method on the steady
Navier–Stokes. An initial short and small rotation of the front cylinder is used to kick-start
the transient to natural vortex shedding in the first period (Deng et al. 2020). This rotation
has a circumferential velocity of +0.5 at t < 6.25 and of −0.5 at 6.25 < t < 12.5. The
transient regime lasts around 400 convective time units. Figure 1 shows the vorticity field
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(a)

Symmetric steady solution Unforced flow at t = 400

(b)

Figure 1. Vorticity fields for the unforced fluidic pinball at ReD = 100. Blue (red) regions bounded by dashed
lines represent negative (positive) vorticity. Darker regions indicate higher values of vorticity magnitude. (a)
Symmetric steady solution, (b) unforced flow at t = 400.

for the symmetric steady solution and the natural unforced flow after 400 convective units.
The snapshot at t = 400 in figure 1(b) will be the initial condition for all the following
simulations.

2.2. Flow characteristics
The fluidic pinball is a geometrically simple configuration that comprises key features
of real-life flows such as successive bifurcations and frequency crosstalk between
modes. Deng et al. (2020) shows that the unforced fluidic pinball undergoes successive
bifurcations with increasing Reynolds number before reaching a chaotic regime. The
first Hopf bifurcation at Reynolds number Re ≈ 18 breaks the symmetry in the flow and
initiates the von Kármán vortex shedding. The second bifurcation at Reynolds number
Re ≈ 68 is of a pitchfork type and gives rise to a transverse deflection of jet-like flow
between the two rearward cylinders. The bistability of the jet deflection has been reported
by Deng et al. (2020). At a Reynolds number Re = 100, the jet deflection is rapid and
occurs before the vortex shedding is fully established. Figure 2(a) shows an increase of
the lift coefficient CL before oscillations set in and the lift coefficient converges against
a periodic oscillation around a slightly reduced mean value. Those bifurcations are a
consequence of multiple instabilities present in the flow: there are two shear instabilities,
on the top and bottom cylinder, and a jet bistability originating from the gap between
the two back cylinders. The shear-layer instabilities synchronize to a von Kármán vortex
shedding.

Figure 2 illustrates the dynamics of the unforced flow from the unstable steady
symmetric solution to the post-transient periodic flow. The phase portrait in figure 2(b)
and the power spectral density (PSD) in figure 2(d) show a periodic regime with frequency
f0 = 0.116 and its harmonic. Figure 2(a) shows that the mean value of the lift coefficient
CL is not null. This is due to the deflection of the jet behind the two rearward cylinders
during the post-transient regime. During this regime, the deflection of the jet stays on
one side as it is illustrated in figure 3(a–h) over one period and in figure 3( j) in the
mean field. This deflection explains the asymmetry of the lift coefficient CL. Indeed, the
upward oriented jet increases the pressure on the lower part of the top cylinder leading
to an increase of the lift coefficient. In figure 2(a) the initial downward spike on the lift
coefficient is due to the initial kick. The unforced natural flow is our reference simulation
for future comparisons.

Thanks to the rotation of the cylinders, the fluidic pinball is capable of reproducing six
actuation mechanisms inspired from wake stabilization literature and exploiting distinct
physics. Examples of those mechanisms can be found in Ishar et al. (2019). First, the
wake can be stabilized by shaping the wake region more aerodynamically – also called
fluidic boat tailing. Here, the shear layers are vectored towards the centre region with
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Figure 2. Characteristics of the unforced natural flow starting from the steady solution (t = 0). The transient
spans until t ≈ 400. (a) Time evolution of the lift coefficient CL, (b) phase portrait, (c) time evolution of the
instantaneous cost function ja and (d) power spectral density (PSD) showing the natural frequency f0 = 0.116
and its first harmonic. The phase portrait is computed during the post-transient regime t ∈ [900, 1400] and the
PSD is computed over the last 1000 convective time units, t ∈ [400, 1400].

passive devices, such as vanes (Flügel 1930) or active control through Coanda blowing
(Geropp 1995; Geropp & Odenthal 2000; Barros et al. 2016). In the case of the fluidic
pinball we can mimic this effect by using counter-rotating rearward cylinders which
accelerate the boundary layers and delay separation. This fluidic boat tailing is typically
associated with significant drag reduction. Second, the two rearward cylinders can also
rotate oppositely ejecting a fluid jet on the centreline. Thus, interaction between the upper
and lower shear layer is suppressed, preventing the development of a von Kármán vortex
in the vicinity of the cylinders. Such a base bleeding mechanism has a similar physical
effect as a splitter plate behind a bluff body and has been proved to be an effective
means for wake stabilization (Wood 1964; Bearman 1967). Third, phasor control can be
performed by estimating the oscillation phase and feeding it back with a phase shift and
gain (Protas 2004). Fourth, unified rotation of the three cylinders in the same direction
gives rise to higher velocities, and, thus, larger vorticity, on one side at the expense of the
other side, destroying the vortex shedding. This effect relates to the Magnus effect and
stagnation point control (Seifert 2012). Fifth, high-frequency forcing can be effected by
symmetric periodic oscillation of the rearward cylinders. With a vigorous cylinder rotation
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t + T0/8 t + 2T0/8

t + 3T0/8 t + 4T0/8

t + 5T0/8 t + 6T0/8

t + 7T0/8 t + T0

Symmetric steady solution Mean field

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

Figure 3. Vorticity fields of the unforced flow. (a)–( f ) Time evolution of the vorticity field in the last period
of the simulation, (i) the objective symmetric steady solution and ( j) the mean field of the unforced flow. The
colour code is the same as figure 1. Here T0 is the natural period associated to the natural frequency f0. The
mean field has been computed by averaging the flow over 100 periods.

(Thiria et al. 2006), the upper and lower shear layers are re-energized, reducing the
transverse wake profile gradients and, thus, the instability of the flow. Thus, the effective
eddy viscosity in the von Kármán vortices increases, adding a damping effect. Sixth
and finally, a symmetrical forcing at a lower frequency than the natural vortex shedding
may stabilize the wake (Pastoor et al. 2008). This is due to the mismatch between the
anti-symmetric vortex shedding and the forced symmetric dynamics whose clock-work
is distinctly out of sync with the shedding period. High- and low-frequency forcing lead
to frequency crosstalk between actuation and vortex shedding over the mean flows, as
described by the low-dimensional generalized mean-field model (Luchtenburg et al. 2009).

The fluidic pinball is an interesting MIMO control benchmark. The configuration
exhibits well-known wake stabilization mechanisms in physics. From a dynamical
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perspective, nonlinear frequency crosstalk can easily be enforced. In addition, even
long-term simulations can easily be performed on a laptop within an hour.

2.3. Control objective and optimization problem
Several control objectives related to the suppression or reduction of undesired forces can
be considered for the fluidic pinball. We can reduce the net drag power, increase the
recirculation bubble length, reduce lift fluctuations or even mitigate the total fluctuation
energy.

In this study we aim to stabilize the unstable steady symmetric Navier–Stokes solution
at ReD = 100. The associated objectives are Ja, quantifying the closeness to the symmetric
steady solution and Jb, the actuation power. The cost Ja is defined as the temporal
average of the residual fluctuation energy of the actuated flow field ub with respect to
the symmetric steady flow us,

Ja = 1
Tev

ˆ t0+Tev

t0
ja(t) dt, (2.3)

with the instantaneous cost function

ja(t) = ‖ub(t) − us‖2
Ω (2.4)

based on the L2-norm

‖u‖Ω =
√¨

Ω

u2 + v2 dx. (2.5)

The control is activated at t0 = 400 convective time units after the starting kick on the
steady solution. Thus, we have a fully established post-transient regime. The cost function
is evaluated until Tev = 1400 convective time units. Thus, the time average is effected
over 1000 convective time units to make sure that the transient regime has far less weight
as compared with the actuated regime. Yet, a faster stabilizing response to actuation is
clearly desirable and factors positively into the cost.

Here Jb is naturally chosen as a measurement of the actuation energy investment.
Evidently, a low actuation energy is desirable. The actuation power is computed as the
power of the torque applied by the fluid on the cylinders. Here Jb is the time-averaged
actuation power over Tev = 1000 time units,

Jb(b) = 1
Tev

ˆ t0+Tev

t0

3∑
i=1

Pact,i dt, (2.6)

where Pact,i is the actuation power supplied integrated over cylinder i,

Pact,i = −
‹

biFθ
s,i ds, (2.7)

where (Fθ
s,i ds) is the azimuthal component of the local fluid forces applied to cylinder i.

The negative sign denotes that the power is supplied and not received by the cylinders.
The numerical value of Jb may be compared with the unforced drag coefficient cD = 3.75
which is also the non-dimensionalized parasitic drag power.

In this study optimization is based on the cost function J = Ja and the actuation
investment Jb is evaluated separately. We refrain from a cost function J which employs
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the objective function Ja and penalizes the actuation investment Jb with suitable weight
γ , i.e. J = Ja + γ Jb. The procedure has three reasons. First, the distance between two
flows and actuation energy belong to two different worlds, kinematics and dynamics.
Any choice of the penalization parameter γ will be subjective and implicate a sensitivity
discussion. Moreover, a strong penalization would constrain the search space and may rule
out relevant actuation mechanisms. In this study we look for stabilization mechanisms
rather than the most power-efficient solutions. Second, the complete stabilization of the
steady solution would lead to a vanishing actuation b ≡ 0 and, thus, vanishing energy
Jb. Thus, the optimization problem without actuation energy can be expected to be well
posed. Third, a Pareto front of Ja, Jb reveals how much actuation power is required for
which closeness to the steady solution. Using Pareto optimality, there is no need to decide
in advance on the subjective weight γ . Foreshadowing the results, the best performance
Ja turns out to be achieved with the least actuation energy Jb. This result corroborates a
posteriori the decision not to include actuation energy in the cost.

The instantaneous cost function ja of the unforced flow is shown in figure 2(c). We notice
a slight overshoot around t = 200 before converging to a post-transient fluctuating regime.
The post-transient regime shows the expected periodic behaviour from von Kármán vortex
shedding. The cost averaged over 1000 convective time units is J0 = 39.08 and serves as
reference to actuation success.

To reach the steady symmetric solution, the flow is controlled by the rotation of the
three cylinders. The actuation command b = [b1, b2, b3]ᵀ is determined by the control
law K . This control law may operate open loop or closed loop with flow input. Considered
open-loop actuations are a steady or harmonic oscillation around a vanishing mean.
Considered feedback includes velocity sensor signals in the wake. Thus, in the most
general formulation, the control law reads as

b(t) = K(h(t), s(t)), (2.8)

with h(t) and s(t) being vectors comprising respectively time-dependent harmonic
functions and sensor signals. The sensor signals include the instantaneous velocity signals
as well as three recorded values over one period as elaborated in § 4.3. In the following,
Nb represents the number of actuators, Nh the number of time-dependent functions and
Ns the number of sensor signals. Then the optimal control problem determines the control
law which minimizes the cost

K∗ = arg min
K∈K

J(K), (2.9)

with K : X �→ Y being the space of control laws. Here, X is the input space, e.g. the
space of sensor signals, and Y is the space of all possible outputs. In general, (2.9) is a
challenging non-convex optimization problem.

3. Control optimization framework

In this section we present the control optimization for stabilizing the fluidic pinball.
This constitutes a challenging nonlinear non-convex optimization problem in which the
possibility of several local minima must be expected. Hence, we specifically address
how to explore new minima while keeping the convergence rate and efficiency of
gradient-based approaches. In § 3.1 the principles of exploration and exploitation are
discussed for parameter and control law optimization. Then, the employed algorithms
are described: the explorative gradient method (EGM) for parametric optimization (§ 3.2)
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and the gradient-enriched machine learning control (gMLC) for control law optimization
(§ 3.3).

3.1. Optimization principles – exploration vs exploitation
The two algorithms, EGM and gMLC, enable model-free control optimization. These
algorithms combine the advantages of exploitation and exploration. Exploitation is based
on a downhill simplex method with the best performing of all tested control laws, also
called ‘individuals’. The goal is to ‘slide down’ the best identified minimum.

Exploration is performed with another algorithm using all previously tested individuals.
The goal is to find potentially new and better minima, ideally the global minimum. The
method for exploration depends on the search space. For a low-dimensional parameter
space, a space-filling version of the Latin hypercube sampling (LHS) guarantees optimal
geometric coverage of the search space. For a high-dimensional function space, genetic
programming is found to be efficient.

The EGM and gMLC start with an initial set of individuals to be evaluated. Then,
exploitive and explorative phases iterate until a convergence criterion is reached. The
iteration hedges against several worst-case scenarios. The control landscape may have
only a single minimum accessible from any other point by steepest descend. In this
case, exploration is often inefficient, although it might help in avoiding slow marches
through long shallow valleys (Li et al. 2020). The control landscape may also have
many minima accessible by gradient-based searches. In this case, exploitation is likely to
incrementally improve performance in suboptimal minima and the search strategy should
have a significant investment in exploration. The minima of the control landscape may also
have narrow basins of attractions for gradient-based iterations and extended plateaus. This
is another scenario where iteration between exploitation and exploration is advised.

Many optimizers balance exploration and exploitation and gradually shift from the
former to the latter. This strategy sounds reasonable but is not a good hedge against
the described worst-case scenarios where almost all exploitative or almost all explorative
algorithms are doomed to fail.

Note that the chances of exploration landing close to a new better minimum are small.
Yet, the explorative phases may find new basins of attractions for successful gradient-based
descents. This is another argument for the alternating execution of exploration and
exploitation.

Finally, we note that the proposed explorative–exploitive schemes allows both kinds of
iterations to be adjusted to the control landscape. For instance, LHS in a high-dimensional
search space will initially explore only the boundary and may better be replaced by Monte
Carlo or a genetic algorithm. We refer to Li et al. (2020) for a thorough comparison of
EGM and five common optimizers and to Duriez, Brunton & Noack (2016) for GPC. The
next two sections detail both optimizers, EGM and gMLC.

3.2. Parameter optimization with the EGM
The EGM optimizes Np parameters b = [b1, . . . , bNp]ᵀ with respect to cost J(b) and
comprises exploration and exploitation phases. In the context of parameter optimization,
we do not differentiate between the control law K = const. and the associated actuation
command b = K . The search space, or actuation domain, is a compact subset B of R

Np ,
typically defined by upper and lower bounds for each parameter. The exploration phase
is based on a space-filling variant of LHS (McKay, Beckman & Conover 1979) whereas
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Stabilization of the fluidic pinball with gMLC

the exploitation phase is carried out by Nelder–Mead’s downhill simplex (Nelder & Mead
1965).

The first Np + 1 initial individuals bm, m = 1, . . . , Np + 1 define the first ‘amoeba’ of
the downhill simplex method. The first individual b1 is typically placed at the centre of B.
The Np remaining vertices are slightly displaced along the bm axes. In other words, bm =
b1 + hmem−1 for m = 2, . . . , Np + 1. Here, em := [δm,1, . . . , δm,Np]ᵀ is the unit vector in
the mth direction and hm is the corresponding step size. The increment hm is chosen to be
small compared with the range of the corresponding dimension.

The exploitation phase employs the downhill simplex method. This method is robust
and widely used for data-driven optimization in low- and moderate-dimensional search
spaces that require neither analytical expression of the cost function nor local gradient
information. The new individual is a linear combination of the simplex individuals and
follows a geometric reasoning. The vertex with the worst performance is replaced by a
point reflected at the centroid of the opposite side of the simplex. This step leads to a
mirror-symmetric version of the simplex where the new vertex has the best performance
if the cost function depends linearly on the input. Subsequent operations like expansion,
single contraction and global shrinking ensure that iterations exploit a favourable downhill
behaviour and avoid getting stuck by nonlinearities. We refer to Li et al. (2020) for a
detailed description.

The explorative phase of EGM is inspired by the LHS method. Latin hypercube
sampling aims to fill the complete domain B optimally. The predefined number m of
individuals maximizes the minimum distance of its neighbours,

{bLHS
1 , . . . , bLHS

m } := arg max
b1,...,bm∈B

min
i∈{1,...,m−1},
j∈{i+1,...,m}

‖bi − bj‖. (3.1)

Here, ‖ · ‖ denotes the Euclidean norm. The number of individuals has to be determined
in advance and cannot be augmented. This static feature is incompatible with the iterative
nature of the EGM algorithm. Thus, we resort to a recursive ‘greedy’ version. Let b•

1 be
the first individual. Then, b•

2 maximizes the distance from b•
1,

b•
2 := arg max

b∈B
‖b − b•

1‖. (3.2)

The mth individual maximizes the minimum distance to all previous individuals,

b•
m := arg max

b∈B
min

i∈{1,...,m−1}
‖b − b•

i ‖. (3.3)

This recursive definition allows for adding explorative phases from any given set of
individuals.

Exploitation and exploration are iteratively continued until the stopping criterion
is reached. In our study, the stopping criterion is the total number of cost function
evaluations, i.e. a given budget of simulations. This criterion is validated after the run
by checking the convergence of the performance. The EGM phases are summarized in
algorithm 1.

3.3. Multiple-input multiple-output control optimization with gMLC
In this section we cure a challenge of linear GPC – the suboptimal exploitation of gradient
information. Starting point is machine learning control (MLC) based on linear genetic
programming (LGP). Machine learning control optimizes a control law without assuming
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Algorithm 1: Explorative Gradient Method
Result: b∗, the best individual

Initialize the Np + 1 individuals of the dataset BI ;
Test all the individuals;
Build the simplex S by taking the Np + 1 best individuals;
while Stopping criterion is not reached do

Exploration phase – LHS
Select bLHS by solving:

bLHS := arg max
b∈B

min
bi∈BI

‖b − bi‖

Test bLHS;
Augment dataset: BI := BI ∪ {bLHS} ;
Update simplex: replace the worst individual of S by bLHS if bLHS performs

better;
end
Exploitation phase – Downhill simplex

Sort and relabel S such as: JS
1 ≤ JS

2 ≤ . . . ≤ JS
Np+1;

Compute the centroid c = 1
Np

∑Np
i=1 bi of S excluding bNp+1;

Reflection: compute and test br := c + (c − bNp+1);
if JS

1 < JS
r < JS

Np+1 then
Update simplex: bNp+1 := br;

else if JS
r < JS

1 then
Expansion: compute and test be := c + 2 (c − bNp+1) ;
Update simplex: bNp+1 := min {br, be};

else if JS
Np+1 ≤ JS

r then
Contraction: compute and test bc := 1/2 (c + bNp+1);
if JS

c < JS
Np+1 then

Update simplex: bNp+1 := bc;
else

Shrink: compute and test bs,i := 1/2 (b1 + bi), i = 2, . . . , Np + 1;
Update simplex: bi := bs,i, i = 2, . . . , Np + 1;

end
end
Augment dataset: add all the new individuals to BI ;

end
end

a polynomial or other structure of the mapping from input to output. The only assumption
is that the law can be expressed by a finite number of mathematical operations with a finite
memory, i.e. is computable. The optimization process relies on a stochastic recombination
of the control laws, also called evolution. Machine learning control has been amazingly
efficient in outperforming existing optimal control laws – often with surprising frequency
crosstalk mechanisms – in dozens of experiments (Noack 2019). Machine learning control
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Stabilization of the fluidic pinball with gMLC

demonstrates a good exploration of actuation mechanisms but a slow convergence to an
optimum despite an increasing testing of redundant similar control laws.

The proposed gMLC departs in two aspects from MLC. First, the concept of evolution
from generation to generation is not adopted. The genetic operations include all tested
individuals. One can argue that the neglection of previous generations might imply loss
of important information. Second, the exploitation is accelerated by downhill subplex
iteration (Rowan 1990). The best k + 1 individuals are chosen to define a k-dimensional
subspace and a downhill simplex algorithm optimizes the control law in this subspace.

Machine learning control and gMLC share a representation of the control laws used
for LGP (Brameier & Banzhaf 2006). The individuals are considered as little computer
programs, using a finite number Ninst of instructions, a given register of variables and a set
of constants. The instructions employ basic operations (+, −, ×, ÷, cos, sin, tanh, etc.)
using inputs (hi time-dependent functions and si sensor signals) and yielding the control
commands as outputs. A matrix representation conveniently comprises the operations of
each individual. Every row describes one instruction. The first two columns define the
register indices of the arguments, the third column the index of the operation and the
fourth column the output register. Before execution, all registers are zeroed. Then, the first
registers are initialized with the input arguments, while the output is read from the last
registers after the execution of all instructions. This leads to a Ninst × 4 matrix representing
the control law K . We refer to Li et al. (2018) for details.

The algorithm begins with a Monte Carlo (MC) initialization of NMC individuals, i.e.
the indices of the matrix. The cost of these randomly generated functions are evaluated in
the plant. The number of individuals NMC needs to balance exploration and cost. Too few
individuals may lead to descent into a suboptimal local minimum. Too many individuals
may lead to unnecessary inefficient testing, as Monte Carlo sampling is purely explorative.

Once the initial individuals are evaluated, an exploration phase is carried out. New
individuals are generated thanks to crossover and mutation operations. Thus, this phase
is also referred to as the evolution phase. These operations are performed on the matrix
representation of the individuals. As for MLC, crossover combines two individuals by
exchanging lines in their matrix representation, whereas mutation randomly replaces
values of some lines by new ones. In this approach, we no longer consider a population but
the database of all the individuals evaluated so far. Thus, we no longer need the replication
and elitism operators of MLC. This choice is justified by the fact that we want to learn
as much as possible from what we already know and avoid re-evaluating individuals. To
perform the crossover and mutation operation, individuals are selected from the database
thanks to a tournament selection. A tournament selection of size 7 for a population of
100 individuals is used in Duriez et al. (2016). That means that for a population of 100
individuals, 7 individuals are selected randomly and among the 7, the best one is chosen
for the crossover or mutation operation. For gMLC, as the individuals are selected among
all the evaluated individuals, the tournament size is properly scaled at each call to preserve
the 7/100 ratio between the tournament size and the size of the database. The crossover
and mutation operation are repeated randomly following Pc, the crossover probability, and
Pm, the mutation probability, until NG individuals are generated. The probabilities Pc and
Pm are such that Pm + Pc = 1.

Once the evolution phase is achieved, NG new individuals are generated thanks to
downhill subplex iterations. Being in an infinite dimension function space, Nelder–Mead’s
downhill simplex is impractical as an exploitation tool. Thus, we propose a variant
of downhill simplex inspired by Rowan (1990), commonly called downhill subplex. Just
as downhill simplex, the strength of this approach is to exploit local gradients to explore
the search space. In the original approach of Rowan (1990), downhill simplex is applied
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to several orthogonal subspaces. However, in order to limit the number of cost function
evaluations, we apply downhill simplex to only one subspace. This subspace is initialized
by selecting Nsub individuals. Two ways to build the subspace after the Monte Carlo
process are listed below.

• Choose the best individual: select the best Nsub individuals evaluated so-far in the
whole database.

• Individuals near a minimum: select the best individual evaluated so-far and the
Nsub − 1 individuals closest to the best one.

The first approach has the benefit of comprising of several minima candidates, whereas
the second one is bound to lead to a minimum in the neighbourhood of the best individual
and relies on a given metric. Once the subspace is built, the next steps are similar to
the downhill simplex method. As subplex and simplex are essentially the same algorithm
applied to different spaces, we will not designate them differently.

Following the situation, downhill subplex may call 1 (only reflection), 2 (expansion
or single contraction) or Nsub + 1 (shrink) times the cost function. Several iterations of
downhill subplex are repeated until at least NG individuals are generated. In this study the
same number of individuals generated with the evolution phase and the downhill subplex
phase are chosen to balance exploration and exploitation.

If the stopping criterion is reached, the most efficient individual in the database is
given back. Otherwise, we restart a new cycle by generating new individuals with a
new evolution phase, combining and modifying individuals derived by evolution and
downhill subplex. However, the individuals built thanks to downhill subplex are a linear
combination of the original Nsub individuals. These new individuals do not have a matrix
representation which is necessary to generate new individuals with genetic operators in
the exploitation phase. To overcome this problem, we introduce a new phase to compute a
matrix representation for the linearly combined control laws. The matrix representation
is computed by solving a regression problem of the first kind, similar to a function
fitting problem, for all the linearly combined control laws. First, each control law K i is
evaluated on randomly sampled inputs srand. The resulting output K i(srand) is used to
solve a secondary optimization problem,

K∗
M = arg min

KM

‖(KM (srand) − K i(srand))‖2, (3.4)

where ‖ · ‖ denotes the Euclidean norm. This optimization problem is a function fitting
problem that we solve with LGP. The LGP parameters are the same as those used for the
gMLC so the computed individuals are compatible with the ones in the database. The
best fitting control law K∗

M then has a matrix representation and is used as a substitute
for the original linear combination of control laws. The substitutes are then employed for
the evolution phase even though they may not be perfect substitutes of the original control
laws. Indeed, following the stopping criterion and population size of the secondary LGP
optimization, the control law substitutes may not be able to reproduce all the characteristics
of the linearly combined control laws. An accurate but costly representation may not be
needed as the control laws will be recombined afterwards. Moreover, the introduction of
some error may be beneficial to improve the exploration phase and enrich our database.

Once the matrix representations are computed, a new cycle may begin with a new
evolution phase. In this phase, if any individual has a better performance than the
Nsub individuals in the simplex then the least performing individuals among the Nsub
individuals are replaced. Thus, each evolution phase replaces elements in the simplex,
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Control landscape Monte Carlo

individuals

Genetic programming

individuals
Downhill subplex

individuals

Subplex space

EXPLORATION

2) Evolution 3) Downhill subplex
Database

EXPLOITATION

1) Monte Carlo

Genetic operators Simplex iterations

Matrix reconstruction

(b)

(a)

Figure 4. Schematic of the gMLC algorithm (b) and distribution of individuals in the search space (a). First
(1), Monte Carlo initialization performs a first coarse exploration of the search space. Second (2), further
exploration is performed thanks to genetic programming. Individuals are selected in the whole dataset and
combined thanks to genetic operators to generate new individuals (blue dots). Then the database is augmented
with the new individuals. Third (3), exploitation focuses on a subspace (represented in yellow) of finite
dimension where downhill simplex iterations builds new individuals by linear combination (yellow dots). A
matrix representation is computed for the downhill subplex individuals thanks to LGP, allowing the downhill
subplex individuals to be included in the database.

allowing exploration beyond the initial subspace. Then, the optimization continues with
the exploitation phase on the updated Nsub individuals.

Figure 4 illustrates the initialization, exploration and exploitation of gMLC. The
exploration is based on LGP. Also the exploitation requires LGP. In the downhill
simplex method the individuals are linear combinations of the subplex basis and are
finally approximated as matrices. This process is repeated until the stopping criterion is
reached. The gMLC is summarized by pseudo code in algorithm 2. The source code is
freely available at https://github.com/gycm134/gMLC. Finally, figure 5 summarizes the
exploration and exploitation phases for EGM and gMLC.

4. Flow stabilization

In this section we stabilize the fluidic pinball with optimized control laws in increasingly
more general search spaces. First (§ 4.1), we consider symmetric steady actuation with a
parametric study reduced to one parameter b2 = −b3 = const. Then (§ 4.2), we optimize
steady actuation allowing also for non-symmetric forcing, i.e. three independent inputs
b1, b2, b3. Finally (§ 4.3), we optimize sensor-based feedback from nine downstream
sensor signals driving the three cylinder rotations. Evidently, the three search spaces are
successive generalizations.

917 A42-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/gycm134/gMLC
https://doi.org/10.1017/jfm.2021.301


G.Y. Cornejo and others

Algorithm 2: Gradient-enriched MLC
Result: K∗, the best individual

Monte Carlo initialization: generate NMC individuals;
Test all the individuals;
Build the subplex S by taking the Nsub best individuals;
while Stopping criterion is not reached do

Exploration phase – Evolution
Generate and test NG individuals from all the individuals evaluated so far

thanks to crossover and mutation;
Update subplex S: choose the Nsub best individuals among the new NG

individuals and the Nsub subplex individuals;
end
Exploitation phase – Downhill subplex

while The number of subplex individuals generated < NG do
Perform a downhill subplex iteration in the subspace spanned by linear

combinations of Nsub subplex control laws
(Downhill simplex method like in Algorithm 1);

end
Reconstruction phase – LGP

Compute a matrix representation for each new downhill subplex individual
(replace linearly combined individuals by matrices using LGP);

end
end

4.1. Symmetric steady actuation – parametric study
This section describes the behaviour of the fluidic pinball under a symmetric steady
actuation. In this configuration only the two rearward cylinders rotate at equal but opposite
rotation speeds, b2 = −b3. When b2 is positive, the rearward cylinders accelerate the outer
boundary layers and suck near-wake fluid upstream. This forcing delays separation, mimics
Coanda forcing and leads to a fluidic boat tailing. When b2 is negative, the cylinders eject
fluid in the near wake as in base bleed and oppose the outer boundary-layer velocities.
Figure 6 shows the evolution of Ja/J0 (a), Jb (b) and the bifurcation diagram (c) as a
function of b2.

We limited our study to b2 ∈ [−5, 6]. The trends are resolved with a discretization step
of 0.25 and a finer resolution in the ranges [−2.5, 0] and [1, 2]. For each parameter, the
cost Ja and actuation power Jb have been computed over 1000 convective time units. The
bifurcation diagram has been built by detecting the extrema of the lift coefficient over
the last 600 convective time units. The bifurcation diagram reveals the following five
regimes.

• Regime b2 < −4: the lift amplitude decreases to zero and the cost decreases to the
first minimum.

• Regime −4 < b2 < −2.5: the extremal lift values increase and decrease to zero
again. The cost approaches another local minimum near b ≈ −2.5.

• Regime −2.54 < b2 < 0: a period doubling cascade is observed for decreasing b2
leading to a chaotic regime. At b2 ≈ 0.375, the cost assumes its global minimum
with residual fluctuation of the lift coefficient.
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EGM gMLC

Parameter optimization Control law optimization

Monte Carlo (random sampling)Initial conditions

Latin hypercube sampling

Downhill simplex Downhill subplex

Evolution

Exploration

Exploitation

No

Yes

Converged ?
No

Yes

Converged ?

b* = min bii
K* = min Kii

Figure 5. Summary of the EGM (left column) and gMLC (right column). The level plots are a schematic
representation of the control landscape. Darker regions depict poor performances and light regions depict
good performances. Three minima are shown, two on the top left and the global one on the top right. The
map represents an affine space (of finite dimension) for EGM and a Hilbert function space for gMLC. The
initialization step is depicted with black diamonds for EGM and black dots for gMLC. The individuals
generated thanks to an exploration phase are represented by blue dots. Exploration is carried out with LHS
for EGM and evolution with genetic operators (crossover and mutation) for gMLC. The individuals generated
thanks to an exploitation phase are represented in yellow. For EGM, downhill simplex steps are carried out. The
associated level plot depicts one iteration of downhill simplex: the reflected individual (yellow triangle) and
the expanded individual (reversed yellow triangle), the star is the centroid of the two best black diamonds. For
gMLC, the simplex steps are carried out in a subspace (downhill subplex) of finite dimension. The associated
level plot depicts two distinct simplex steps: first, a reflection step (yellow triangle) with the two best black
dots and the best blue dot; then a contraction step (yellow diamond) with the same black dots and the newly
evaluated yellow triangle. The stars are the centroids for each step. This process is repeated until the stopping
criterion is reached. In this figure only one iteration of the loop is depicted. The reconstruction phase is not
depicted for the sake of clarity.

• Regime 0 < b2 < 2.375: the cost and the extremal lift values monotonically
increase.

• Regime 2.375 < b2: the Coanda forcing completely stabilizes a symmetric steady
solution. The cost increases with the rotation speed.

Interestingly, the boat tailing discontinuity at b2 = 2.375 does not appear in the graph of
the cost function Ja/J0. This continuity, even in the derivative, corresponds to a continuous
passage from a periodic symmetrical solution to a stationary solution which is itself
symmetrical. As the value of the cost function indicates, this stationary solution is quite
far from the unforced symmetric steady solution. The global minimum of Ja/J0 = 0.51 is
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Figure 6. Parametric study for symmetric steady forcing. The velocity of the bottom cylinder is b2 = −b3. The
normalized distance to the steady solution Ja/J0 (a) and the actuation power Jb (b) are plotted as a function
of b2. The bifurcation diagram (c) comprises all local maximum and minimum lift values. The vertical red
dashed line corresponds to b2 = 0 and separates the base bleeding and the boat tailing configurations. The
global minimum of Ja/J0 is reached at b2 = −0.375, as indicated by a vertical blue dashed line.

reached near b2 = −0.375, i.e. for a base bleeding configuration, corresponding to a small
actuation power Jb = 0.0490, roughly 0.1 % of the unforced cost J0.

The characteristics of the best base bleeding solution leading closest to the symmetric
steady solution are depicted in figure 7. In figure 7(a) the lift coefficient is displayed
for the unforced transient (blue curve) and the forced flow (red curve). The unforced
flow terminates in an asymmetric shedding with positive lift values. After the start of
forcing, the lift coefficient oscillates vigorously around its vanishing mean value. This
forced statistical symmetry is corroborated by the oscillating jet in figure 8(a–h). Base
bleeding increases the velocity of the rearward jet compared with the unforced flow. This
jet instability mitigates the Coanda effect on the bottom and top cylinder, i.e. the jet neither
stays long at either side.

The vortex shedding persists similar to the unforced flow. However, the dominant
frequency is increased from f0 = 0.116 to f1 = 0.132. The instantaneous cost function
ja in figure 7(c) shows an unsteady non-periodic behaviour, reaching intermittently low
levels. The broad spectral peak in figure 7(d) is a characteristic of a chaotic regime. The
phase portrait in figure 7(b) corroborates the non-periodic oscillatory behaviour. The mean
field in figure 8( j) shows that the actuated mean jet is symmetric unlike the mean field of
the unforced flow. Moreover, the shear layer on the upper and lower sides extends further
downstream as compared with the unforced state.
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Figure 7. Characteristics of the best base bleeding solution. (a) Time evolution of the lift coefficient CL, (b)
phase portrait, (c) time evolution of instantaneous cost function ja and (d) PSD showing a broad spectral peak at
f1 = 0.132. The control starts at t = 400. The unforced phase is depicted in blue and the forced one in red. The
phase portrait is computed over t ∈ [900, 1400] and the PSD is computed on the forced regime t ∈ [400, 1400].

This parametric study reveals that base bleeding is the best symmetric steady forcing
strategy to bring the flow close to the symmetric steady solution. However, even though
the cost Ja/J0 is almost halved, the best base bleeding control fails to stabilize the flow.

4.2. General non-symmetric steady actuation – EGM
In this section we aim to stabilize the symmetric steady solution by commanding the three
cylinders with constant actuation without symmetry constraint. This three-dimensional
parameter space is explored with the EGM presented in § 3.2. The symmetry along the
x-axis of the fluidic pinball allows us to reduce our search space and to explore only
positive values of b1. A coarse initial parametric study carried out on b1, b2 and b3 by
steps of unity indicates that the global minimum of Ja/J0 should be near [b1, b2, b3]ᵀ =
[1, 0, 0]ᵀ. Thus, we limit our research to the actuation domain B = [0, 2] × [−2, 2] ×
[−2, 2]. The limitation of b1 to positive values exploits the mirror symmetry of
the configuration. Figure 9(b) depicts the cost function in the actuation domain B.
Three planes (b1 = const.) are computed by interpolating parameters on a coarse grid.
The individuals computed with EGM are all shown in the three-dimensional space.

917 A42-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.301


G.Y. Cornejo and others

t + T1/8 t + 2T1/8

t + 3T1/8 t + 4T1/8

t + 5T1/8 t + 6T1/8

t + 7T1/8 t + T1

Symmetric steady solution Mean field

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

Figure 8. Vorticity fields of the best base bleeding solution. (a– f ) Time evolution of the vorticity field
throughout the last period of the 1400 convective time units, (i) the objective symmetric steady solution and ( j)
the mean field of the forced flow. The colour code is the same as figure 1. Here T1 is the period associated to
the main frequency f1 of the forced flow. The mean field has been computed by averaging 100 periods.

The four initial control laws for EGM are the centre of the box and shifted points
from this centre. The shift is 10 % of the box size in the positive coordinate direction.
Thus, the four initial control laws are [1, 0, 0]ᵀ, [1.2, 0, 0]ᵀ, [1, 0.4, 0]ᵀ and [1, 0, 0.4]ᵀ.
The exploration phase is then performed in B. For algorithmic reasons, the explorative
points are chosen from one million points obtained from a space-filling LHS. In the
following, Ni denotes the number of evaluations. The optimization processes stops after
Ni = 100 evaluations. This corresponds to 25 iterations of the exploration/exploitation
process. Convergence is already reached around Ni ≈ 50. On one hand, we notice that
the exploration phases (LHS in blue) focus on the boundary of the search space. This is
consistent with the goal of LHS, as the furthest initial individuals are on the boundary of
the box. On the other hand, the exploitation phases (simplex in yellow) stay in the same
neighbourhood near the initial individuals, crawling along the local gradient to find the
minimum.

Figure 10 shows the progression of the best control laws throughout the evaluations after
25 iterations of the exploration/exploitation process. The progression is plotted according
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Figure 9. Contour map of Ja/J0 at the optimal plane b3 = bEGM = −0.156 found with EGM (a) and at
different levels of b1: b1 = 0, b1 = 1, b1 = 2 (b). The colour code denotes white for Ja/J0 = 1, blue for better
performances and red for worse performances. The planes are shown with 75 % transparency. The four initial
conditions [1, 0, 0]ᵀ, [1.2, 0, 0]ᵀ, [1, 0.4, 0]ᵀ and [0, 0, 0.4]ᵀ are represented by black diamonds. Blue dots are
the control laws built with the exploration phases and yellow dots are the individuals built with the exploitation
phases. All the individuals have been projected on the plane b3 = −0.156. The arrows, on plane b1 = 0, depict
the base bleeding/boat tailing diagonal studied in § 4.1. A parametric study shows that the minimum is close to
[b1, b2, b3]ᵀ = [1, 0, 0]ᵀ whose cost is Ja/J0=0.93.

to the number of cost function evaluations counted with the dummy index i. Figure 10(a)
depicts the progression of the best control law after each downhill simplex step. We notice
that a plateau is reached after 50 evaluations and there are only small variations afterwards.
The final control law after 100 evaluations reads as

[bEGM
1 , bEGM

2 , bEGM
3 ]ᵀ = [1.11207, −0.20025, −0.15588]ᵀ with Ja = 10.85. (4.1)

From visualizations of the control landscape of Ja in figure 9, we can safely infer
that (4.1) describes the global minimum of our search space. Figure 10(b) shows
convergence after 70 evaluations. Thereafter, the downhill simplex iterations show
negligible improvements. In the whole EGM optimization the exploration appears to
be ineffective as the initial individuals are close to the minimum. An EGM run with
different initial individuals ([1, 0, 0]ᵀ, [1.5, 0, 0]ᵀ, [1, 1, 0]ᵀ and [1, 0, 1]ᵀ, corresponding
to a 25 % of the box size shift) have been tested. After a few iterations, this new run
started sliding down towards the same minimum. This can be explained by the fact that
the neighbourhood around the minimum is smooth enough for a downhill slide of the
exploitation individuals.

The control law (4.1) shows that the front cylinder rotates almost five times faster than
the two other cylinders and in opposite directions. The asymmetry in the control law
corresponds to the asymmetry in the lift coefficient in figure 11(a), where the mean value
is close to −0.7. The flow asymmetry can be visualized in the mean field (figure 12 j). The
vorticity in the vicinity of the cylinder is directly related to the actuation; thus, the upward

917 A42-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.301


G.Y. Cornejo and others

2.0

1.5

1.0

0.5

–0.5

–1.0

–1.5

–2.0
20 40 60 80 100 20 40 60 80 100

0

2.5

2.0

1.5

1.0

0.5

0.28

0

Front
Bottom
Top

Initial points
LHS
Simplex

b 1
, 
b 2

, 
b 3

J a/
J 0

i i

(a) (b)

Figure 10. Evolution of b1, b2 and b3 (a) for each new simplex step indicated by the scattered squares and
Ja/J0 (b) according to the number of evaluations i for the EGM optimization process. The red line on (b)
shows the evolution of the best cost. The colour code of the dots on (b) is the same as figure 9. The best control
law is [bEGM

1 , bEGM
2 , bEGM

3 ]ᵀ = [1.11207, −0.20025, −0.15588]ᵀ with Ja/J0 = 0.28.

deflection near the front cylinder is explained by its fast rotation, around 1.1 times the
incoming velocity. In addition, the tip of the positive vorticity lobe in the jet is slightly
deflected downwards. Figures 12(a)–12(h) show that EGM control (4.1) enables a jet
fluctuation around the vanishing mean, like the best base bleeding solution. Moreover,
the phase portrait and the PSD in figure 11 reveal that the flow is purely harmonic. The
main frequency f2 = 0.140 is close to the main frequency f1 = 0.132 of the base bleeding
solution. Contrary to the best base bleeding solution, the instantaneous cost function
ja stays at low levels with a mean value around 9. The associated normalized cost is
Ja/J0 = 0.28. It is worth noting that, even though the control law [b1, b2, b3]ᵀ = [1, 0, 0]ᵀ
is close to the best one found with EGM, its cost, Ja/J0 = 0.93, is much higher. Moreover,
the coarse description of the optimal plane b3 = bEGM = −0.15588 in figure 9(a) does
not show any minimum a priori. This reveals large gradients in the control landscape, near
the EGM solution, where a small change in the control amplitude can drastically change
the associated cost Ja/J0.

In addition to the less deflected jet, we notice in figure 12 that the vortex shedding differs
from the previous solution leading to a more symmetric flow. There are now two vortex
sheddings of the shear layers, one on the upper side and one on the lower side of the flow.
These shear-layer dynamics hardly interact in the whole domain. Indeed, we notice that
the distance between two consecutive vortices increases significantly only before leaving
the computational domain which goes along with a slightly upward deflection of the wake.
This results in extended vorticity branches in the mean field (figure 12 j) but with a lower
vorticity level compared with the symmetric steady solution.

As expected, exploring a richer search space improved the stabilization of the flow.
However, surprisingly, an asymmetric forcing managed to bring partial symmetry to the
flow and reduces the cost function even further compared with the best base bleeding
solution. Experimentally, the optimization of the steady fluid pinball actuation also leads
to asymmetric forcing (Raibaudo et al. 2019). The EGM managed to converge to the global
minimum in less than Ni = 100 evaluations. The exploration phases had a lesser impact
during the optimization process as we initiated the algorithm close to the global minimum.
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Figure 11. Characteristics of the best steady actuation found by EGM. (a) Time evolution of the lift coefficient
CL, (b) phase portrait, (c) time evolution of instantaneous cost function ja and (d) PSD showing the only
frequency f2 = 0.140 of the forced flow. The control starts at t = 400. The unforced phase is depicted in blue
and the forced one in red. The phase portrait and the PSD are computed over t ∈ [900, 1400] the post-transient
regime.

We can expect the exploration phases to play a major role for a more complex search space,
comprising several minima.

4.3. Feedback control optimization – gMLC
In this section we optimize a feedback control law again to stabilize the unforced
symmetric steady solution. The feedback is provided by nine velocity signals in the wake as
discussed in § 2.3. Several function optimizers can be used to solve the regression problem
of (2.9). However, a comparison between classical MLC (Duriez et al. 2016) and gMLC
has been carried out, showing that gMLC not only converges faster than MLC but also
converges towards a better solution. The comparison between MLC and gMLC is detailed
in Appendix A.

In the case of the fluidic pinball, the three cylinders are our three controllers, thus, Y ⊂
R

3. For the control input space X, we choose a grid of nine sensors downstream measuring
either the x or y velocity component. The coordinates of the sensors are x = 5, 6.5, 8
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Figure 12. Vorticity fields of the best steady actuation found with EGM. (a– f ) Time evolution of the vorticity
field throughout the last period of the 1400 convective time units, (i) the objective symmetric steady solution
and ( j) the mean field of the forced flow. The colour code is the same as figure 1. Here T2 is the period
associated to the frequency f2 of the forced flow. The mean field has been computed by averaging over 100
periods.

and y = 1.25, 0, −1.25. The downstream position of the sensors have been chosen so
that a good performance of stabilizing feedback control can be expected (Roussopoulos
1993). The position is far enough for pronounced vortex shedding but close enough to
avoid phase decorrelation between actuation and sensing. Moreover, sensors at different
x locations allow us to exploit phase differences between the sensors. The six exterior
sensors are u sensors while v sensors are chosen for the ones on the symmetry line y = 0,
so that the signals vanish when the symmetric steady solution is reached. Experimental
realizations are typically based on one or few sensor positions. The large number of
nine positions has the advantage that gMLC may indicate not only the near-optimal
control law but also the best sensor location. The information of sensors is summarized
in table 1. We introduce time-delayed sensor signals as inputs to enrich the search space
and allow ARMAX-based controllers (Hervé et al. 2012). The delays are a quarter, half
and three-quarters of the natural shedding period, yielding the following additional lifted

917 A42-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.301


Stabilization of the fluidic pinball with gMLC

Sensor x-coordinate y-coordinate Velocity component

s1 5 1.25 u
s2 6.5 1.25 u
s3 8 1.25 u
s4 5 0 v

s5 6.5 0 v

s6 8 0 v

s7 5 −1.25 u
s8 6.5 −1.25 u
s9 8 −1.25 u

Table 1. Summary of sensor information.

sensor signals and allowing us to reconstruct the phase of the flow:

si+9(t) = si(t − T0/4), si+18(t) = si(t − T0/2), si+27(t) = si(t − 3T0/4). (4.2a–c)

For oscillatory signals, the chosen time delay corresponds to the first zero of the
auto-correlation function which is a common practice for construction of phase spaces.
The four time-delay coordinates is the minimum information to determine the mean value,
the amplitude and the phase of each signal at every time step.

Summarizing, the dimension of the sensor vector s is 9 × 4 = 36 and X ⊂ R
36. We do

not include time-dependent functions in the input space as we aim to stabilize the flow
towards the steady solution so an open-loop strategy is not pursued. In Appendix B we
detail an open-loop optimization including periodic functions. We show that a symmetric
periodic forcing at ≈3.5 times the natural frequency manages to stabilize the flow but at
the expense of high actuation power. So periodic functions are not included as inputs in
order to avoid a costly solution. Thus, Nb = 3, Ns = 36 and Nh = 0. The control laws are
then built from nine basic operations (+, −, ×, ÷, cos, sin, tanh, exp and log), 36 sensors
signals si=1...36 and 10 constants. The control laws are restricted to the range [−5, 5] to
avoid excessive actuation. The basic operations ÷ and log are protected in order to be
defined on R in its entirety. The cost function has been computed over 1000 convective
time units, so that the post-transient regime is fully established and the transient phase has
a lesser weight.

For the implementation of the gMLC algorithm on the fluidic pinball, we start with
a Monte Carlo step of NMC = 100 individuals, the crossover probability and mutation
probability are both set at Pc = Pm = 0.5. Indeed, as the evolution phase is mostly an
explorative phase, the mutation probability is increased, from 0.3, in previous studies,
to 0.5, to improve the exploration capability. Moreover, even though crossover is an
exploitative operator, it is likely to find new minima thanks to recombinations of radically
different control laws. That is why the crossover and mutation probabilities are both
set to 0.5. The dimension of the subspace is set to Nsub = 10, so it is large enough to
explore a rich subspace but not too large to avoid a slowdown in the optimization process.
Evidently with a subspace of higher dimension the control law can be more finely tuned.
To assure that the subplex step effectively goes down the local minimum, we choose
to evaluate NG = 50 individuals during the exploitation phase. Test runs with NG = 5
have been carried out and showed that the learning process was slower. We believe one
reason is that each exploration phase changes systematically the subspace, which makes
it difficult for the subplex to improve effectively in only a few steps, thus, subplex has
almost no benefit in the early phases. Table 2 summarizes all the parameters for gMLC.
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Parameter Description Value

Nb Number of actuators 3
Ns Number of sensors 9 sensors × 4 delays = 36
Nh Number of periodic functions 0
NMC Number of Monte Carlo individuals 100
Nsub Subplex size 10
Pc Crossover probability 0.5
Pm Mutation probability 0.5
NG Number of individuals per phase 50
Nc Number of constants 10

Constant range [−1, 1]
Operations +, −, ×, ÷, cos, sin, tanh, exp, log

Table 2. Gradient-enriched MLC parameters for the fluidic pinball.

The secondary optimization problem (3.4), used to build a matrix representation for the
control laws, is solved with LGP. To speed up the computation, we choose to solve the
secondary optimization problem with 100 individuals evolving through 10 generations.
Finally, our implementation is enhanced by a screening of the individuals to avoid
re-evaluating individuals that have different mathematical expressions but are numerically
equivalent, just as Cornejo Maceda et al. (2019). This screening is used only in steps
where the individuals are generated stochastically, meaning in the Monte Carlo step and
in the exploration phases. This improvement is also used in LGP to solve the secondary
optimization problem. We choose our stopping criterion to be a total number of evaluations
to mimic experimental conditions. In this study the limit is set to 1000 following prior
experience and practical considerations. The authors have observed convergence within
this limit for all MLC studies with dozens of configurations. In addition, wind tunnel
experiments with 1000 evaluations and 5–20 s testing time can easily be performed in one
day.

Figure 13 presents the learning process of gMLC for the stabilization of the fluidic
pinball. We notice that the first exploration phase, individuals i = 101, . . . , 150, already
improved the best cost compared with the Monte Carlo phase. The following exploitation,
individuals i = 151, . . . , 200, present a steep descent, improving the best solution even
further. During this phase, we notice a clear trend for the cost of the new individuals. This
trend indicates that the simplex is going down towards a minimum. But this descent is
interrupted by the next exploration phase. Individuals i = 201, . . . , 250 greatly improve
the best solution. Particularly, two individuals have a much lower cost that those in the
simplex, suggesting that a new minima has been found. The next exploitation phase
with individuals i = 251, . . . , 300 brings no improvement. The high values of cost in the
exploitation steps following the exploration phases is explained by the fact that as we
are exploring new minima, shrink steps must be performed to bring the simplex towards
the new minima; and the shrink steps replace all individuals in the simplex except the
best one. As we are leaving one minimum for another one, the intermediate values can
be arbitrarily high until the simplex reached the neighbourhood of the new minimum.
The next exploration phase with individuals i = 301, . . . , 350 also give good individuals
that have been included in the simplex. After 350 evaluations, the only improvements
are performed by exploitation phases. Even if the best cost keeps decreasing slowly, the
improvements are small, indicating that we are close to the minimum. Once we reach
a plateau, further improvement can only be performed if an exploration phase finds an
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Figure 13. Distribution of the costs during the gMLC optimization process. Each dot represents the cost Ja/J0
of one individual. The colour of the dots represents how the individuals have been generated. Black dots
denote the individuals which are randomly generated (Monte Carlo). Blue dots refer to individuals which are
generated from a genetic operator (exploration). And yellow dots correspond to individuals arising from the
subplex method (exploitation). The individuals from the Monte Carlo step and the exploration phase have been
sorted following their costs. The red line shows the evolution of the best cost. The vertical axis is in log scale.

individual close to a better minimum. That is why after 800 individuals, we performed
only exploration phases. The final control law build with gMLC reads as

bgMLC
1 = −0.0004 sin(cos(s30)) − 0.0034(s6 + s22) − 0.0033(log(s11))

− 0.0305(s3) − 0.0098(s16 + s15) + 0.0055s35(s16 + 0.31016)

− 0.0091(s3 − s23) + 0.9206 tanh(s16) − 0.1238 cos(s31) + 0.1907,

bgMLC
2 = −0.0459(log(log(s31))) − 0.1946,

bgMLC
3 = −0.0004(0.841471s34 − s36) − 0.0043 log(s9) − 0.0022(s25 − s16)

− 0.0098(cos(s3) − s16) + 0.9206 log(tanh(exp(s2))) − 0.0295,

Ja = 7.82.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

Figure 14 presents the characteristics of the flow controlled by the best control law
KgMLC built with gMLC. This control law is detailed later specifically in table 3. In
figure 14(a) we can see that even if the resulting lift coefficient is still asymmetric, the
mean value (around −0.1) is closer to 0 as compared with the EGM solution. The PSD in
figure 14(d) shows a dominant frequency at f3 = 0.144 and one of its higher harmonics. A
small peak can be seen for f4 ≈ 0.016. The nonlinear interaction between the frequencies
f3 = 0.144 and f4 = 0.016 gives rise to another small peak at f5 = 0.160. The phase
portrait in figure 14(b) reveals drifts in pronounced oscillations due to the low-frequency
modulation. The presence of the dominant frequency f3 = 0.144 and its harmonic in the
spectrum is consistent with the periodic behaviour of the flow. The f4 = 0.016 peak is
responsible for the width of a predominant limit-cycle dynamics in the phase portrait.

The evolution of the instantaneous cost function ja in figure 14(c) shows a plateau
after 200 convective time units, reaching an even lower level (around 6), compared with
the EGM solution (around 9). The associated cost Ja/J0 = 0.20 is better than the EGM
solution at Ja/J0 = 0.28.
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Figure 14. Characteristics of the flow controlled by the best feedback control law found with gMLC. (a) Time
evolution of the lift coefficient CL, (b) phase portrait, (c) time evolution of instantaneous cost function ja and (d)
PSD showing the frequency f3 = 0.144 of the forced flow, one of its harmonics and two low-power frequencies
f4 = 0.016 and f5 = 0.160. The control starts at t = 400. The unforced phase is depicted in blue and the forced
one in red. The phase portrait and the PSD are computed over t ∈ [900, 1400], during the post-transient regime.

Tables 3, 4 and figure 16(a) give more details on the control law KgMLC built with
gMLC. Firstly, we can see that even though the simplex comprises Nsub = 10 individuals,
subplex build the control law KgMLC by linearly combining 14 control laws. Indeed
after a few iterations of simplex, all the individuals are eventually a linear combination
of the initial individuals forming simplex. When a new individual is introduced in the
basis thanks to the exploration phase, the exploitation phase will combine the remaining
individuals with the new one, making the next individual a linear combination of more
than 10 individuals. It is important to note that even after the introduction of new
individuals with the exploration phase, the subspace to explore changes but the dimension
remains. In this case, with Nsub = 10, the dimension of the subspace is 9. The repetition
of this process builds each time more complex control laws. Thus, in table 3 individuals
i = 11, 12, 13, 14 have been introduced thanks to exploration phases. The control laws with
the strongest weights are i = 11, 13 and 14, whereas the weight associated with the other
control laws are at least one order of magnitude lower. Control law i = 11 is also the one
with the lowest cost Ja/J0 = 0.26. The control law KgMLC is then mainly based on i = 11
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Stabilization of the fluidic pinball with gMLC

No. b1 b2 b3 Weight Ja/J0

1 sin(cos(s30)) 0 0.841471s34 − s36 −0.0004 0.91
2 s6 + s22 0 0 −0.0034 0.94
3 0 0 log(s9) −0.0043 0.97
4 0 0 s25 − s16 −0.0022 0.97
5 log(s11) 0 0 −0.0033 0.95
6 s3 0 0 −0.0305 0.92
7 s16 + s15 0 cos(s3) − s16 −0.0098 0.97
8 s35(s16 + 0.31016) 0 0 0.0055 0.80
9 s3 − s23 0 0 −0.0091 0.88
10 1 log(log(s31)) 0 −0.0459 0.93
11 tanh(s16) −0.187071 log(tanh(exp(s2))) 9.206 × 10−1 0.26
12 0.540302 −0.144304 −0.0144074 0.0687 0.34
13 cos(s31) −0.144304 −0.0144074 −1.238 × 10−1 0.36
14 0.949948 −0.144304 −0.0144074 2.100 × 10−1 0.39

Table 3. Summary of the 14 control laws composing KgMLC described in (4.3). For each control law, we
present b1, b2, b3, the associated weight and the reduced cost Ja/J0. The three best control laws are #11, #13
and #14.

Cylinder Mean value Main frequency Peak-to-peak amplitude

Front (b1, green) 0.48 2f3 0.12
Bottom (b2, blue) −0.19 2f3 0.03
Top (b3, red) −0.02 f3 < 0.01

Table 4. Summary of control law information. The frequencies and peak-to-peak amplitude have been
computed on the post-transient regime.

and corrected by the remaining control laws. This indicates that on the last phase of the
learning, it is the minimum in the neighbourhood of i = 11 that has been found.

Moreover, table 3 shows that all three control components bgMLC
1 , bgMLC

2 and bgMLC
3

of the gMLC control law include sensor information. However, figure 16(a) shows that
the actuation command associated with KgMLC for the two rearward cylinders (b2 and
b3) are nearly constant. This is partially due to the low weights associated to the control
laws with sensor signals. We can also assume that the sensor signals cancel each other,
leading to such low peak-to-peak amplitudes. Table 4 shows the characteristics of the
actuation command during the post-transient regime. A spectral analysis shows that the
main frequency of the actuation command for the front and bottom cylinder is twice
the main frequency of the flow f3, revealing that the actuation is a function of the flow.
Thus, gMLC managed to build a combination between asymmetric steady forcing and
feedback control. Finally, like EGM, the best solution found is asymmetric but with
lower amplitudes. Consequently, the associated actuation power is lower compared with
general steady actuation found with EGM: Jb = 0.2018 for the general steady actuation
and Jb = 0.0391 for the feedback control law found with gMLC.

The controlled flow is depicted over one period in figure 15(a–h). First, we notice
that the jet fluctuates around a vanishing mean, as for the EGM actuation. Also, the
vortex shedding of the upper and lower shear layers hardly interact. Compared with
the EGM solution, the stability of the wake is improved as the two Kelvin–Helmholtz
vortices keep their transverse distance to the symmetry line until the very end of the
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t + T3/8 t + 2T3/8

t + 3T3/8 t + 4T3/8

t + 5T3/8 t + 6T3/8

t + 7T3/8 t + T3

Symmetric steady solution Mean field

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

Figure 15. Vorticity fields of the best feedback control found with gMLC. (a– f ) Time evolution of the vorticity
field throughout the last period of the 1400 convective time units, (i) the objective symmetric steady solution
and ( j) the mean field of the forced flow. The colour code is the same as figure 1. Here T3 is the period
associated to the frequency f3. The mean field has been computed by averaging 100 periods.

computational domain. This is explained by the re-energization of the shear layers thanks
to the vigorous rotation of the front cylinder at twice the main frequency f3 of the
controlled flow, like Protas (2004). The mean field, figure 15( j), is similar to the symmetric
steady solution. Indeed, we notice that the vorticity regions extend to the end of the
computation domain, such as the symmetric steady solution. Also, as for the best general
steady actuation, the region near the cylinders is non-symmetrical due to the action.
However, contrary to the symmetric steady solution, the mean field of the feedback
control has a narrower region between the vorticity regions upstream and a wider region
downstream.

As expected, gMLC manages to find a new solution that surpasses the best general
steady actuation found with EGM. Surprisingly, gMLC built a non-trivial solution,
combining asymmetric steady forcing and feedback control for the front cylinder,
controlling the flow with a direct feedback of the phase of the flow, i.e. phasor control
(Brunton & Noack 2015). Interestingly, gMLC composed a control law that forces the flow
at twice the main frequency. In addition, compared with the best general steady actuation,
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Stabilization of the fluidic pinball with gMLC

the actuation power is significantly reduced. Lastly, the learning process of gMLC
exploited both the evolution phases and the simplex steps to rapidly build better solutions.
Thanks to the evolution phases, new minima have been successfully found and thanks
to the simplex steps, the solutions have been improved even more. The progress of the
subplex steps show that local gradient information can be exploited in a subspace of an
infinite dimension space to minimize a cost function. Building on this success, we believe
that gMLC will greatly accelerate the optimization of control laws for MIMO control as
compared with the linear GPC.

5. Discussion

This section discusses design aspects of the proposed methodology which are of relevance
to this and other configurations. In § 5.1 the role of feedback is assessed. Section 5.2
discusses the role of the number of actuators and sensors for the learning process. In § 5.3
the effect of the dynamics complexity and noise on learning speed is discussed. Finally,
robustness for other operating conditions is elaborated in § 5.4.

5.1. The need for feedback
Feedback plays an important role in the gMLC control. Figure 16(a) shows the
corresponding evolution of the actuation commands and instantaneous cost function
ja. The actuation commands lead to constant cylinder rotation with a small fluctuation
from the sensor signal. The cost function converges to a steady value after some 200
non-dimensional time units. In figure 16(b) the actuation commands are replaced by their
respective post-transient averaged value of the last 500 time units. Now, the cost function
fluctuates periodically between the optimal and the unforced value. The associated
averaged cost is Ja/J0 = 0.59 and about three times the optimal gMLC value Ja/J0 =
0.20. The important role of feedback is corroborated with another test. The actuation
commands of the gMLC control are recorded and applied in an open-loop manner to
the flow with a random initial condition. Again, the performance ja largely fluctuates.
Evidently, the small feedback fluctuations play an important role in the stabilization.
Intriguingly, similar observations are made by the authors for stabilizing experimental
cavity fluctuations and will be described in the dissertation of the first author (Cornejo
Maceda 2021).

5.2. Number of sensors and actuators
The control performance is found to increase as the search space is generalized from single
parameter steady base bleeding forcing to three parameter steady actuation to feedback
with nine sensors. Generally, increasing the number of actuators and sensors can be
expected to enhance the maximum control performance albeit with eventually diminishing
returns. On the other hand, the learning time will also increase with the number of
actuators and sensors and with the complexity of control laws, e.g. inclusion of time-delay
coordinates. Evidently, there is a trade-off between performance gains from increasing the
search space and the limitations of the testing time. As in model identification (see, e.g.
Abu-Mostafa, Magndon-Ismail & Lin 2012), one can expect an optimal level of complexity
for a given testing time. From MLC with dozens of configurations (see, e.g. Noack 2019),
our observation is that the learning time is weakly affected by the number of control law
inputs but increases with the number of uncorrelated actuation commands.
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Figure 16. Time series of the actuation command b = [b1, b2, b3]ᵀ and the instantaneous cost ja for the best
feedback control law found with gMLC (a) and (b) for the flow controlled by a steady control law whose values
are the averaged gMLC control during the post-transient regime.

The subplex iteration of gMLC is found to significantly accelerate the learning process.
Evolutionary methods are known to underperform for convergence of identified minima,
i.e. a strength of gradient-based approaches. Gradient-based methods have another
advantage of staying in well-performing subspaces. In contrast, genetic operations, such
as mutation and crossover, tend to bread new individuals leaving these subspaces. These
observations are particularly relevant when a symmetry or invariant of the control law is
performance critical. The inclusion of known symmetries or invariants in gMLC might
be achieved by pre-testing and excluding individuals which strongly depart from these
constraints. An example of self-discovery of such symmetries and invariants is reported in
Belus et al. (2019) for deep reinforcement learning.

5.3. Complexity of dynamics and noise
The applicability of gMLC to turbulent flows will be addressed in future works starting
with Cornejo Maceda (2021). Already MLC has been successfully applied to learning
distributed actuation for mixing optimization of a turbulent jet (Zhou et al. 2020).
Recent experimental applications of gMLC include mitigation of cavity oscillations, drag
reduction of a generic truck model under yaw and lift increase of airfoil under angle
of attack at a Reynolds number near one million. Performance and reproducibility of
gMLC control are encouraging and outperform other methods, including MLC. Hence,
the very optimization principle of iterating between exploration (for discovering new
minima) and exploitation (for a fast descent towards the minimum) seems sound. Yet,
numerical studies of multi-frequency forcing of the fluidic pinball foreshadow challenges
for asymptotic regimes. When the actuation space has many ‘idle’ directions with near
constant performance, the gradient-based descent may be trapped in local minima. One
cure is a subplex method on ‘active subspaces’ aligned with the direction of performance
gradients.
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Genetic programming is a powerful regression solver which is successfully validated in
dozens of experiments, Navier–Stokes simulations and dynamical systems (Noack 2019;
Ren et al. 2020). It can learn complex laws for O(10) signals and O(10) actuation
commands by testing O(1000) individuals over O(1000) characteristic times each, i.e.
O(1 000 000) characteristic times in total (Wu et al. 2018; Zhou et al. 2020). Yet, it may not
be the most effective choice under several conditions: (1) the total testing time is restricted
to much smaller budgets typical for three-dimensional simulations; (2) the control law is
smooth or can be expected to depend linearly or affinely to the sensor signals; (3) the flow
performance responds immediately to good or bad actuation. Smoothness is well exploited
in cluster-based control (Nair et al. 2019). Deep reinforcement learning may learn quickly
the optimal actuation in case of fast performance response (Rabault et al. 2019; Fan et al.
2020). Combining techniques may also accelerate the learning such as the merging of
genetic algorithm and downhill simplex in Maehara & Shimoda (2013). Future work will
give more indications about good choices or combinations of machine learning algorithms.

5.4. Robustness of the control
The current study optimizes control for a single Reynolds number. Its robustness will
be addressed in future work. We can distill few rules of thumb for robustness from
past experience with experiments. First, if the actuation mechanism relies on changing
large-scale coherent structures, such as synchronizing vortex formation (Parezanović
et al. 2016), the control learned for one condition is likely to be robust for a range of
conditions. Second, the control law should be learned in a non-dimensional form. For
instance, the Strouhal number of an actuation can be expected to be more relevant for
different velocities than the value in Hertz unrelated to the velocity change (Gautier et al.
2015). Third, in an ideal scenario, the intended range of operating conditions is already
included in the cost function. For instance, a control law may be evaluated at different
operating conditions or in a slow transient between them (Asai et al. 2019; Ren, Wang
& Tang 2019). This will, however, dramatically increase the testing time. The learning
time saved by smarter algorithms, like gMLC, may be invested in assuring robustness for
multiple operating conditions. Tang et al. (2020) provide an inspiring example for deep
reinforcement learning.

6. Conclusions

We have stabilized the wake behind a fluidic pinball with three independent cylinder
rotations in successively larger search spaces for control laws. Figure 17 summarizes the
corresponding performances quantified by the average distance between the controlled
flow and the steady symmetric solution. First, steady symmetric forcing is employed. A
base bleed solution with a cylinder rotation of 28 % of the oncoming velocity leads to
a flow which is 49 % closer to the symmetric solution than the unforced attractor. Other
studies also report a stabilizing effect of base bleed on bluff body wakes (Wood 1964;
Bearman 1967). In contrast, Coanda forcing, i.e. two symmetric cylinder rotations which
accelerate the outer flow, may completely stabilize the flow. Yet, this new wake has no long
vortex bubble and is further away from the symmetric steady solution than the unforced
vortex shedding.

Second, a general non-symmetric actuation is optimized with the EGM. Surprisingly,
an asymmetric actuation reduces the average distance between the flow and the steady
target solution further to 28 % of the unforced value. This asymmetric actuation leads
to shear-layer vortices which do not interact and, thus, do not form von Kármán
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Search space Dimension Method Ni

Unforced natural - - -

Symmetric steady 1 Param. study -

General steady 3 EGM 77

1
0

0.51
0.05

0.28
0.20

0.20

0.33
0.07

0.15
5.28

0.04Feedback control ∞

∞

gMLC 800
250 for Ja/J0 < 0.26

Feedback control MLC 900

Periodic forcing 2 EGM 74

Ja/J0, Jb

Figure 17. Summary of the performances for the best solutions of each search space. The first column
describes the search space. The second column contains the respective dimension of the studied search space.
The method and number of evaluations needed to arrive at the presented solution are listed in the third and
fourth column, respectively. The fifth column shows the relative distance to the symmetric steady solution
Ja/J0 (in blue) and the actuation power Jb (in yellow). For the gMLC feedback control optimization, the best
control law studied has been found after 800 evaluations but the cost Ja/J0 was already under 0.26 after 250
individuals. The fifth row corresponds to the solution found with standard MLC after 1000 evaluations as
elaborated in Appendix A. The last row shows the results for a periodic forcing optimization performed with
EGM, see Appendix B.

vortices. The mean flow is slightly asymmetric, but largely mimics the elongated steady
symmetric solution. The price for the better performance is a larger actuation power (see
figure 17). Intriguingly, MLC also leads to distinctly asymmetric actuation in experiments
(Raibaudo et al. 2019) and simulations (Cornejo Maceda et al. 2019) for other cost
functions.

Third, a feedback actuation obtained from gMLC brings the flow even closer to
the steady target solution. The associated actuation power is smaller than the previous
optimized steady actuations (see figure 17). The actuation is a combination of asymmetric
steady forcing and phasor control. The resulting flow looks similar to the optimal
asymmetric steady forcing. Figure 18 summarizes the results for the hierarchy of control
search spaces.

The feedback control does not seem to have the authority to completely stabilize the
symmetric target solution, such as for the cylinder wake controlled by a volume force
(Gerhard et al. 2003). The wake can be ‘almost’ stabilized for short periods of time,
starting from the unforced flow. Then, new coherent structures emerge and lead to residual
shear-layer shedding. This lack of complete authority for stabilization may be explained
by the complexity of the dynamics. The fluidic pinball has a primary instability associated
with von Kármán vortex shedding, a secondary pitchfork instability associated with
the centreline jet, and two Kelvin–Helmholtz instabilities of the top and bottom shear
layer.

Intriguingly, symmetric high-frequency forcing can bring the flow even closer to the
steady target solution but with an actuation power which is roughly two orders of
magnitude larger than the previous control laws (see figure 17). Protas (2004) and Thiria
et al. (2006) also find a stabilizing effect of high-frequency forcing on vortex shedding.
The thickening of the shear layers by high-frequency vortices reduces the gradients
and, thus, the instability. To summarize, MLC has automatically discovered well-known
stabilizing mechanisms, such as base bleed and phasor control, but added an unexpected
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Search spaces

Symmetric steady actuation Optimal symmetric steady solution

EGM actuation

gMLC feedback control law

Symmetric target solution

Mean f lowsSolutions

Unforced natural flow

bfront = 0
bbottom = 0
btop = 0

bfront = 0

bbottom = –btop = b
Ja/J0 ↓ –49%

Jb = 0.05

Ja/J0 ↓ –72%

Jb = 0.20

Ja/J0 ↓ –80%

Jb = 0.04

General steady actuation

Feedback control

b = K(s) b = KgMLC(s)

btop = b3

bfront = b1

bbottom = b2

btop = –0.16

bfront = 1.11
bbottom = –0.20

bfront = 0
bbottom = –btop = –0.375

Figure 18. Summary of the optimized stabilization solutions obtained for each search space. The Venn
diagram (left) depicts the hierarchy of the control law spaces. The corresponding optimal solutions are
presented along with their performances, control laws (centre) and mean fields (right). The mean field of
the statistically asymmetric unforced flow is depicted in the top row and the symmetric target solution in the
bottom row.

asymmetric forcing and combination of this open-loop actuation and phasor feedback for
improved performance.

The presented stabilizations are expected to be independent of the employed optimizer
as different approaches lead to very similar results. The chosen optimizers balance
exploitation (downhill descend of found minima) and exploration (search for better
minima). The optimization has been effected in a three-dimensional parameter space for
steady forcing and a feedback space with three actuation inputs and nine sensing outputs.
The starting point is LHS as exhaustive exploration of the parameter space and linear
GPC as an effective regression solver with explorative and exploitive features. The search
has been significantly accelerated by intermittently adding gradient-based descents. The
resulting EGM and gMLC seem efficient for both exploration and exploitation. Future
research shall focus on accelerated learning.

The control performance may be further improved by allowing for more general
control laws comprising the history of the sensor signals, as in ARMAX-based control
(Hervé et al. 2012). Other generalizations of MLC include multiple predefined operating
conditions, adaptive control for unknown operating conditions, automated learning of the
response model from the control law to performance following Fernex et al. (2020) and
automated learning of control-oriented modelling based on Li et al. (2021). The fluidic
pinball represents an attractive plant of sufficient dynamic complexity with manageable
computational load for these developments.
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Appendix A. Comparison between MLC and gMLC

In this appendix we compare the performances of a MLC, based on linear GPC (Li et al.
2018; Zhou et al. 2020), and the proposed gMLC variant for the stabilization of the fluidic
pinball. Gradient-enriched MLC is described in § 4.3. Machine learning control differs
from gMLC in two respects. First, the evolution is from generation to generation, i.e.
groups of individuals. Second, unlike gMLC, no gradient information is employed. The
first generation of randomly generated individuals evolves through generations thanks to
the following three genetic operations.

• Crossover: a stochastic recombination of two individuals, making two new
individuals exploiting parts of the first two individuals.

• Mutation: a stochastic change in one individual, making a new individual from the
previous one.

• Replication: an identical copy of one individual, assuring memory of good
individuals throughout the generations.

During the evolution process, the better performing individuals are selected with larger
probability to build new individuals thanks to the genetic operators. The best individuals
are selected thanks to a tournament selection method. As in Duriez et al. (2016), we
choose a tournament selection of size 7 for 100 individuals. A genetic operation is
chosen randomly following given probabilities: the crossover probability Pc, the mutation
probability Pm and the replication probability Pr. The probabilities add up to unity
Pc + Pm + Pr = 1. The set of parameters [Pc, Pm, Pr]ᵀ = [0.6, 0.3, 0.1]ᵀ suggested in
Duriez et al. (2016) have been chosen for MLC. A parametric study varying Pc, Pm
and Pr with a 0.1 step has been carried out on the stabilization of a Landau oscillator
by forcing only on one of its components. As MLC is a stochastic process, we perform
100 test runs for each probability combination. This parametric study reveals that this
probability combination [Pc, Pm, Pr]ᵀ = [0.6, 0.3, 0.1]ᵀ is one of the best. Among all the
probability combinations, this combination is one of those that converges towards better
solutions in average, with one of the lowest dispersions of the final solutions over the 100
test runs, showing that this combination is also one of the more robust. This or a very
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Figure 19. Distribution of the costs during the MLC optimization process. Each dot represents the cost Ja/J0
of one individual. The colour of the dots represent how the individuals have been generated. Black dots for
the individuals randomly generated by a Monte Carlo process (individuals i = 1, . . . , 100), blue dots for
the individuals generated from a genetic operator (individuals i = 101, . . . , 1000). For each generation, the
individuals have been sorted according to their cost. The red line shows the evolution of the best cost for the
MLC optimization process. The green curve corresponds to the gMLC optimization process. The vertical axis
is in log scale.

similar probability combination has already been used in Duriez et al. (2016) and dozens
of experiments (Noack 2019).

In addition to crossover, mutation and replication, we transfer the best individual of the
previous generation to the next one via the elitism operation. This operation assures that
the best individual is always in the latest generation so that ‘the winner does not get lost’.

The architecture of the linear programming control laws are the same for MLC and
gMLC, including the mathematical operations, number of constants, number of registers,
as well as inputs and outputs (see table 2).

The cost function is evaluated over 1000 convective time units, both in MLC and
gMLC. The MLC and gMLC algorithms are compared over 1000 evaluations. For MLC,
a population of 100 individuals is chosen to evolve over 10 generations. For a fair
comparison, MLC and gMLC share the same initial Monte Carlo generation, comprising
the first 100 randomly generated individuals. Figure 19 shows the distribution of the
costs Ja/J0 as a function of the evaluations. We note that for both algorithms, the first
exploration phase makes great improvement. In the second generation, the best cost is 0.80
for gMLC and 0.70 for MLC. Note that MLC’s better performance is understandable as
100 individuals have been evaluated for the second generation whereas only 50 individuals
have been evaluated for gMLC. After testing 200 individuals, gMLC surpasses MLC
thanks to the subplex steps, reaching a cost Ja/J0 = 0.36. For the second evolution phase,
both MLC and gMLC perform well reaching low levels of Ja/J0: 0.36 for MLC and
0.26 for gMLC. Then, MLC achieves only a small progress after 900 evaluations, the
cost improves from 0.36 to 0.33. The series of blue dots at Ja/J0 = 0.36 from i = 201
to i = 900 represents several instances of the best individual of generation 3, duplicated
thanks to elitism. For gMLC, figure 13 shows that evolution phases do not bring any
progress after 250 evaluations and further improvement is made thanks to the subplex
steps. As described in § 4.3, the evolution phases help to enrich the simplex subspace. The
subplex steps manage to reduce the cost function from 0.26 to 0.20. We notice that after
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Figure 20. Contour plot for Ja/J0 (a) and Jb (b) as a function of the amplitude B and the normalized frequency
F/f0. For (a), blue (red) regions denote good (bad) performances while white regions correspond to costs that
are equivalent to the natural flow. For (b), the colour code describes the actuation energy. The symbols represent
the individuals tested with EGM: black diamonds for the initial conditions, blue solid circles for exploration
phases and yellow solid circles for the exploitation phases. For the legend, refer to figure 9.
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Figure 21. Evolution of (a) the amplitude B and the normalized frequency F/f0 and (b) the reduced cost Ja/J0
as a function of the number of evaluations i, for the EGM optimization process. The red line in (b) shows the
evolution of the best cost. The evaluation time is 250 convective time units.

600 evaluations all new subplex individuals have the same cost. Hence, gMLC surpasses
MLC with a smaller number of evaluations and enables improvement/fine-tuning of the
control laws in the final phase.

Appendix B. Optimal periodic forcing

In this appendix we aim to stabilize the symmetric steady solution thanks to a symmetric
periodic forcing. In this case, the two back cylinders oscillate in opposite directions
whereas the front cylinder stays still. The control ansatz is

b1 = 0,

b2 = B cos(2πFt),
b3 = −B cos(2πFt),

⎫⎬
⎭ (B1)
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Figure 22. Characteristics of the best periodic forcing found with EGM. (a) Time evolution of the lift
coefficient CL, (b) phase portrait, (c) time evolution of instantaneous cost function ja and (d) PSD showing
the main frequency f6 = 0.398 of the forced flow and six harmonics. The control starts at t = 400. The
unforced phase is depicted in blue and the forced one in red. The phase portrait and the PSD are computed
over t ∈ [900, 1400], during the post-transient regime.

with B, the amplitude of the oscillations, and F, the frequency, being the two parameter to
optimize. The search space is limited to [B, F/f0]ᵀ ∈ [0, 5] × [0, 10] as higher amplitudes
and frequencies would be beyond our solver capabilities. This two-dimensional search
space is explored with EGM. The contour plot in figure 20 depicts the search space
based on Ja/J0 and Jb. The contour plot has been produced thanks to simulations for
B ∈ {0.1, 0.5, 1, 2, 3.5, 5} and F/f0 ∈ {0.1, 0.5, 1, 2, 3.5, 5, 7.5, 10}. The steps are finer
for low frequencies and low amplitudes. The individuals have been evaluated over 250
convective time units. We notice that there is only one minimum on the plane, close
to [B, F/f0]ᵀ = [3.51, 3.19]ᵀ. Also, forcing at frequencies close to the natural frequency
resonates with the flow and drastically increases the distance to the steady solution for high
amplitudes. For Jb, the contour map expectedly displays high values at high frequencies
and large amplitudes. The three initial control laws for EGM are the centre of the box
and increments of 1/5 of the box size in each direction: [2.5, 5]ᵀ, [3, 5]ᵀ, [2.5, 6]ᵀ.
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Figure 23. Vorticity fields of the best periodic forcing found with EGM. (a– f ) Time evolution of the vorticity
field throughout the last period of the 1400 convective time units, (i) the objective symmetric steady solution
and ( j) the mean field of the forced flow. The colour code is the same as figure 1. Here T6 is the period
associated to the frequency f6. The mean field is computed by averaging 200 periods.

As expected, the LHS steps (in blue) spread rather evenly in the domain whereas the
simplex steps (in yellow) quickly descend into the global minimum.

Figure 21 shows the progression of the best individual throughout the evaluations. The
EGM optimization process converges after a few tests as Ja/J0, the amplitude and the
frequency reach asymptotic values, without any significant improvement afterwards. The
parameters of the best symmetric periodic forcing are denoted by the superscript ‘EGM’
and read as

BEGM = 3.51,

FEGM/f0 = 3.19.

}
(B2)

The proximity between the initial values and the aimed minimum certainly accelerates the
observed convergences. Figure 22 shows the evolution of the lift coefficient, the phase
portrait, the PSD and the instantaneous cost function ja for the controlled flow. The lift
coefficient presents rather symmetric low amplitude oscillations; see figure 22(a). This
goes along with the flow symmetry in figure 23(a–h). The oscillations are explained by
the remaining vortex shedding on both the upper and lower side of the fluidic pinball.
Even though the far field is close to the symmetric steady solution, this periodic solution
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changes radically the near field profile. The jet is completely flattened. We can identify
parts of the two vorticity branches close to the cylinders in figure 23(c–e). Moreover, the
vorticity around the cylinders is more intense compared with the initial steady solution.
This difference is present in the final mean value ja in figure 22(c) and is responsible for the
high actuation power expense, Jb = 5.2799. The phase portrait shows a periodic regime,
though deformed by the harmonics. The mean frequency f6 = 0.398 is slightly lower than
the forcing frequency FEGM = 0.37 and much lower than the natural frequency, showing
that it is not just a simple frequency locking, but a nonlinear frequency crosstalk. The
non-centred phase portrait indicates that there is still an asymmetry in the flow, that may
be a residual effect of the grid’s asymmetry. The mean field in figure 23( j) is similar to the
symmetric steady solution, however, the jet completely vanishes. In addition, the distance
between the upper and lower vorticity branches is wider compared with the symmetric
steady solution.
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DENG, N., NOACK, B.R., MORZYŃSKI, M. & PASTUR, L.R. 2020 Low-order model for successive
bifurcations of the fluidic pinball. J. Fluid Mech. 884, A37.

DOWLING, A.P. & MORGANS, A.S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid.
Mech. 37, 151–182.

DRACOPOULOS, D.C. 1997 Evolutionary Learning Algorithms for Neural Adaptive Control. Springer-Verlag.
DURIEZ, T., BRUNTON, S.L. & NOACK, B.R. 2016 Machine Learning Control: Taming Nonlinear Dynamics

and Turbulence, Fluid Mechanics and its Applications, vol. 116. Springer-Verlag.

917 A42-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

30
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.301


G.Y. Cornejo and others

FAN, S.L., YANG, L., WANG, Z.C., TRIANTAFYLLOU, M.S. & KARNIADAKIS, G.M. 2020 Reinforcement
learning for bluff body active flow control in experiments and simulations. Proc. Natl Acad. Sci. USA 117
(42), 26091–26098.

FERNEX, D., SEMANN, R., ALBERS, M., MEYSONNAT, P.S, SCHRÖDER, W. & NOACK, B.R. 2020
Self-similar drag reduction formula from sparse data: optimization of turbulent skin-friction via spanwise
travelling surface waves. Phys. Rev. Fluids 5 (7), 073901.

FLÜGEL, G. 1930 Ergebnisse aus dem Strömungsinstitut der Technischen Hochschule Danzig. In Jahrbuch
der Schiffbautechnischen Gesellschaft, pp. 87–113. Springer.

FUKAGATA, K. & NOBUHIDE, K. 2003 Drag reduction in turbulent pipe flow with feedback control applied
partially to wall. Intl J. Heat Fluid Flow 24, 480–490.

GAUTIER, N., AIDER, J.-L., DURIEZ, T., NOACK, B.R., SEGOND, M. & ABEL, M.W. 2015 Closed-loop
separation control using machine learning. J. Fluid Mech. 770, 424–441.

GELBERT, G., MOECK, J.P., PASCHEREIT, C.O. & KING, R. 2012 Advanced algorithms for gradient
estimation in one-and two-parameter extremum seeking controllers. J. Process Control 22 (4), 700–709.

GERHARD, J., PASTOOR, M., KING, R., NOACK, B.R., DILLMANN, A., MORZYŃSKI, M. & TADMOR,
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