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DLCQ and the spectra of QCD with fundamental
and adjoint fermions

12.1 Discretized light-cone quantization

So far we have analyzed the mesonic spectra of QCD in low dimensions using the
methods of the large Nc limit (’t Hooft model), and bosonization or currentiza-
tion. In both these methods we have chosen a light-cone gauge and implemented
a correlated light-front quantization. To get a broader perspective of the spec-
tra in this framework, and in particular to extract the mesonic spectra using
fermionic degrees of freedom with finite Nc , we now invoke another tool, the
discrete light-cone quantization. We first describe the method and then apply it
to both QCD with fundamental quarks and with adjoint quarks.

The discretized light-cone quantization (DLCQ) is a method devised to com-
pute spectra and wave functions of physical states of quantum field theories.1 It
is based on the following ingredients:

� A Hamiltonian formulation of the theory.
� Calculations in momentum representation.
� Periodic boundary conditions and hence discretized momenta.
� Light-front quantization.

The Hamiltonian approach is used since it is more convenient for analyzing
the structure of bound states. The periodic boundary conditions assure that
charges associated with symmetries are strictly conserved. For a conserved cur-
rent ∂+J+ + ∂−J− = 0 the light-front charge is conserved,

Q(x+) ≡
∫ L

−L

dx−J+(x−, x+)
dQ(x+)

dx+ = 0, (12.1)

provided that,

J+(x+ ,+L)− J+(x+ ,−L) = 0, (12.2)

which is guaranteed by the periodic boundary conditions.
Note that, the light-front plane of constant x+, serving as “time”, is gener-

ally called “light-cone quantization”, although the plane is only tangential to
the light cone. In general d-dimensional space-time one may view the DLCQ

1 For reviews see [48] and [47].
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224 DLCQ and the spectra of QCD with fundamental and adjoint fermions

approach as a projection into non-relativistic dynamics since for a fixed light-cone
momentum P+ the Hamiltonian H = P− is quadratic in the transverse momenta
H = P 2

i

2P + + M 2

2P + where P i are the transverse momenta.
In spite of a lot of progress in handling problems faced by the DLCQ there

are still several unresolved issues such as:

� There is no proof that the light-front dynamics is fully equivalent to that of
ordinary time evolution, in particular for massless chiral fermions.

� There are subtleties with the renormalization of a Hamiltonian matrix with a
cutoff such that all physical results are independent of the cutoff.

� The implementation of a proper quantization for the system, with constraints
which emerge from gauge fixing.

12.2 Application of DLCQ to QCD2 with fundamental fermions

Instead of describing the method in general, we demonstrate the application
of the DLCQ method to the case of QCD2 with fundamental fermions. The
light-front action of two-dimensional SU(N) YM gauge fields coupled to Dirac
fermions in the fundamental representation of the gauge group in the light-cone
gauge A+ = 0 reads,2

SQC D2 =
∫

dx+dx− 1
2
Tr
[
(∂−A+)2 + Ψ̄

(
i 	∂ −m− g√

N
γ−A+

)
Ψ
)]

, (12.3)

where Ψ =
(

ψL

ψ̄R

)
, with ψL and ψ̄R are Weyl fermions, the trace is over the

color indices which are not written explicitly. To simplify the analysis we restrict
ourselves to the case of a single flavor.

The corresponding equations of motion take the form,

i∂−ψL = mψR , (i∂+ + gA+)ψR = mψL , ∂2
−Aa

+ = gψ†
RTaψR . (12.4)

One can then express ψL and A+ in terms of ψR only,

ψL(x−, x+) =
−im

2

∫ +L

−L

dy−ε(x− − y−)ψR(x+ , y−)

Aa
+(x−, x+) =

g

2

∫ +L

−L

dy−|x− − y−|ψ†
RTaψR(x+ , y−), (12.5)

where ε(x− − y−) is +1 for positive argument and −1 for negative.

2 The application of the discrete light-front quantization to two-dimensional QCD was done
in [128] and in [127].
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12.2 Application of DLCQ to QCD2 with fundamental fermions 225

The light-cone momentum and energy are given by,

P+ =
∫ +L

−L
dx−ψ†

R i∂−ψR(x+ , x−)

P− =
−im2

2

∫ +L

−L
dx−

∫ +L

−L
dy−ψ†

R(x−)ε(x− − y−)ψR(y−)

− g2

2

∫ +L

−L
dx−

∫ +L

−L
dy−ψ†

R(x−)TaψR(x−)|x− − y−|ψ†
R(y−)TaψR(y−).

(12.6)

When one substitutes into these expressions the expansion of the fields in anti-
commuting modes, subjected to anti-periodic boundary conditions, one gets,

P+ =
2π

L

∑
n= 1

2 , 3
2 ,...

n(b†nbn + d†ndn ), (12.7)

where,

ψR(x−) =
1√
2L

∑
n= 1

2 , 3
2 ,...

[
bne−i n πx −

L + d†nei n πx −
L

]
. (12.8)

The creation and annihilation operators b†n , d†n , bn , dn are all taken to be in the
fundamental representation of SU(N) and obey the usual algebra,

{b†n , bm} = δnm {d†n , dm} = δnm . (12.9)

Since the eigenvalues of the momentum are proportional to 2π
L it is natural to

define a dimensionless momentum,

K =
L

2π
P+ . (12.10)

Similarly one defines a dimensionless Hamiltonian,

H ≡ 2π

L

1− λ̂2

m2 P− λ̂ ≡
√

1
1 + πm 2

g 2

, (12.11)

where we introduce the dimensionless coupling λ̂. The rationale behind this
parameterization is that the spectrum and wave function depend, apart from
an overall mass scale, only on the ratio of g

m . The Hamiltonian H is decomposed
into a free kinetic term H0 and the potential V ,

H = (1− λ̂2)H0 + λ̂2V, (12.12)

where,

H0 =
∑

n= 1
2 , 3

2 ,...

1
n

(b†nbn + d†ndn ), (12.13)
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226 DLCQ and the spectra of QCD with fundamental and adjoint fermions

and,

V =
1
π

∞∑
k=−∞

Ja(k)
1
k2 Ja(−k), k 	= 0 (12.14)

with the currents given by,

Ja(k) =
∞∑

k=−∞
[θ(n)b†n + θ(−n)dn ]Ta [θ(n− k)b†n−k + θ(k − n)dk−n ]. (12.15)

We already have the expression for the potential (11.16).
Note that there is no contribution from k = 0, since we apply the Hamiltonian

P− only on singlet states, and ja(0) on these vanishes. Normal ordering of the
potential gives,

V =: V : +
λ̂2CF

π

∑
n= 1

2 , 3
2 ,...

In

n
(b†nbn + d†ndn ), (12.16)

where CF = N 2 −1
2N is the second Casimir operator in the fundamental representa-

tion, and In is the self-induced inertia In = − 1
2n +

∑n+1/2
m=1

1
m 2 . The self-induced

inertia terms cancel the infrared singularity in the interaction term in the con-
tinuum limit. : V : involves a sum of eight quartic terms in the fermionic creation
and annihilation operators. For instance one such term is,

− 1
4N

(
Nδc1

c2
δc3
c4
− δc1

c4
δc3
c2

) 1
(n4 − n2)2 δn4 −n2 +n3 −n1 ,0b

†c4

n4
b†

c3

n3
bn2 ,c2 bn1 ,c1 , (12.17)

where ci are the color indices that have been suppressed before and there is an
implicit summation over the half integers ni such that the momentum is con-
served. Now since P− and P+ (or H and K) commute they can be diagonalized
simultaneously. One fixes the value of K = 1, 2, 3 . . . and the corresponding Fock
space is finite dimensional. One then diagonalizes H in the restricted subspace
of gauge singlets such that the masses are given by,

M 2 = 2P+P− =
2m2

1− λ̂2
KH(K). (12.18)

Notice that the dependence of the invariant masses on L the size of the space
drops out.

In Fig. 12.1 the DLCQ spectrum of low-lying mesons is drawn as a function
of m/g for N = 2,3,4 and compared with the t’ Hooft large N calculation. A
comparison with lattice calculation is presented in Fig. 12.2.

In performing these calculations it was found that, except for very small quark
masses, there is a quick convergence of the numerics. This is a manifestation of
the fact that the lowest Fock states dominate the hadronic state. It was found
out that typically the momentum carried by sea quarks is less than one percent.
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Hamer: SU (2) Lattice

Fig. 12.1. Comparison of the DLCQ meson spectra for N = 2,3,4 and the
spectrum derived from lattice calculations [127].

(2π /N )1/2 m/g

(2
π/

N
)1/

2
M

/g

SU (3)

SU (4)

SU (2)

LARGE N

Fig. 12.2. Comparison of the DLCQ meson spectra for N = 2,3,4 and the
’t Hooft large N spectrum [127].
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228 DLCQ and the spectra of QCD with fundamental and adjoint fermions

Several further properties were extracted from the DLCQ spectrum and wave
functions:

� The scaling of the lightest mesonic and baryonic masses with N . It was found
that there is fair agreement with the result deduced from bosonization for small
m
g , namely, that

Mmeson

Mbaryon
= 2 sin

[
π

2(2N − 1)

]
. (12.19)

The results “measured” were found to be 1, .62(5), .46(4) for N = 2, 3, 4 com-
paring with bosonization result 1, .618, .445. In the large N limit this result
implies that the baryon mass is proportional to N times the mass of the meson.

� The mesonic form factors were shown to be in accordance with analytical work.
� The “deuteron”, a loosely bound state of two nucleons, was shown to be stable,
in QCD2 with two colors and two flavors.

� The “anti Pauli-blocking” effect, for which the sea quarks with the same flavor
as that of the majority of the valence ones, are not suppressed in spite of their
fermionic nature.

12.3 The spectrum of QCD2 with adjoint fermions

Our starting point is the action of two-dimensional SU(N) YM theory coupled
to Majorana fermions in the adjoint representation.3 The latter is expressed in
terms of a traceless Hermitian matrix ψij . The action reads,

Sadj =
∫

d2xTr
[
iψT γ0γμDμψ −mψT γ0ψ − 1

4g2 Fμν Fμν

]
=
∫

dx+dx−Tr
[
i(ψ∂+ψ + ψ̄∂−ψ̄)− i

√
2mψ̄ψ +

1
2g2 (∂−A+)2 + A+J+

]
,

(12.20)

where we have parameterized the Majorana fermions as follows,

ψij =
1√√

2

(
ψij

ψ̄ij

)
J+

ij = 2ψikψkj , (12.21)

where ψ and ψ̄ are Weyl Majorana spinors written as N ×N traceless Hermitian
matrices. In the second line we have imposed the light-cone gauge A− = A+ = 0
and used γ0 = σ2 and γ1 = iσ1 . Note that the action does not include time
(x+) derivatives of A+ and of ψ̄ and hence both of them are non-dynamical. The
equal time (x+) anti-commutation relation for the dynamical Majorana fermions
is given by,

{ψij (x−), ψkl(y−)} =
1
2
δ(x− − y−)

(
δilδjk −

1
N

δij δkl

)
. (12.22)

3 Two-dimensional QCD with adjoint fermions was analyzed in several papers. Here we follow
[38], [72], [147].
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12.3 The spectrum of QCD2 with adjoint fermions 229

In analogy to the expression of P+ and P− given for the fundamental fermions
in Section 12.2 and for the bosonized case in Section 11.3, we have now,

P+ =
∫

dx−Tr[iψ∂−ψ]

P− =
∫

dx−Tr
[
−im2

2
ψ

1
∂−

ψ − 1
2
g2J+ 1

∂2
−

J+
]

. (12.23)

Denoting by Φ the physical states of the system, that obey the zero charge
condition, ∫

dx−J+ |Φ>= 0, (12.24)

which is simultaneously an eigenstate of both P+ and P− since [P+ , P−] = 0,
the spectrum is then determined as usual in the light-cone quantization via,

2P+P−|Φ>= M 2 |Φ> . (12.25)

Next we introduce the mode expansion and transform the expressions from
the configuration space to the space of momenta. In Section 12.2 we have done
this directly in the discretized formalism. Here for completeness we first consider
a continuous momentum and then perform the discretization.

The mode expansion reads,

ψij (x−) =
1

2
√

π

∫ ∞

0
dk+[bij (k+)e−ik+ x−

+ b†ij (k
+)eik+ x−

], (12.26)

and the non-trivial part of the algebra of the creation and annihilation operators
is given by,

{bij (k+), bkl(q+)} =
1
2
δ(k+ − q+)

(
δilδjk −

1
N

δij δkl

)
. (12.27)

From here on we will omit the + of k+ and denote it as k. Plugging the mode
expansion into (12.23) we get,

P+ =
∫ ∞

0
dk kb†ij (k)bij (k), (12.28)

and

P− =
m2

2

∫ ∞

0

dk

k
b†ij (k)bij (k) +

g2N

π

∫ ∞

0
dkC(k)b†ij (k)bij (k)

+
g2N

2π

∫ ∞

0
dk1dk2dk3dk4 [A(ki)δ(k1 + k2 − k3 − k4)b

†
kj (k3)b

†
j i(k4)bkl(k1)bli(k2)

+B(ki)δ(k1 + k2 + k3 − k4)(b
†
kj (k4)bkl(k1)bli(k2)bij (k3)

− b†kj (k1)b
†
j l(k2)b

†
li(k3)bki(k4))], (12.29)
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230 DLCQ and the spectra of QCD with fundamental and adjoint fermions

where

A(ki) =
1

(k4 − k2)2 −
1

(k1 + k2)2 ,

B(ki) =
1

(k2 − k3)2 −
1

(k1 + k2)2 ,

C(k) =
∫ k

0
dp

k

(p− k)2 . (12.30)

From these expressions of P+ and P− it is obvious that the vacuum is annihilated
by both P+ and P−,

P+ |0>= 0 P−|0>= 0. (12.31)

The bosonic and fermionic states of the system take the following form,

|Φb(p+)> =
∞∑

j=1

∫ P +

o

dk1 . . . dk2j δ

( 2j∑
i=1

ki − P+

)
f2j (k1 , k2 , . . . k2j )N−jTr[b†(k1) . . . b†(k2j )]|0>,

|Φf (p+)> =
∞∑

j=1

∫ P +

o

dk1 . . . dk2j+1δ

( 2j∑
i=1

ki − P+

)
f2j (k1 , k2 , . . . k2j )N−jTr[b†(k1) . . . b†(k2j+1)]|0>, (12.32)

where the wave functions obey the cyclicity relation due to the fermionic nature
of the creation and annihilation operators,

fi(k2 , k3 , . . . , ki , k1) = (−1)i−1fi(k1 , k2 , . . . ki). (12.33)

Unlike the case of fundamental fermions, pairs of adjoint fermions are not sup-
pressed by additional factor of 1

N and hence the eigenstates are generated by
applying operators on the vacuum with a mixture of different numbers of cre-
ation operators. This renders the extraction of the spectrum for adjoint fermions
much harder to determine than that of the fundamental ones. These states are
obviously eigenstates of P+. We will have to ensure that they are also eigenstates
of P−. Following the same procedure as for ’t Hooft’s model of Chapter 10 and
of Chapter 11 one derives a set of equations for the wavefunctions fi by applying
(12.25) on the bosonic and fermionic eigenstates which take the form,

M 2fi(x1 , x2 , . . . xi) =
m2

x1
fi(x1 , x2 , . . . xi)

+
g2N

π(x1 + x2)2

∫ x1 +x2

0
dyfi(y, x1 + x2 − y, x3 , . . . xi)

g2N

π

∫ x1 +x2

0

dy

(xi − y)2 [fi(x1 , x2 , . . . xi)− fi(y, x1 + x2 − y, x3 , . . . xi)]
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g2N

π

∫ x1

0
dy

∫ x1 −y

0
dzfi+2(y, z, x1 − y − z, x2 , . . . xi)

[
1

(y + z)2 −
1

(x1 − y)2

]
[

1
(x1 + x2)2 −

1
(x2 + x3)2

]
± cyclic, (12.34)

where xi = k+
i

P + and the last term of the equation stands for cyclic permutations
of (x1 , x2 , . . . , xi) which for odd i comes with a + sign and for even i with
alternating signs. Similar to what happens in the ’t Hooft model, the equation
does not have an ambiguity once we incorporate a principal value prescription
to the Coulomb double pole since at x1 = y the numerator also vanishes.

At this point we implement the idea of discretizing the light-cone momenta in
the following way,

x→ n

K

∫ 1

0
dx→ 2

K

K∑
odd n>0

, (12.35)

where n is an odd positive integer and K →∞ is the continuum limit. The
constraint

∑i
j=1 xj = 1 eliminates all states with over K partons, where a par-

ton is a state created from the vacuum by a single creation operator. In this
way the discretized eigenvalue problem becomes finite dimensional. With this
discretization the Fourier transform (12.26) translates into a sum,

ψij (x−) =
1

2
√

π

∑
odd n>0

[bij (n)e−ik+ x−
+ b†ij (n)eik+ x−

]. (12.36)

Similar to (12.8), the creation and annihilation operators of (12.27) also take
discretized values, and obviously the Dirac delta function in (12.27) is replaced
by a Kronecker delta function. The eigenvalue problem now reads,

2P+P− = K

[
g2N

π
T + m2V

]
, (12.37)

where the mass term is given by,

V =
∑

n

1
n

b†ij (n)bij (n), (12.38)

and,

T = 4
∑

n b†ij (n)bij (n)
∑n−2

m
1

(n−m )2 +

2
N

∑
m{δn1 +n2 ,n3 +n4

[
1

(n4 −n2 )2 − 1
(n1 +n2 )2

]
b†kj (n)b†j i(n)bkl(n)bli(n)

+ δn1 +n2 +n3 ,n4

[
1

(n3 +n2 )2 − 1
(n1 +n2 )2

]
b†kj (n4)bkl(n1)bli(n2)bij (n3)− b†kj (n1)b

†
j l(n2)b

†
li(n3)bki(n4)}, (12.39)

where all the summations are over positive odd integers.
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Fig. 12.3. The spectrum of fermionic states for K = 25, m = 0 [38].

One chooses a basis of states normalized to 1 in the large N limit,

1
Ni/2

√
s
Tr[b†(n1) . . . b†(ni)]|0>

i∑
j=1

nj = K. (12.40)

The states are defined by ordered partitions of K into i positive odd integers,
modulo cyclic permutations. If (n1 , n2 , . . . , ni) is taken into itself by s out of i

possible cyclic permutations, then the corresponding state receives a normaliza-
tion factor 1√

s
. Otherwise s = 1. For even i, however, all partitions of K where

i/s is odd do not give rise to states.
Using the discretized Hamiltonian and the basis of states (12.40) one can

diagonalize the Hamiltonian and compute the spectrum for a range of values
of K and then extrapolate the results to infinite K, the continuum limit. One
can extract certain properties of the spectrum also from the results at a fixed
large K. In particular the dependence of the spectrum on the mass of the adjoint
quark m is also of interest and the special cases of m = 0 and m2 = g2N/π where
the model is supersymmetric.

The fermionic spectrum found by diagonalizing the system with K = 25 for
the massless case and for m2 = g 2 N

π is described in Figs. 12.3 and 12.4 in the
form of the mass of the bound state as a function of the expectation value of
the parton number. The bosonic spectrum using K = 24 for the two masses is
drawn in Figs. 12.5 and 12.6.
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Fig. 12.4. The spectrum of fermionic states for K = 25, m2 = g2/π [38].
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Fig. 12.5. The spectrum of bosonic states for K = 25, m = 0 [38].

The characteristic features of the spectra are the following:

� The density of states increases rapidly with the mass, and almost all the states
lie within a band bounded by two < N >∼M lines. The system admits a
Hagedorn behavior,

ρ(m) ∼ mαeβm , (12.41)

where ρ(m) is the density and from the data it follows that β ∼ 0.7
√

π
g 2 N .
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Fig. 12.6. The spectrum of bosonic states for K = 25, m2 = g2/π [38].

� The mass increases roughly linearly with the average number of partons. Such a
behavior characterizes a system of large N non-relativistic particles connected
into a closed string by harmonic springs.

� For the low-lying states the wave function strongly peaks on states with a
definite number of partons. For instance, for K = 25 the ground state has a
probability of 0.9993 of consisting of 3 partons, and the first excited state has
a probability of 0.99443 of consisting of 5 partons.

� Thus the low-lying states can be well approximated by truncating the diago-
nalization to a single parton number sector. For instance the bosonic ground
state can be derived from a truncation of (12.34) to a two-parton sector which
yields the following equation,

M 2φ(x) = m2φ(x)
(

1
x

+
1

1− x

)
+

2g2N

π

∫ 1

0
dy

φ(x)− φ(y)
(y − x)2 , (12.42)

with φ(x) = f2(x, 1− x). Note that this equation is the ’t Hooft equation dis-
cussed in Chapter 10 with the replacement of g2 → 2g2 . This difference stems
from the fact that unlike for mesons built from fundamental quarks, here there
are two color flux tubes connecting two partons.

� Due to the fermionic statistics φ(x) = −φ(1− x) half of the states of the ’t
Hooft model including the ground state are now excluded. In particular for
m = 0 the state φ(x) = 1 which associates with a massless bound state is
missing. The absence of a massless ground state even in the limit of m→ 0
can be explained huristically as follows. For m = 0 the mass of the states is
measured in units of the coupling constant g and hence the massless limit can
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be achieved in the strong coupling limit g →∞ for which the action takes the
form,

S =
∫

d2xTr[iΨT γ0γμ∂μΨ + AμJμ ]. (12.43)

Now the left and right currents J±
ij constitute two independent level N affine

Lie algebras for which we have seen in Chapter 3 the corresponding Virasoro
anomaly is,

c = c0 − (N 2 − 1)
k

k + N
=

N 2 − 1
2

− (N 2 − 1)
k

k + N
, (12.44)

where c0 is the central charge before gauging and k is the ALA level. Since
k = N it is obvious that c = 0 and hence there is no massless bound state. For
fundamental quarks in the same limit we get, by taking k = 1 and c0 = N ,
that c = 1, which means that for this case there is a massless bound state.
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