ON A GLOBAL UPPER BOUND FOR JESSEN'S INEQUALITY

B. GAVREA¹, J. JAKŠETIĆ^{⊠2} and J. PEČARIĆ³

(Received 9 October, 2008)

Abstract

In two recent papers a global upper bound is derived for Jensen's inequality for weighted finite sums. In this paper we generalize this result on positive normalized functionals.

2000 *Mathematics subject classification*: primary 26D15. *Keywords and phrases*: Jensen's inequality, convex functions, positive functionals.

1. Introduction and preliminaries

Let $\tilde{x} = \{x_i\}$ be a finite sequence of real numbers from the fixed closed interval I = [a, b], a < b, and $\tilde{p} = \{p_i\}$, with $\sum p_i = 1$ a sequence of positive weights associated with \tilde{x} . If we have a convex function $f : I \to \mathbb{R}$, from Jensen's inequality we have

$$0 \leq \sum p_i f(x_i) - f\left(\sum p_i x_i\right).$$

The following was proved in [6].

THEOREM 1.1. Let \tilde{x} , \tilde{p} be as above. Then, if f is convex on I = [a, b], we have that

$$\sum p_i f(x_i) - f\left(\sum p_i x_i\right) \le S_f(a, b), \tag{1.1}$$

where

$$S_f(a, b) := f(a) + f(b) - 2f\left(\frac{a+b}{2}\right).$$

However, this fact can be derived from the following two theorems published earlier in [4, Page 50].

¹Technical University of Cluj-Napoca, Department of Mathematics, Romania; e-mail: bogdan.gavrea@math.utcluj.ro.

²University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Croatia; e-mail: julije@math.hr.

³University Of Zagreb, Faculty Of Textile Technology, Zagreb, Croatia; e-mail: pecaric@mahazu.hazu.hr.

[©] Australian Mathematical Society 2009, Serial-fee code 1446-1811/2009 \$16.00

THEOREM 1.2. Let \tilde{x} , \tilde{p} be as above. Then, if f is convex on I = [a, b], we have that

$$f\left(a+b-\sum p_i x_i\right) \le f(a)+f(b)-\sum p_i f(x_i).$$
(1.2)

THEOREM 1.3. Let \tilde{x} , \tilde{p} be as above. Then, if f is convex on I = [a, b], we have that

$$f\left(a+b-\sum p_{i}x_{i}\right) \geq 2f\left(\frac{a+b}{2}\right) - f\left(\sum p_{i}x_{i}\right)$$
$$\geq 2f\left(\frac{a+b}{2}\right) - \sum p_{i}f(x_{i}). \tag{1.3}$$

Combining (1.2) and (1.3) it is clear that we also have (1.1).

The purpose of this paper is to generalize the above results for normalized positive functionals.

Let *E* be a nonempty set and *L* be a linear class of real-valued functions $f : E \to \mathbb{R}$ having the properties

$$(af + bg) \in L \quad \forall a, b \in \mathbb{R} \tag{L1}$$

if
$$1 \in L$$
, that is, $f(t) = 1L \quad \forall t \in E$, then $f \in L$. (L₂)

We also consider positive linear functionals $A: L \to \mathbb{R}$. That is, we assume that

$$A(af + bg) = aA(f) + bA(g) \in L \quad \forall f, g \in L, a, b \in \mathbb{R},$$
(A1)

if
$$f \in L$$
, $f(t) \ge 0$ on E then $A(f) \ge 0$ (A is positive). (A₂)

If A(1) = 1, we say that A is a normalized functional. The following generalization of the Jensen's inequality for convex functions is known (see [5, Page 47]).

THEOREM 1.4. Let L satisfy L_1 and L_2 on a nonempty set E, and assume that Φ is continuous convex function on an interval $I \subset \mathbb{R}$. If A is a normalized linear positive functional, then for all $g \in L$ such that $\Phi(g) \in L$ we have $A(g) \in I$ and

$$\Phi(A(g)) \le A(\Phi(g)). \tag{1.4}$$

Also, the proof of the following theorem can be found in [5, Page 98].

THEOREM 1.5. Let Φ be convex on I = [a, b], $(-\infty < a < b < \infty)$; let L satisfy conditions L_1 and L_2 and let A be a positive normalized functional on L. Then for every $g \in L$ such that $\Phi(g) \in L$ (so that $a \leq g(t) \leq b$), we have

$$A(\Phi(g)) \le \frac{b - A(g)}{b - a} \Phi(a) + \frac{A(g) - a}{b - a} \Phi(b).$$

$$(1.5)$$

2. Main results

THEOREM 2.1. Let *L* satisfy L_1 and L_2 and let Φ be a convex function on I = [a, b]. Then for any positive normalized linear functional *A* on *L* and for any $g \in L$ such that $\Phi(g) \in L$ we have

$$A(\Phi(g)) - \Phi(A(g)) \le \Phi(a) + \Phi(b) - 2\Phi\left(\frac{a+b}{2}\right).$$
 (2.1)

If Φ is concave, the inequality in (2.1) is reversed.

PROOF. From inequality (1.5) we have

$$A(\Phi(g)) - \Phi(A(g)) \le \frac{b - A(g)}{b - a} \Phi(a) + \frac{A(g) - a}{b - a} \Phi(b) - \Phi(A(g)).$$
(2.2)

Now, using (2.2) we deduce (2.1) showing that

$$\frac{b - A(g)}{b - a}\Phi(a) + \frac{A(g) - a}{b - a}\Phi(b) - \Phi(A(g)) \le \Phi(a) + \Phi(b) - 2\Phi\left(\frac{a + b}{2}\right).$$
(2.3)

It is easy to see that (2.3) is equivalent to

$$\Phi(a)\left(1-\frac{b-A(g)}{b-a}\right) + \Phi(b)\left(1-\frac{A(g)-a}{b-a}\right) + \Phi(A(g)) \ge 2\Phi\left(\frac{a+b}{2}\right).$$
(2.4)

Applying Jensen's inequality to the left-hand side of (2.4) we obtain

$$\frac{1}{2} \left[\Phi(a) \left(1 - \frac{b - A(g)}{b - a} \right) + \Phi(b) \left(1 - \frac{A(g) - a}{b - a} \right) + \Phi(A(g)) \right]$$
$$\geq \Phi \left(\frac{a + b}{2} + \frac{1}{2} \left[A(g) - \frac{b - A(g)}{b - a} a - \frac{A(g) - a}{b - a} b \right] \right) = \Phi \left(\frac{a + b}{2} \right).$$

The last equality proves inequality (2.4) which is equivalent to (2.1).

The concave case can be proved by the same arguments using the fact that $-\Phi$ is a convex function.

The following theorem is an extension of Theorem 1.2.

THEOREM 2.2. Let Φ be convex on I = [a, b], $(-\infty < a < b < \infty)$; let L satisfy conditions L_1 and L_2 and let A be a positive normalized functional on L. Then for every $g \in L$ such that $\Phi(g) \in L$ (so that $a \leq g(t) \leq b$), we have

$$\Phi(a+b-A(g)) \le \Phi(a) + \Phi(b) - A(\Phi(g)).$$

PROOF. For a proof of this result see [1, Page 2].

The next theorem is an extension of Theorem 1.3.

[3]

THEOREM 2.3. Let Φ be convex on I = [a, b], $(-\infty < a < b < \infty)$; let L satisfy conditions L_1 and L_2 and let A be a positive normalized functional on L. Then for every $g \in L$ such that $\Phi(g) \in L$ (so that $a \leq g(t) \leq b$), we have

$$\Phi(a+b-A(g)) \ge 2\Phi\left(\frac{a+b}{2}\right) - \Phi(A(g)).$$

PROOF. From the reversed Jensen's inequality [5, Page 83] we have

$$\Phi\left(\frac{px+qy}{p+q}\right) \ge \frac{p\Phi(x)+q\Phi(y)}{p+q} \quad \text{for } q < 0, \ p > 0, \ p+q > 0.$$
(2.5)

Putting p = 2, q = -1, x = (a + b)/2 and y = A(g) in (2.5) we obtain the desired result.

Let us observe that with the combination of Theorems 2.2 and 2.3 we can obtain an alternative proof of Theorem 2.1, just by eliminating the expression $\Phi(a + b - A(g))$.

Now we show that we can improve the upper bound for Jensen's inequality.

THEOREM 2.4. Let *L* satisfy L_1 and L_2 and let Φ be a convex function on I = [a, b]. Then for any positive normalized linear functional *A* on *L* and for any $g \in L$ such that $\Phi(g) \in L$ we have

$$A(\Phi(g)) - \Phi(A(g)) \le \left\{ \frac{1}{2} + \frac{1}{b-a} \left| \frac{a+b}{2} - A(g) \right| \right\} \cdot S_{\Phi}(a, b).$$
(2.6)

If Φ is concave, the inequality in (2.6) is reversed.

For the proof of this theorem we need following lemma.

LEMMA 2.5. For a convex function $f: D_f \to \mathbb{R}$, $x, y \in D_f$, $0 \le p, q \le 1$, p + q = 1, we have that

$$\min\{p, q\}S_f(x, y) \le pf(x) + qf(y) - f(px + qy) \le \max\{p, q\}S_f(x, y).$$

PROOF. For a proof of this result see [6].

PROOF OF THEOREM 2.4. Using Theorem 1.5 we have

$$A(\Phi(g)) \le \frac{b - A(g)}{b - a} \Phi(a) + \frac{A(g) - a}{b - a} \Phi(b).$$

Denote

$$p = \frac{b - A(g)}{b - a},$$

so $p \in [0, 1]$ and $A(g) = p \cdot a + (1 - p) \cdot b$.

Hence, we have

$$\begin{aligned} A(\Phi(g)) &- \Phi(A(g)) \\ &\leq \frac{b - A(g)}{b - a} \Phi(a) + \frac{A(g) - a}{b - a} \Phi(b) - \Phi(A(g)) \\ &= p \Phi(a) + (1 - p) \Phi(b) - \Phi(p \cdot a + (1 - p) \cdot b) \\ &\leq \max\{p, 1 - p\} S_{\Phi}(a, b) = \left\{ \frac{1}{2} + \frac{1}{b - a} \left| \frac{a + b}{2} - A(g) \right| \right\} S_{\Phi}(a, b). \end{aligned}$$

The third line follows from Lemma 2.5. At the end, if Φ is concave, then $-\Phi$ is convex, so that the conclusion follows.

We can also restate Theorem 2.4 in the following form.

THEOREM 2.6. Let L satisfy L_1 and L_2 , let Φ be a convex function on I = [a, b], and let A be a positive linear functional on L. Suppose that $k \in L$, $k \ge 0$ on E and A(k) > 0. Then for any $g_1 \in L$ such that $kg_1 \in L$ and $k\Phi(g_1) \in L$ we have

$$\frac{A(k\Phi(g_1))}{A(k)} - \Phi\left(\frac{A(kg_1)}{A(k)}\right) \le \left\{\frac{1}{2} + \frac{1}{b-a} \left|\frac{a+b}{2} - \frac{A(kg_1)}{A(k)}\right|\right\} \cdot S_{\Phi}(a, b).$$
(2.7)

If Φ is concave, the inequality in (2.7) is reversed.

In [6] we can find a refinement of the inequality given in (1.1) introducing the *characteristic* c(f):

$$c(f) := \sup \frac{\sum p_i f(x_i) - f\left(\sum p_i x_i\right)}{S_f(a, b)},$$

where the supremum is taken over all $\tilde{p}, \tilde{x} \in [a, b], a, b \in D_f$. Hence, we have

$$\sum p_i f(x_i) - f\left(\sum p_i x_i\right) \le c(f) S_f(a, b).$$

The refinement of the bound is described by the next theorem (see [4]).

THEOREM 2.7. For any convex function f,

$$\frac{1}{2} \le c(f) \le 1.$$

In our new terms the characteristic for a convex function Φ is described by

$$C(\Phi) = \sup_{A,g} \frac{A(\Phi(g)) - \Phi(A(g))}{S_{\Phi}(a, b)},$$
(2.8)

where the supremum is taken over all positive normalized linear functionals A on L and over all $g \in L$.

Here, we give a proof of Theorem 2.7 in our new terms. First, it is obvious that $C(\Phi) \le 1$.

To show $C(\Phi) \ge 1/2$, we first define the positive, normalized functional A_1 by

$$A_1(g) = p_0 g(x) + (1 - p_0) g(y),$$

where x, y are some points in the starting set E and $0 < p_0 < 1$. Finally,

$$C(\Phi) = \sup_{A,g} \frac{A(\Phi(g)) - \Phi(A(g))}{S_{\Phi}(a, b)}$$

$$\geq \sup_{p_0,x,y} \frac{A_1(\Phi(g)) - \Phi(A_1(g))}{S_{\Phi}(a, b)}$$

$$= \sup_{p_0,x,y} \frac{p_0 \Phi(g(x)) + (1 - p_0) \Phi(g(y)) - \Phi(p_0g(x) + (1 - p_0)g(y))}{S_{\Phi}(x, y)}$$

$$\geq \sup_{p_0} [\min\{p_0, 1 - p_0\}] = \frac{1}{2}$$

by Lemma 2.5.

3. The Hadamard inequality

Let us note that from (2.6) we have in the case A(g) = (a + b)/2 that

$$\Phi\left(\frac{a+b}{2}\right) \le A(\Phi(g)) \le \Phi\left(\frac{a+b}{2}\right) + \frac{1}{2}S_{\Phi}(a,b),$$

$$\Phi\left(\frac{a+b}{2}\right) \le A(\Phi(g)) \le \frac{\Phi(a) + \Phi(b)}{2},$$
(3.1)

which is a generalization of the well-known Hadamard inequality (see [5, Page 146]).

In what follows we denote by e_i $(i \in \mathbb{N})$ the function $e_i : [a, b] \to \mathbb{R}$ defined by

$$e_i(x) = x^i, \quad x \in [a, b].$$

Let $A : C[a, b] \to \mathbb{R}$ be a linear positive functional and let a_i be defined by

$$a_i := A(e_i), \quad i \in \mathbb{N}.$$

In what follows we assume that $a_0 = 1$. For such a functional, Jessen's inequality is well known and it states that for any convex function Φ we have

$$A(\Phi) \ge \Phi(a_1)$$
 and $A(\Phi) \le \frac{b-a_1}{b-a}\Phi(a) + \frac{a_1-a}{b-a}\Phi(b)$.

The following result was obtained by Lupaş in [3].

[6]

THEOREM 3.1 (Lupaş [3]). Let $A : C[a, b] \to \mathbb{R}$ be a positive linear functional with $A(e_0) = 1$. Then, for any convex function $\Phi \in C[a, b]$, there exist distinct points $\xi_1, \xi_2 \in [a, b]$ such that

$$A(\Phi) - \Phi(a_1) = (a_2 - a_1^2) \left[\xi_1, \frac{\xi_1 + \xi_2}{2}, \xi_2; \Phi \right].$$

where the divided difference of a function Φ on the nodes x_1, \ldots, x_k is denoted by $[x_1, \ldots, x_k; \Phi]$.

THEOREM 3.2. For any convex function $\Phi \in C[a, b]$ the following inequality holds:

$$A(\Phi) - \Phi(a_1) \le \left[\frac{1}{2} + \frac{1}{b-a} \left|\frac{a+b}{2} - a_1\right|\right] S_{\Phi}(a, b).$$

PROOF. Set $g = e_1$ in Theorem 2.4.

REMARK 3.3. In fact, Theorems 2.4 and 3.2 are equivalent. Indeed, let $B : L \to \mathbb{R}$ defined by

$$B(\Phi) = A(\Phi \circ g),$$

where *A* is a positive normalized linear functional and $g \in L$ such that $\Phi \circ g \in L$. It follows from Theorem 3.2 that for any convex function $\Phi : [a, b] \to \mathbb{R}$ we have

$$B(\Phi) - B(e_1) \le \left[\frac{1}{2} + \frac{1}{b-a} \left|\frac{a+b}{2} - a_1\right|\right] S_{\Phi}(a, b).$$

Since $B(e_1) = A(g)$ we obtain Theorem 2.4.

COROLLARY 3.4. Let A be a normalized linear positive functional. If $A(\Phi) = A(\Phi(a + b - \cdot))$ for every $\Phi \in C[a, b]$, then for any convex function $\Phi \in C[a, b]$ we have

$$\Phi\left(\frac{a+b}{2}\right) \le A(\Phi) \le \frac{\Phi(a) + \Phi(b)}{2}.$$
(3.2)

PROOF. We have $A(a + b - e_1) = A(e_1)$, which implies that $A(e_1) = (a + b)/2$. Therefore, from (3.1) we obtain (3.2).

REMARK 3.5. Let $\Phi: [a, b] \to \mathbb{R}$ be a convex function and $p: [a, b] \to \mathbb{R}$ be a nonnegative integrable function which is symmetric with respect to the point (a+b)/2, that is, p(x) = p(a+b-x). If we consider the normalized linear positive functional

$$A(\Phi) = \frac{\int_a^b p(x)\Phi(x) \, dx}{\int_a^b p(x) \, dx}$$

in (3.2), we obtain

$$\Phi\left(\frac{a+b}{2}\right)\int_{a}^{b}p(x)\,dx \le \int_{a}^{b}p(x)\Phi(x)\,dx \le \frac{\Phi(a)+\Phi(b)}{2}\int_{a}^{b}p(x)\,dx$$

which is a well-known inequality due to Fejér [2].

3.1. A functional specific characteristic number In what follows the characteristic number defined in (2.8) is specialized to a particular normalized linear positive functional. Let $\Phi: D \to \mathbb{R}$ be a convex function which is not an affine function and let *A* be a positive linear functional defined on a linear set of functions \mathcal{F} , with domain *D*. We assume $[a, b] \subset D$ and denote by $\chi_{[a,b]}$ the characteristic function of the interval [a, b]. We further assume that for any a < b, the condition

$$A(\chi_{[a,b]}) > 0$$

is satisfied.

If Φ is not an affine function and Φ is continuous and convex, we define the number $C_A(\Phi)$ by

$$C_A(\Phi) := \sup \frac{A^{[a,b]}(\Phi) - \Phi(a_1^{[a,b]})}{\Phi(a) + \Phi(b) - 2\Phi((a+b)/2)}$$

where

$$A^{[a,b]}(\Phi) := \frac{A(\chi_{[a,b]}\Phi)}{A(\chi_{[a,b]})}, \quad a_1^{[a,b]} := A^{[a,b]}(e_1)$$

and the supremum is taken over all values $a, b, a < b, [a, b] \subset D$. From the definition of $C_A(\Phi)$ we have

$$A^{[a,b]}(\Phi) - \Phi\left(a_1^{[a,b]}\right) \le C_A(\Phi)\left(\Phi(a) + \Phi(b) - 2\Phi\left(\frac{a+b}{2}\right)\right).$$

From Theorem 3.2 it follows that

$$C_A(\Phi) \le \frac{1}{2} + \sup_{a < b} \frac{1}{b-a} \left| \frac{a+b}{2} - a_1^{[a,b]} \right|$$

Now let us consider the functional $A : C[a, b] \to \mathbb{R}$ given by

$$A(\Phi) = \frac{1}{b-a} \int_{a}^{b} \Phi(x) \, dx.$$

From Theorem 3.1 we obtain

$$A(\Phi) - \Phi\left(\frac{a+b}{2}\right) = \frac{(b-a)^2}{12} \bigg[\xi_1, \frac{\xi_1 + \xi_2}{2}, \xi_2; \Phi\bigg],$$

which gives

$$\frac{A(\Phi) - \Phi((a+b)/2)}{\Phi(a) + \Phi(b) - 2\Phi((a+b)/2)} = \frac{1}{6} \frac{[\xi_1, (\xi_1 + \xi_2)/2, \xi_2; \Phi]}{[a, (a+b)/2, b; \Phi]}.$$

Let b = a + h. Then

$$C_A(\Phi) \ge \lim_{h \to 0} \frac{A(\Phi) - \Phi((a+b)/2)}{\Phi(a) + \Phi(b) - 2\Phi((a+b)/2)}.$$

If $\Phi \in C^2(D)$, then

$$\lim_{h \to 0} \frac{A(\Phi) - \Phi((a+b)/2)}{\Phi(a) + \Phi(b) - 2\Phi((a+b)/2)} = \frac{1}{6} = C_A(e_2).$$

We summarize the result obtained as follows. For the functional *A* defined by

$$A(\Phi) = \frac{1}{b-a} \int_{a}^{b} \Phi(x) \, dx$$

and any function $\Phi \in C^2(D)$ we have

$$C_A(e_2) \le C_A(\Phi) \le \frac{1}{2}.$$

We conclude the discussion on the characteristic $c_A(\cot)$ by stating the following conjecture.

CONJECTURE 3.6. Let A be a normalized linear positive functional on a linear class of functions L, $A : L \to \mathbb{R}$ and let $\Phi \in L$ be a convex, nonaffine function. Then the following inequality holds

$$C_A(e_2) \le C_A(\Phi) \le 1.$$

4. Applications to means

In this section we give some applications of Theorem 2.4 to some well-known means.

We start with the generalized mean with respect to the operator A and Ψ :

$$M_{\psi}(g, A) := \psi^{-1} \{ A(\psi(g)) \}, \quad g \in L.$$

THEOREM 4.1. Let *L* satisfy conditions L_1 and L_2 and let *A* be a positive normalized functional on *L*. Let $\chi, \psi : [a, b] \to \mathbb{R}$ be continuous and strictly monotonic functions, such that the function $\Phi = \chi \circ \psi^{-1}$ is convex. If, for every $g \in L$, the functions $\psi(g), \phi(g) \in L$, then $\Phi(A(\psi(g)))$ is well defined and the inequality

$$\chi(M_{\chi}(g,A)) - \chi(M_{\psi}(g,A)) \le \left\{ \frac{1}{2} + \frac{1}{b-a} \left| \frac{a+b}{2} - \psi(M_{\psi}(g,A)) \right| \right\} \cdot S_{\Phi}(a,b)$$
(4.1)

holds. The inequality in (4.1) is reversed if the function Φ is concave.

PROOF. For $g \in L$, we have both $\psi(g)$, $\chi(g) \in L$ by assumption. Hence, $\Phi(\psi(g)) = \chi(g) \in L$. Thus, if Φ is convex, then (4.1) follows from Theorem 2.4 with g replaced by $\psi(g)$.

The next step is the application to generalized classical means:

$$M^{[r]}(g, A) := \begin{cases} A(g^r)^{1/r}, & r \neq 0; \\ \exp(A(\ln g)), & r = 0. \end{cases}$$

254

THEOREM 4.2. Let L satisfy conditions L_1 and L_2 and let A be a positive normalized functional on L. If, for every $g \in L$, the functions g^r , $\ln g \in L$, $r \neq 0$, then $\Phi(A(\psi(g)))$ is well defined and the inequality

$$\left\{ M^{[s]}(g, A) \right\}^{s} - \left\{ M^{[r]}(g, A) \right\}^{s}$$

$$\leq \left\{ \frac{1}{2} + \frac{1}{b-a} \left| \frac{a+b}{2} - \left\{ M^{[r]}(g, A) \right\}^{r} \right| \right\} \cdot \left(a^{s/r} + b^{s/r} - 2 \left(\frac{a+b}{2} \right)^{s/r} \right),$$

$$(4.2)$$

holds for s > 0, s > r or s < 0, s < r. In the case s > 0, s < r or s < 0, s > r the inequality (4.2) is reversed. Also

$$\begin{aligned} A(\ln g) &- \ln \left(M^{[r]}(g, A) \right) \\ &\leq \left\{ \frac{1}{2} + \frac{1}{b-a} \left| \frac{a+b}{2} - \left\{ M^{[r]}(g, A) \right\}^r \right| \right\} \cdot \ln \left(\frac{4ab}{(a+b)^2} \right), \quad (4.3)
\end{aligned}$$

for s = 0, r < 0. In the case s = 0, r > 0 the inequality (4.3) is reversed. Finally

$$\left\{M^{[s]}(g,A)\right\}^{s} - \left(M^{[0]}(g,A)\right)^{s} \le \left\{\frac{1}{2} + \frac{1}{b-a}\left|\frac{a+b}{2} - 1\right|\right\} \cdot \left(e^{sa/2} - e^{sb/2}\right)^{2},\tag{4.4}$$

for r = 0, s > 0. In the case r = 0, s < 0 the inequality (4.4) is reversed.

PROOF. The proof of the theorem follows from application of Theorem 4.1 and the cases given in the lines that follow. Let $\psi(x) = x^r$, $r \neq 0$, $\chi(x) = x^s$, $s \neq 0$, $\psi(x) = \ln x$, r = 0, $\chi(x) = \ln x$ and s = 0. For $s, r \neq 0$ a function $\Phi = (\chi \circ \psi^{-1})(x) = x^{s/r}$ is convex if s > 0, s > r or s < 0, s < r.

For s = 0, $r \neq 0$ a function $\Phi(x) = (\chi \circ \psi^{-1})(x) = (1/r) \ln x$ is convex if r < 0. For r = 0, $s \neq 0$ a function $\Phi(x) = (\chi \circ \psi^{-1})(x) = e^{sx}$ is convex if s > 0.

Now, using Theorem 4.2 we have proved (4.2). The last part of the theorem follows from concavity of the function. \Box

The next application is Hölder's inequality of the first type.

THEOREM 4.3. Let L satisfy L_1 and L_2 and let A be a positive linear functional on L. Let p > 1 and q such that 1/p + 1/q = 1. If f, g > 0 on E, $f^p, g^q, fg \in L$, then we have

$$A(fg) - (A(f^{p}))^{1/p} (A(g^{q}))^{1/q} \\ \ge \left\{ \frac{A(g^{q})}{2} + \frac{A(g^{q})}{b-a} \middle| \frac{a+b}{2} - A\left(\frac{f^{p}}{g^{q}}\right) \middle| \right\} \left(a^{1/p} + b^{1/p} - 2\left(\frac{a+b}{2}\right)^{1/p} \right).$$

$$(4.5)$$

For 0 the inequality (4.5) is reversed.

PROOF. Let us note that the function

$$\Phi(x) = \frac{x^s}{s(s-1)}, \quad s \neq 0, 1$$

is a convex function. Now, from (2.7) we obtain

$$\frac{1}{s(s-1)} \left[\frac{A(k(g_1)^s)}{A(k)} - \left(\frac{A(kg_1)}{A(k)} \right)^s \right] \\ \leq \left\{ \frac{1}{2} + \frac{1}{b-a} \left| \frac{a+b}{2} - \frac{A(kg_1)}{A(k)} \right| \right\} \cdot \frac{1}{s(s-1)} \left(a^s + b^s - 2\left(\frac{a+b}{2} \right)^s \right).$$
(4.6)

After we make substitutions, s = 1/p, $k = g^q/A(g^q)$ and $g_1 = f^p/g^q$, we obtain the desired inequality. The reverse of inequality in (4.5) for 0 follows from the inequality given in (4.6).

The second type of Hölder's inequality is as follows.

THEOREM 4.4. Let L satisfy L_1 and L_2 and let A be a positive linear functional on L. Let $p \in \mathbb{R} \setminus (0, 1)$ and q such that 1/p + 1/q = 1. If f, g > 0 on E, $f^p, g^q, fg \in L$, then we have

$$\left((A(f^p))^{1/p} (A(g^q))^{1/q} \right)^p - (A(fg))^p \\ \leq \left\{ \frac{A(g^q)^p}{2} + \frac{A(g^q)^p}{b-a} \left| \frac{a+b}{2} - A(fg^{1-q}) \right| \right\} \left(a^p + b^p - 2\left(\frac{a+b}{2}\right)^p \right).$$

$$(4.7)$$

For 0 the inequality (4.7) is reversed.

PROOF. Again, we consider the convex function

$$\Phi(x) = \frac{x^s}{s(s-1)}, \quad s \neq 0, 1$$

for $s = p \in \mathbb{R} \setminus (0, 1)$, and Theorem 2.6. Using (2.7) with the substitutions $k = g^q$, $g_1 = fg^{1-q}$ we obtain the desired result.

The reverse of this inequality follows by the same argument as in the previous theorem. $\hfill \Box$

References

- W.-S. Cheung, A. Matković and J. Pečarić, "A variant of Jessen's inequality and generalized means", J. Inequal. Pure Appl. Math. 7 (2006) Article 10.
- [2] L. Fejér, "Über die Fourierreihen II", Math. Naturwiss. Anz. Ungar. Akd. Wiss. 24 (1906) 369–390.
- [3] A. Lupaş, "Mean value theorems for positive linear transformations" (Romanian with English summary), *Rev. Anal. Numer. Teoria Aprox.* 3 (1974) 121–140.

- [4] A. Matković and J. Pečarić, "A variant of Jensen's inequality for convex functions of several variables", J. Math. Inequal. 1 (2007) 45–51.
- [5] J. E. Pečarić, F. Proschan and Y. C. Tong, *Convex functions, partial orderings and statistical applications* (Academic Press, New York, 1992).
- [6] S. Simić, "On a global upper bound for Jensen's inequality", J. Math. Anal. Appl. 343 (2008) 414–419.
- [12]