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Abstract

We raise a question of whether the Riesz transform on Tn or Zn is characterized by the ‘maximal
semigroup symmetry’ that the transform satisfies. We prove that this is the case if and only if the
dimension is one, two or a multiple of four. This generalizes a theorem of Edwards and Gaudry for
the Hilbert transform on T and Z in the one-dimensional case, and extends a theorem of Stein for the
Riesz transform on Rn. Unlike the Rn case, we show that there exist infinitely many linearly independent
multiplier operators that enjoy the same maximal semigroup symmetry as the Riesz transforms on Tn and
Zn if the dimension n is greater than or equal to three and is not a multiple of four.
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1. Introduction

Classical multipliers such as the Hilbert transform on R or the Riesz transform on Rn

are translation invariant operators with additional ‘symmetries’ that can be formulated
in terms of group representations (see (1.1.1) below). Stein proved that a covariance
property under the conformal group characterizes the Riesz transform on Rn up to
scalar multiplication; see Fact 1.3. Extending his idea, we provided in [6] a general
framework to characterize specific operators on Rn by a covariance property with
respect to arbitrary (finite-dimensional) representations of a subgroup of the affine
transformation group. The object of this paper is its discrete analog, concerning the
characterization of bounded translation invariant operators on Zn and Tn by means of
algebraic conditions (semigroup symmetry).
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[2] Maximal semigroup symmetry and discrete Riesz transforms 217

To be more explicit, we begin with a brief review of translation invariant operators
and symmetry for the Rn case. A bounded operator T : L2(Rn)→ L2(Rn) is said to
be translation invariant if T ◦ τs = τs ◦ T for any s ∈ Rn, where τs is the translation
defined by (τs f )(x) := f (x − s) for f ∈ L2(Rn).

A further invariance is defined not for a single operator, but for a family of operators.
Suppose that T = {T1, . . . ,TN} is a family of linearly independent, bounded translation
invariant operators on L2(Rn). Then the ‘symmetry’ of T may be formulated as
follows.

Condition 1.1. T j ◦ lg (1 ≤ j ≤ N) is a linear combination of lg ◦ T1, . . . , lg ◦ TN as long
as g belongs to some subgroup of GL(n,R).

Here (lg f )(x) := f (g−1x) for g ∈ GL(n,R) and f ∈ L2(Rn).
In a coordinate-free fashion, we regard T as a bounded translation invariant operator

T : L2(Rn)→ V ⊗ L2(Rn),

where V is an N-dimensional complex vector space. Suppose that H is a subgroup of
GL(n,R) and that π : H → GLC(V) is a group homomorphism. Then Condition 1.1
may be reformulated by means of the pair (H, π), as the following covariance with
respect to the group H:

(π(g) ⊗ lg) ◦ T = T ◦ lg for any g ∈ H. (1.1.1)

We denote by BH(L2(Rn), V ⊗ L2(Rn)) the vector space of bounded translation
invariant operators T satisfying (1.1.1).

The conformal group CO(n) of the Euclidean space Rn is defined by

CO(n) := {g ∈ GL(n,R) : tgg ∈ R× · In}.

It is isomorphic to the direct product group R+ ×O(n), and the projection to the second
factor is given by a group homomorphism

π : CO(n)→ O(n), g 7→ |det g|−1/ng. (1.1.2)

We recall the definition of the (classical) Riesz transform on Rn.

Definition 1.2. For 1 ≤ p <∞, we define translation invariant operators on Lp(Rn) by

R j( f )(x) = lim
ε→0

cn

∫
|y|>ε

y j

|y|n+1 f (x − y) dy for j = 1, . . . , n

with cn = Γ(n + 1/2)/π(n+1)/2. Then the Riesz transform on Rn is defined to be
R = (R1, . . . ,Rn).

Now, Stein’s characterization of Riesz transforms [10, Section 3.1] can be
formulated as follows.

Fact 1.3. Let H := CO(n) acting on V := Rn, and π : H → GL(n,C) as in (1.1.2).
Then the space BH(L2(Rn),V ⊗ L2(Rn)) is one dimensional and spanned by the Riesz
transform R on Rn.
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218 T. Kobayashi, A. Nilsson and F. Sato [3]

We write (Rn)∧ (' Rn) for the dual space of Rn. In [5, Corollary 2.1.2], Fact 1.3 is
extended to the following fact.

Fact 1.4. Let H be a subgroup of GL(n,R) such that its contragredient action has a
dense orbit O in (Rn)∧. We write H1 for the stabilizer of H at a point p in O. Then, for
any representation π : H → GLC(V),

dimBH(L2(Rn),V ⊗ L2(Rn)) ≤ dim VH1 ,

where
VH1 := {v ∈ V : π(h)v = v for any h ∈ H1}.

We note that dim VH1 is independent of the choice of p ∈ O.
In particular, a family of bounded operators is determined uniquely up to a scalar

multiple if dim VH1 ≤ 1. This assumption is fulfilled, for example, if:

(1) dim V = 1 (in this case, the translation invariant operator T is given by the
convolution with a kernel which is the Fourier transform of a bounded relative
invariant of a prehomogeneous vector space in the sense of Sato; see [7]);

or

(2) (H,H1) is a reductive symmetric pair and V is an arbitrary (finite-dimensional)
irreducible representation of H.

In Stein’s example (see Fact 1.3), (H,H1) = (CO(n),O(n − 1)) is a reductive symmetric
pair.

The Riesz transform on Tn and Zn is defined as the translation invariant operator
L2(Fn) → Cn ⊗ L2(Fn) (F = T, Z) in Definitions 2.5 and 4.11, respectively, in an
analogous fashion to the Rn case. We shall observe that for the Riesz transform on T
and Z (namely, the Hilbert transform on T and Z), the algebraic structure to formulate
the invariance condition (1.1.1) fits better with semigroups rather than groups.

In [3], Edwards and Gaudry proved a discrete analogue of Fact 1.3 for n = 1, giving
a characterization of the Hilbert transforms on T and Z by ‘semigroup symmetry’.

The goal of this article is to formulate the maximal semigroup symmetry for vector-
valued translation invariant operators on Tn and Zn in general and to investigate to what
extent Edwards–Gaudry’s characterization works for the Riesz transforms on Tn and
Zn in higher dimensions.

As a higher dimensional generalization of Edwards and Gaudry’s results, we need
to adapt the general framework, Condition 1.1 in the Rn case. For a formulation of
‘invariant multipliers’ on Tn (= Rn/Zn) or Zn, one natural way is to use only injective
linear transformations that preserve the lattice Zn. Namely, the semigroup

Mreg(n,Z) := {g ∈M(n,Z) : det g , 0}.

Unlike the R case, we note that

Mreg(n,Z) % GL(n,Z) := {g ∈ M(n,Z) : g is an automorphism of Zn}.

In the Introduction we discuss only Tn for simplicity of the exposition.
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[4] Maximal semigroup symmetry and discrete Riesz transforms 219

The semigroup Mreg(n,Z) acts on L2(Tn) by

(Lg f )(x) := f (tgx) for f ∈ L2(Tn).

Here we have used the operator Lg in the Tn case instead of the previous lg : f (t) 7→
f (g−1t) in the Rn case because g−1t is not necessarily well defined for t ∈ Tn if
det g , ±1.

Definition 1.5 (Semigroup symmetry). Let T : L2(Tn)→ V ⊗ L2(Tn) be a bounded
linear operator. We say that T is:

translation invariant if T ◦ τα = (id⊗ τα) ◦ T for all α ∈ Rn;

nondegenerate if C-span{T f (t) : f ∈ L2(Tn), t ∈ Tn} is equal to V.

A semigroup symmetry for T is a pair (G, π), where G is a subsemigroup of Mreg(n,Z)
and π : G→ GLC(V) is a semigroup homomorphism such that

(π(g) ⊗ Lg) ◦ T = T ◦ Lg for any g ∈ G. (1.1.3)

We define a partial order of semigroup symmetries by (G′, π′) ≺ (G, π) if G′ ⊂ G
and π′ = π|G. By Zorn’s lemma, there exists a maximal element of this partial order.
Actually, it is unique, as the following construction shows.

Definition–Proposition 1.6 (Maximal semigroup symmetry). For a nondegenerate
translation invariant operator T : L2(Tn)→ V ⊗ L2(Tn), there exists a unique maximal
semigroup symmetry. In fact, let G be a subset of Mreg(n,Z) consisting of all g for
which there exists A ∈ GLC(V) satisfying (A ⊗ Lg) ◦ T = T ◦ Lg. Then G is a semigroup
and A is determined uniquely by g ∈ G. The correspondence G → GLC(V), g 7→ A
defines a semigroup homomorphism, which we denote by π. Then (G, π) is the
maximal semigroup symmetry for the operator T .

Remark 1.7. An analogous notion is defined for l2(Zn), but it is slightly more involved;
see Section 4.2.

Example 1.8. Let GT = CO(n, Z) := CO(n) ∩ M(n, Z), GR = CO(n) and π(g) =

|det g|−1/ng. Let GZ = CO(n,Z) and ρ(g) = |det g|(n+1)/n tg−1. Then (GT, π) and (GR, π)
are the maximal semigroup symmetries for the Riesz transforms on Tn and Rn,
respectively, and the pair (GZ, ρ) is the maximal semigroup symmetry for the Riesz
transforms on Zn; see Propositions 2.6 and 4.12. Note that GR is in fact a group, but
GT and GZ are just semigroups.

Definition–Proposition 1.6 asserts that any nondegenerate translation invariant
operator gives rise to the unique semigroup symmetry. Conversely, we may ask the
following question.

Question 1.9. Does the maximal semigroup symmetry recover the original operator?
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Fact 1.3 asserts that this is the case for the Riesz transform on Rn for all
dimensions n. Edwards and Gaudry proved that this is also the case for the Hilbert
transform on the circle T and on Z (namely, the Riesz transform on the torus Tn and
on Zn for n = 1); see Facts 2.1 and 4.2, respectively.

Here are the main results of this article.

Theorem A. If the dimension n is one, two or a multiple of four, then
the maximal semigroup symmetry given by the pair (CO(n, Z), |det g|−1/ng) and
(CO(n, Z), |det g|n+1/n tg−1) characterizes the Riesz transforms on Tn and Zn,
respectively.

Theorem B. Suppose that n ≥ 3 and n . 0 mod 4. Then there exist infinitely many
linearly independent multipliers on Tn and Zn, respectively, satisfying the same
semigroup symmetry with the Riesz transform.

Theorem A contains the aforementioned results of Edwards and Gaudry as special
cases when n = 1. Theorem B shows that the features of invariant multipliers for Tn

and Zn are very different from Stein’s theorem in the Rn case.
In Section 5, we introduce a stronger invariance condition (saturated semigroup

symmetry) and prove that this condition characterizes the Riesz transforms on Tn and
Zn for arbitrary n.

Notation. N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}, N− = {−1,−2, . . .}, R× = {r ∈ R : r , 0},
R+ = {r ∈ R : r > 0}, Q× = Q ∩ R×, Q+ = Q ∩ R+, Mreg(n,Z) = {g ∈M(n,Z) : det g , 0}
(semigroup), CO(n,Z) = CO(n) ∩M(n,Z) (semigroup).

2. Maximal semigroup symmetry of translation invariant operators on Tn

In Sections 2 and 4, we shall appeal to the general framework in the Introduction to
discuss if the maximal symmetry gives a characterization of the Riesz transforms on
Tn = Rn/Zn and Zn.

2.1. The Hilbert transform on the circle T. We begin with a quick review of
Edwards and Gaudry’s characterization of the Hilbert transform on T in the one-
dimensional case.

We define the Fourier transform on T = R/Z, F : L2(T)→ l2(Z) by

F ( f )(α) :=
∫
T

f (t)e−2πiαt dt (α ∈ Z).

Given a bounded function m on Z, we define a multiplier operator Tm : L2(T)→ L2(T)
by

F (Tm f )(α) = m(α)F ( f )(α).

Clearly, the operator Tm is translation invariant, that is,

Tm ◦ τs = τs ◦ Tm for any s ∈ T,
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[6] Maximal semigroup symmetry and discrete Riesz transforms 221

where τs f (t) := f (t − s). Conversely, any translation invariant operator bounded on
L2(T) is of the form Tm for some m ∈ l∞(Z). In particular, the Hilbert transform on T,
to be denoted by H, is defined to be the multiplier operator Tm with m defined by

m(α) :=


−i if α ∈ N+,

0 if α = 0,
i if α ∈ N−.

Let us examine the additional invariance conditions that the Hilbert transform H
satisfies. For a ∈ Z\{0}, we define dilations Da on L2(T) and l2(Z) by

Da f (t) := f (at) if f ∈ L2(T),
DaF(α) := F(aα) if F ∈ l2(Z), (2.1.1)

respectively. Then
Da ◦ F ◦ Da = F . (2.1.2)

In other words,

(F ◦ Da f )( β) =

(F f )(a−1β) if β ∈ aZ,
0 if β ∈ Z\aZ.

Then it is easy to see that the Hilbert transform H on T satisfies the identity

H ◦ Da = sgn(a)Da ◦ H for any a ∈ Z\{0}. (2.1.3)

Conversely, suppose that a multiplier operator Tm satisfies (2.1.3). By composition
with Da ◦ F , we obtain the identity

Da ◦ F ◦ Tm ◦ Da = sgn(a)F ◦ Tm

because of (2.1.2). In terms of the multiplier m, this amounts to

Da(m(α)F (Da f )(α)) = sgn(a)m(α)F ( f )(α) for any f ∈ L2(T).

Using (2.1.2) again,

m(aα)F ( f )(α) = sgn(a)m(α)F ( f )(α)

for any f ∈ L2(T). Hence, m(aα) = sgn(a)m(α) for any a ∈ Z\{0} and α ∈ Z. The
substitution α = 0 and a = −1 shows that m(0) = 0 and substituting α = 1 shows that m
is a constant multiple of the sign function. This is essentially the argument of Edwards
and Gaudry, who proved the following fact.

Fact 2.1 [3, Theorem 6.8.3]. Suppose that Tm is a multiplier operator on L2(T),
associated to m ∈ l∞(Z). If Tm satisfies the identity

Tm ◦ Da = sgn(a)Da ◦ Tm for all a ∈ Z\{0},

then m is a constant multiple of the sign function. Hence, Tm is a constant multiple of
the Hilbert transform.

It should be noted that the above relative invariance is the maximal semigroup
symmetry with the subgroup Mreg(1, Z) � Z\{0} in the sense of Definition-
Proposition 1.6.

https://doi.org/10.1017/S144678871500049X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871500049X


222 T. Kobayashi, A. Nilsson and F. Sato [7]

2.2. Covariance of vector-valued multipliers on Zn. In this subsection, we
translate the semigroup symmetry of translation invariant operators on Tn into a
covariance of vector-valued multipliers on Zn � (Tn)̂ by using the Fourier transform.

Let Tn be the n-torus Rn/Zn. Then the standard inner product on Rn induces a
pairing

〈 , 〉 : Zn × Tn → T, (α, x) 7→
n∑

i=1

αixi.

We define the Fourier transform

F : L2(Tn)→ l2(Zn)

by (F f )(α) :=
∫
Tn f (x)e−2πi〈α,x〉 dx for α ∈ Zn. The Fourier transform F is a unitary

operator between the two Hilbert spaces up to scaling.
Let V be a finite-dimensional vector space over C. Given a bounded function

m : Zn → V , we define a linear operator

l2(Zn)→ V ⊗ l2(Zn), g 7→ (α 7→ g(α)m(α)),

which is obviously a bounded operator. Via the Fourier transform, we get a bounded
linear operator

Tm : L2(Tn)→ V ⊗ L2(Tn), f 7→ F −1(mF f ).

The operator Tm is called a multiplier operator and is translation invariant. Conversely,
any translation invariant bounded operator is of the form Tm with some bounded
function (multiplier) m : Zn → V by the general theory of translation invariant
operators. By definition, we have F (Tm f )(α) = m(α) ⊗ F f (α). By abuse of notation,
we shall write simply F (Tm f ) = m ⊗ F f .

Proposition 2.2. Let H be a subsemigroup of Mreg(n, Z) and π : H → GLC(V)
a semigroup homomorphism. The multiplier operator Tm : L2(Tn) → V ⊗ L2(Tn)
satisfies the condition (1.1.3) for the pair (H, π) if and only if the multiplier m : Zn→ V
satisfies

m(gα) = π(g)m(α) for all α ∈ Zn and all g ∈ H. (2.2.1)

For the proof of Proposition 2.2, we use the following two lemmas. (An alternative
proof will also be given at the end of this subsection.) We denote by tg the transposed
matrix of g. Clearly, tg ∈Mreg(n,Z) if and only if g ∈Mreg(n,Z).

Lemma 2.3. For g ∈Mreg(n,Z) and α ∈ g−1Zn,∑
m∈Zn/tgZn

e−2πi〈α,m〉 =

|det g| if α ∈ Zn,

0 if α < Zn.

Proof. Since m 7→ e−2πi〈α,m〉 is a character of the finite group Z/tgZn, the formula
follows from Schur’s orthogonality relation and from the identity ](Zn/tgZ) = |det g|. �
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The formula of F ◦ Lg on Tn for g ∈ GL(n,Z) can be obtained easily as the formula
of the Fourier transform on Rn for affine transforms. However, for g ∈Mreg(n,Z), we
need to note that Lg : L2(Tn)→ L2(Tn) is not surjective.

Lemma 2.4. For g ∈Mreg(n,Z) and β ∈ Zn,

F (Lg f )(β) =

(F f )(g−1β) if β ∈ gZn,

0 if β < gZn.

Proof.

F (Lg f )(β) =

∫
Rn/Zn

f (tgx)e−2πi〈β,x〉 dx

= |det g|−1
∫
Rn/tgZn

f (y)e−2πi〈β,tg−1y〉 dy

= |det g|−1
∑

m∈Zn/tgZn

∫
Rn/Zn

f (y + m)e−2πi〈g−1β,y+m〉 dy

= |det g|−1
∑

m∈Zn/tgZn

e−2πi〈g−1β,m〉
∫
Rn/Zn

f (y)e−2πi〈g−1β,y〉 dy.

By using Lemma 2.3, we get the lemma. �

Proof of Proposition 2.2. Via the Fourier transform, we see that the condition (1.1.3)
is equivalent to the following condition by Lemma 2.4:

π(g)h(g−1β)m(g−1β) = m(β)h(g−1β) for any β ∈ gZn and h ∈ l2(Zn)
for all g ∈ H. This is clearly equivalent to the condition (2.2.1). �

Alternative proof of Proposition 2.2. Assume that Tm satisfies (1.1.3). Then, special-
izing to the function f (t) := e2πi〈α,t〉 and setting t = 0,

π(g)(Tm(e2πi〈α,·〉)(0)) = Tm(e2πi〈α,tg·〉)(0) = Tm(e2πi〈gα,·〉)(0).
Since m(α) = F κ(α), which can be rewritten as (κ ∗ e2πi〈α,·〉)(0) and by definition this
is equal to Tm(e2πi〈α,·〉)(0), we obtain π(g)m(α) = m(gα). Conversely, if π(g)m(α) =

m(gα), then the same argument gives
π(g)(Tm(e2πi〈α,·〉)(0)) = Tm(e2πi〈α,tg·〉)(0). (2.2.2)

By definition, Tm(Lge2πi〈α,·〉)(s) = Tm(e2πi〈α,tg·〉)(s) = τ−sTm(e2πi〈α,tg·〉)(0). Since Tm is
translation invariant, this is equal to Tm(τ−se2πi〈α,tg·〉)(0) = Tm(e2πi〈α,tg·+tgs〉)(0). Using
the linearity of Tm, we can rewrite this as e2πi〈α,tgs〉Tm(e2πi〈α,tg·〉)(0). By (2.2.2), we
obtain e2πi〈α,tgs〉π(g)Tm(e2πi〈α,·〉)(0). By linearity,

π(g)Tm(e2πi〈α,·+tgs〉)(0) = π(g)Tm(τ−tgse2πi〈α,·〉)(0).
Using the translation invariance again, we see that this equals

π(g)τ−tgsTm(e2πi〈α,·〉)(0) = π(g)Tm(e2πi〈α,·〉)(tgs) = π(g)LgTm(e2πi〈α,·〉)(s).
Thus, we have proved the identity Tm ◦ Lg = π(g)Lg ◦ Tm for functions of the type
e2πi〈α,·〉. By linearity and continuity of Tm, this implies that the identity holds in general
since trigonometric polynomials are dense in L2(Tn). �

https://doi.org/10.1017/S144678871500049X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871500049X


224 T. Kobayashi, A. Nilsson and F. Sato [9]

2.3. Riesz transform on Tn. As a higher-dimensional generalization of the Hilbert
transform, the Riesz transforms R1, . . . ,Rn on the n-torus Tn = Rn/Zn are defined as
below.

Definition 2.5 [11, Section VII.3]. We define R j : L2(Tn)→ L2(Tn) (1 ≤ j ≤ n) to be
the multiplier operator Tm j , where

m j(α) =

−i
α j

‖α‖
if α , 0,

0 if α = 0.

The resulting bounded linear operator R = (R1, . . . ,Rn) : L2(Tn)→ Cn ⊗ L2(Tn) is said
to be the Riesz transform on Tn. It is a discrete analogue of the Riesz transform on Rn.

Let us find what kind of symmetry the Riesz transform satisfies and then discuss
whether or not such an invariance condition recovers the Riesz transform up to a scalar.

We recall that CO(n,Z) is the semigroup given by CO(n) ∩M(n,Z).

Proposition 2.6. The maximal symmetry of the Riesz transform R on Tn is given by the
pair (H, π), where

H := CO(n,Z),

π : H → GL(n,C), g 7→ |det g|−1/ng.

Proof. It is easy to see that the Riesz transform satisfies the condition

Lg ◦ R = |det g|−1/ng ◦ R ◦ Lg for any g ∈ CO(n,Z), (2.3.1)

namely, (π(g) ⊗ Lg) ◦ R = R ◦ Lg for all g ∈ CO(n,Z). It remains to prove that (H, π)
is the maximal semigroup symmetry. For this, we use Proposition 2.2. Let g ∈
Mreg(n,Z) and suppose that there exists A ∈ GL(n,C) such that mR(gα) = AmR(α) for
all α ∈ Zn. We shall show that g ∈ CO(n,Z). Indeed, as mR(α) = −i(α/‖α‖), we obtain
(gα/‖gα‖) = A(α/‖α‖). Taking norms, this implies in particular that A ∈ O(n) since
‖Aα‖ = ‖α‖ for all α ∈ Zn. We write g = (~g1, . . . , ~gn) and A = (~A1, . . . , ~An). Then,
for α = ei, we obtain ~Ai = ~gi/‖~gi‖, that is, A is of the form (λ1~g1, . . . , λn~gn). Now, by
putting α = ei + e j, we find that λi = λ j because ~g1, . . . ,~gn are linearly independent. So,
A = λg, but it is also in O(n); hence, λ = |det g|−1/n. Hence, g ∈ CO(n) ∩M(n,Z) = H
and A = π(g). Therefore, (H, π) is the maximal semigroup symmetry of the Riesz
transform. �

3. Proof of main theorems for Tn

In this section, we complete the proof of Theorems A and B for the n-torus Tn.

3.1. From semigroup to group invariance. Owing to Proposition 2.2, the analytic
problem (Question 1.9) reduces to an algebraic invariance of multipliers m : Zn → V .
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Under certain mild conditions, we can extend this algebraic semigroup symmetry to a
larger group invariance.

In this subsection, we formulate this in Lemma 3.5, which includes the following
proposition as a special case.

Proposition 3.1. Let π : CO(n, Z) → GLC(V) be a semigroup homomorphism and
m : Zn → V a function satisfying

m(gα) = π(g)m(α) for all g ∈ CO(n,Z) and α ∈ Zn.

Then there exist unique extensions π̃ : CO(n,Q)→ GLC(V) (group homomorphism)
and m̃ : Qn → V of π and m, respectively, satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ CO(n,Q) and α ∈ Qn.

In order to deal with a general setting, let H be a subsemigroup in Mreg(n,Z) and
define H̃ to be the subgroup in GL(n,Q) generated by g and g−1 for g ∈ H.

Example 3.2.
(1) ˜Mreg(n,Z) = GL(n,Q).
(2) ˜CO(n,Z) = CO(n,Q).

Proof. The first statement follows from the fact that kIn ∈Mreg(n,Z) for any k ∈ N+. To
see the second statement, we first observe an obvious inclusion: ˜CO(n,Z) ⊂ CO(n,Q).
Conversely, let g ∈ CO(n,Q). Then there exists k ∈ Z such that kg ∈ CO(n, Z). It
follows that g = (kIn)−1(kg) ∈ ˜CO(n,Z). �

Here is the universality for the extension H { H̃ : any semigroup homomorphism
π : H → GLC(V) extends to a group homomorphism π̃ : H̃ → GLC(V) (see [1, Ch. 1,
Section 2.4, Theorem 1 and Remark 2]).

Suppose that H is a subsemigroup of Mreg(n,Z). Since H̃ is a subgroup of GL(n,Q),
we can define a subset UH of Qn by

UH := H̃Zn = {hv : h ∈ H̃, v ∈ Zn}.

We note that Zn ⊂ UH .

Lemma 3.3. Let H be a subsemigroup of Mreg(n, Z), π : H → GLC(V) a semigroup
homomorphism and m : Zn → V a function satisfying (2.2.1). We further assume that
there is a map A : N+ → GLC(V) satisfying the following two conditions: for any
k ∈ N+,

A(k)π(g) = π(g)A(k) for all g ∈ H,
m(kα) = A(k)m(α) for all α ∈ Zn. (3.1.1)

Then m extends uniquely to a function m̃ : UH → V satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ H̃ and α ∈ UH . (3.1.2)
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Remark 3.4. The extension m̃ is not necessarily bounded even though we assume the
multiplier m to be bounded.

Proof of Lemma 3.3. We set

Y := {(g, α) ∈ H̃ × Zn : gα ∈ Zn}.

We have an obvious inclusion H × Zn ⊂ Y because H ⊂Mreg(n,Z).
First let us prove that

m(gα) = π̃(g)m(α) (3.1.3)

for (g, α) ∈ Y with g−1 ∈ H. Since g−1 ∈ H and gα ∈ Zn, we have from the identity
(2.2.1) that

m(α) = m(g−1gα) = π(g−1)m(gα).

As π(g−1) is invertible, this can be rewritten as π̃(g)m(α) = m(gα). Hence, (2.2.1) holds
under the assumption that g ∈ H or g ∈ H−1.

For the general case, let (g, α) ∈ Y . We write g ∈ H̃ as g = g1 · · · gN (g1, . . . , gN ∈

H ∪ H−1) and will show (3.1.3) by induction on N. Suppose that (g, α) ∈ Y . We set
g′ := g2 · · · gN . Since g′ ∈ GL(n,Q), we can find k ∈ N+ such that kg′α ∈ Zn. Since
both (g1, g′kα) and (g′, kα) belong to Y , we have from the inductive hypothesis that

m(g1g′kα) = π̃(g1)m(g′kα),
m(g′kα) = π̃(g′)m(kα).

Therefore,

m(kgα) = m(g1g′kα) = π̃(g1)π̃(g′)m(kα) = π̃(g)m(kα).

By the assumption (3.1.1), this implies that A(k)m(gα) = π̃(g)A(k)m(α). As A(k)
commutes with π(g) for all g ∈ H, it commutes also with π̃(g) for all g ∈ H̃. Hence,
we get the identity A(k)m(gα) = A(k)π̃(g)m(α). Since A(k) is invertible, we obtain
m(gα) = π̃(g)m(α). Thus, we have shown that (3.1.3) holds for all (g, α) ∈ Y .

We are ready to define m̃ by the relative invariance

m̃(gα) = π̃(g)m(α)

for α ∈ Zn and g ∈ H̃. To see that m̃ is well defined, let gα = hβ. Then α = g−1hβ;
hence, m(α) = m(g−1hβ) = π(g−1h)m(β) because (g−1h, β) ∈ Y . Thus,

m̃(gα) = π̃(g)m(α) = π̃(h)m(β) = m̃(hβ),

which proves that m̃ is well defined. In this way, m̃ is defined for all elements in UH
and the invariance (3.1.2) is now clear. �

Lemma 3.5. Let H be a subsemigroup of Mreg(n, Z), π : H → GLC(V) a semigroup
homomorphism and m : Zn → V a map satisfying (2.2.1). If H contains kIn for all
k ∈ N+, then there exists a unique extension m̃ : Qn → V of m satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ H̃ and α ∈ Qn.

Proof. The assumption of Lemma 3.3 is fulfilled by putting A(k) := π(kI). Then m̃
extends to Qn = H̃Zn. �
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3.2. Reduction to number theory. Let

pn : CO(n,Q)→ Qn\{0}

be the projection by taking the first column vector. We prove that the conclusion of
Theorem A holds if pn is surjective. In the next subsection, we determine explicitly
for which n, pn is surjective.

Lemma 3.6. Let T : L2(Tn)→ Cn ⊗ L2(Tn) be a bounded translation invariant operator
satisfying (2.3.1). If pn is surjective, then T is a constant multiple of the Riesz
transform on Tn.

Proof. Owing to Proposition 2.2, Lemma 3.6 is reduced to the following combinatorial
lemma with ν = −1/n. �

Lemma 3.7. Let ν ∈ C. Suppose that m : Zn → Cn satisfies

m(gα) = |det g|νgm(α) (3.2.1)

for any α ∈ Zn and g ∈ CO(n,Z). Let e1 := t(1, 0, . . . , 0). Then:

(1) m(0) = 0 and m(e1) ∈ Ce1;
(2) if pn : CO(n,Q)→ Qn\{0} is surjective, then there exists c ∈ C such that

m(α) = c ‖α‖nνα (α ∈ Zn\{0}).

Proof of Lemma 3.7. (1) For j = 1, 2, . . . , n, we denote by g( j) the diagonal matrix
diag(1, . . . , 1,−1, 1, . . . , 1) whose jth entry is −1. Then g( j) ∈ CO(n,Z) and g( j)e1 = e1
(2 ≤ j ≤ n). Applying g = g( j) to (3.2.1), we get m(e1) = m(g( j)e1) = g( j)m(e1). Hence,
the jth entry of m(e1) vanishes for 2 ≤ j ≤ n. Thus, we have shown that m(e1) = ce1 for
some c ∈ C. The same argument with 1 ≤ j ≤ n applied to m(0) shows that m(0) = 0.

(2) By (1), we have m(e1) = ce1 for some c ∈ C. By Proposition 3.1, m extends
uniquely to a function m̃ : Qn→ Cn satisfying (3.2.1) for any g ∈ CO(n,Q) and α ∈ Qn.
Take any α ∈ Qn\{0}. If pn is surjective, we can find g ∈ CO(n,Q) such that pn(g) = α,
that is, ge1 = α. Applying (3.2.1),

m̃(α) = |det g|νgm̃(e1) = c |det g|νge1 = c |det g|να.

On the other hand, taking the norms of the identity ge1 = α, we have |det g| = ‖α‖n

because g ∈ CO(n,Q). Thus, m̃(α) is of the form c ‖α‖nνα. Now taking m = m̃|Zn , we
get the second statement. �

3.3. Proof of Theorem A for Tn. In this subsection, we classify all the positive
integers n such that pn : CO(n,Q)→ Qn\{0} is surjective (see Proposition 3.8). In
particular, the equivalence of (i) and (ii) completes the proof of Theorem A by virtue
of Lemma 3.6. To state the invariance conditions in Proposition 3.8, we introduce an
equivalence relation ∼ on Qn by

x ∼ y⇔ x = gy for some g ∈ CO(n,Q).

This equivalence relation on Qn induces the one on its subset Zn\{0}, and we write
Zn\{0}/∼ for the set of equivalence classes.
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Proposition 3.8. The following four conditions on n ∈ N+ are equivalent:

(i) n is one, two or a multiple of four;
(ii) pn : CO(n,Q)→ Qn\{0} is surjective;
(iii) #(Zn\{0}/∼) = 1;
(iv) #(Zn\{0}/∼) <∞.

The rest of this subsection is devoted to the proof of Proposition 3.8. We define a
subgroup Λ of Q× by

Λ := {|det g|2/n : g ∈ CO(n,Q)}. (3.3.1)

Lemma 3.9. For x, y ∈ Qn\{0}, the following two conditions are equivalent:

(i) x ∼ y, that is, there exists g ∈ CO(n,Q) such that y = gx;

(ii)
‖y‖2

‖x‖2
∈ Λ.

Proof. The key to the proof is the understanding of the image of det : CO(n,Q)→ Q×.
Suppose that g ∈ CO(n,Q). Then tgg = αIn for some α > 0. Taking the determinant,
we get |det g|2 = αn. Therefore, for x ∈ Qn,

‖gx‖2 = |det g|2/n ‖x‖2. (3.3.2)

Now the implication (i)⇒ (ii) is clear.
(ii) ⇒ (i) We take g ∈ CO(n,Q) such that |det g|2/n = ‖y‖2/‖x‖2. This implies

that ‖y‖ = ‖gx‖ by (3.3.2). By Witt’s theorem (see [9, Section IV.1, Theorem 3] for
instance), there exists h ∈ O(n,Q) such that y = hgx. Hence, x ∼ y. �

We say that two quadratic forms on Qn are equivalent if they are conjugate by an
element in GL(n,Q). The following elementary lemma clarifies the role of the set Λ

in our context.

Lemma 3.10. For a ∈ Q×, the following two conditions are equivalent:

(i) a ∈ Λ;
(ii) the quadratic forms ‖x‖2 =

∑n
i=1 x2

i and a‖x‖2 on Qn are equivalent.

Proof. (i) ⇒ (ii) Let a ∈ Λ. By the definition (3.3.1) of Λ, a = |det g|2/n for some
g ∈ CO(n,Q). This implies that tgIng = aIn and therefore the quadratic forms ‖x‖2 and
a‖x‖2 on Qn are conjugate by g ∈ CO(n,Q).

(ii) ⇒ (i) Suppose that the quadratic form a‖x‖2 is conjugate to ‖x‖2, that is,
aIn = tgIng for some g ∈ GL(n,Q), which implies that g ∈ CO(n,Q). Then we have
a = |det g|2/n ∈ Λ. �

Proposition 3.11. Let

A :=
{ ∏

p j:prime
e j∈Z

pe j

j : e j is odd only if p j = 2 or ≡ 1 mod 4
}
.
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Then we have the following characterization of Λ:

Λ =


(Q×)2 if n is odd,
A if n ≡ 2 mod 4,
Q+ if n ≡ 0 mod 4.

Proof. Owing to Lemma 3.10, it suffices to find a necessary and sufficient condition
on a ∈ Q× such that the quadratic forms ‖x‖2 and a‖x‖2 are equivalent on Qn. For this,
we recall that the Hasse–Minkowski theorem says that two quadratic forms over Q are
equivalent if and only if they have the same signature, discriminant modulo the squares
(Q×)2 in Q× and invariants εp for all prime numbers p; see [9, Ch. IV, Section 3.3,
Corollary to Theorem 9]. We recall that the Hilbert symbol (a, b)p is defined to be 1 if
the equation z2 − ax2 − by2 = 0 has a nontrivial solution in Q3

p and −1 otherwise. Then
εp is defined by εp( f ) =

∏
i< j(ai, a j)p for a quadratic form f ∼ a1X2

1 + · · · + anX2
n .

The signatures of ‖x‖2 and a‖x‖2 coincide if and only if a > 0 because ‖x‖2 is
positive definite.

The discriminants of ‖x‖2 and a‖x‖2 are given by 1 and an, respectively. They
coincide in Q×/(Q×)2 if and only if an ∈ (Q×)2. For n odd, this means that a itself must
be a square. For n even, this does not give any restriction.

Finally, we consider the invariants εv. For ‖x‖2, we have εv = 1 and, for a‖x‖2, it is
(a, a)n(n−1)/2

v .

Case I: n is odd. Then we have seen above that a is a square; thus, (a, a) = 1 according
to [9, Section III.1.1, Proposition 2(i)]. Hence, for n odd the only condition is that a is
a square. Therefore, Λ = (Q×)2.

Case II: n ≡ 0 mod 4. Since n(n − 1)/2 is even, (a, a)n(n−1)/2
v = 1. Thus, all the

invariants are the same as long as a > 0. Thus, we have Λ = Q+.

Case III: n ≡ 2 mod 4. Since n(n − 1)/2 is odd, (a, a)n(n−1)/2
v = (a, a)v. Let a =

2α0 · pα1
1 · · · · · p

αk
k . For a prime number p,

(a, a)p =


(−1)αiε(p) if p = pi for some i (1 ≤ i ≤ k),
(−1)ε(pα1

1 · ··· ·p
αk
k ) if p = 2,

1 otherwise,

where ε is defined by ε(u) = (u − 1)/2 mod 2; see [9, Ch. III, Section 1.2, Theorem
1] for instance. Thus, to have (a, a)p = 1 for all prime numbers p, it is necessary and
sufficient to haveαi ≡ 0 mod 2 whenever pi ≡ 3 mod 4 (1 ≤ i ≤ k),

pα1
1 · · · · · p

αk
k ≡ 1 mod 4.

None of the conditions give any restriction on α0 and the last condition follows from
the first because 32 ≡ 1 mod 4. Hence, we conclude that the set Λ consists of all
rational numbers of the form 2α0 · pα1

1 · · · · · pαk
k , where the powers αi are even if

pi ≡ 3 mod 4. Therefore, Λ =A. �
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Alternative proof of Proposition 3.11. We would like to present a second proof based
on some results by Dieudonné; see [2]. This proof of Proposition 3.11 is shorter but
less direct. As before, the situation immediately reduces to the case when n is even.
In our setting where we are considering the equivalence of the quadratic forms ‖x‖2

and a‖x‖2 on Qn, [2, Theorems 2 and 3] can be reformulated as the statement that the
subgroup Λ = Q+ for n ≡ 0 mod 4, and Λ is equal to the group of nonzero norms in
the algebraic extension Q + Q[i] for n ≡ 2 mod 4. The latter set consists of rational
numbers c for which there exist rational solutions to the equation a2 + b2 = c; see also
the remark on [2, page 404]. The Diophantine equation a2 + b2 = c has an integer
solution if and only if ordp c is even for every prime p ≡ 3 mod 4; see [4, Section
17.6, Corollary 1]. Here ordp c is the largest nonnegative integer k such that pk | c by
pk+1 - c. This proves Proposition 3.11 because the rational solutions differ from the
integer solutions by only a square in the denominator. �

Remark 3.12. There is a natural isomorphism

R+ × O(n) ∼→CO(n), (λ, g) 7→ λg (3.3.3)

for all dimensions n. Further, the isomorphism (3.3.3) induces an isomorphism

Q+ × O(n,Q) ∼→CO(n,Q)

if n is odd because |det g|1/n ∈ Q for all g ∈ CO(n,Z) by Proposition 3.11.

Corresponding to the isomorphism (3.3.3), we have an inclusion

N+ × O(n,Z) ↪→ CO(n,Z),

where we set O(n,Z) := O(n) ∩M(n,Z).

Remark 3.13. The semigroup CO(n,Z) is strictly larger than the subsemigroup N+ ×

O(n,Z) for any n ≥ 2.

Proof. The element g ∈ CO(n,Z) belongs to the subsemigroup only if |det g|1/n ∈ N+.
For even n = 2k, the element

g :=
(
1 −1
1 1

)
⊕ · · · ⊕

(
1 −1
1 1

)
belongs to CO(2k,Z) but |det g|1/n =

√
2 < N+ for k ≥ 1. Hence, this element does not

belong to the subsemigroup.
For n odd, we have seen in Remark 3.12 that CO(n,Q) = Q+ × O(n,Q). Taking

the intersection with M(n,Z), we obtain CO(n,Z) = (Q+ × O(n,Q)) ∩M(n,Z). Since
O(n,Q) is dense in O(n,R), see for example [8], Q× · pn(CO(n,Z)) = pn(CO(n,Q)) is
dense in Rn. On the other hand, O(n,Z) is the set of permutation matrices with signs.
Thus, Q× · pn(N+ × O(n,Z)) is not dense in Rn. Therefore, N+ × O(n,Z) is a proper
subset of CO(n,Z). �
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Proof of Proposition 3.8. First we observe that the condition (ii) is equivalent to

e1 ∼ x for any x ∈ Qn\{0},

which is then equivalent also to the following condition by Lemma 3.9:

(ii)′ ‖x‖2 ∈ Λ for any x ∈ Qn\{0}.

(i)⇒ (ii)′: This implication is trivial if n = 1. For n = 2, suppose that x = t(x1, x2) ∈
Q2\{0}. Then g :=

(x1 −x2
x2 x1

)
∈ CO(2,Q) and p2(g) = x. This shows that p2 is surjective.

For n ≡ 0 mod 4, (ii)′ holds immediately by Λ = Q+ (see Proposition 3.11).
(ii)⇒ (iii): If pn is surjective, then any element inQn\{0} is in the same equivalence

class as e1. This implies (iii).
(iii)⇒ (iv): This is obvious.
(iv)⇒ (i): This follows from Lemma 3.14 below. �

Lemma 3.14. For n odd or n ≡ 2 mod 4 and larger than 2, we have #(Zn\{0}/ ∼) =∞.

Proof. Suppose first that n is odd. We define a sequence of integers p j by setting
p1 := 1 and using the recursive relation

p j :=
j−1∏
i=1

(1 + p2
i ).

Then, for any i , j,
GCD(1 + p2

j , 1 + p2
i ) = 1. (3.3.4)

We set γ j := t(1, p j, 0, . . . , 0). By Lemma 3.9 and Proposition 3.11,

γi ∼ γ j ⇒

√√
1 + p2

i

1 + p2
j

∈ Q×.

By (3.3.4), this implies that 1 + p2
j = a2 for some integer a. But this is impossible

because p j <
√

1+p2
j < p j + 1. Hence, γi / γ j. Thus, we conclude that #(Zn\{0}/∼) =

∞ if n is odd.
Suppose now that n > 2 and n ≡ 2 mod 4. Let pk be the kth prime such that

pk ≡ 3 mod 4, that is,

p1 = 3, p2 = 7, p3 = 11, p4 = 19, . . . .

By a theorem of Lagrange (see [9, Section IV, Appendix, Corollary 1] for example),
we can find four integers ak, bk, ck, dk such that

a2
k + b2

k + c2
k + d2

k = pk.

We set
γk := t(ak, bk, ck, dk, 0, . . . , 0) ∈ Zn.

Then ‖γ j‖
2/‖γi‖

2 = p j/pi < Λ by Proposition 3.11. Therefore, γi / γ j for any i , j by
Lemma 3.9. Hence, there exist infinitely many γ j ∈ Z

n which are not equivalent to
each other. �
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Remark 3.15. As we see from Theorems A and B and from Proposition 3.8, the
surjectivity of pn : CO(n,Q)→ Qn\{0} is a necessary and sufficient condition on n such
that the maximal semigroup symmetry characterizes R. Let us consider the stronger
condition of surjectivity of pn replacing Q by Z. By using the fields R,C,H and O,
we see that pn : CO(n,Z)→ Zn\{0} is surjective if n = 1, 2, 4 and 8, respectively. This
gives a partial result of Theorem A in the cases n = 1, 2, 4 and 8. This was the original
approach when we started this project.

3.4. Proof of Theorem B for Tn. In order to prove Theorem B, we use
Proposition 2.2 and construct, for any ν ∈ R, infinitely many linearly independent
multipliers m : Zn → Cn for n ≥ 3, n . 0 mod 4 satisfying the condition

m(gα) = |det g|νg m(α) for all α ∈ Zn and g ∈ CO(n,Z). (3.4.1)

The case ν = −1/n will be used in the proof of Theorem B for Tn, and ν = −(n + 1)/n
for Zn; see Section 4. Proposition 3.1 gives a guiding principle to introduce the
following function mβ.

Lemma 3.16. Fix β ∈ Zn and ν ∈ R. Then the map mβ : Zn → Cn given by

mβ(α) =

|det g|να if α = gβ for some g ∈ CO(n,Q),
0 if α / β

is well defined and satisfies (3.4.1). Further,

Supp mβ = {α ∈ Zn : α ∼ β}. (3.4.2)

Proof. If β = 0, then mβ ≡ 0 and the statement is obvious.
Suppose that β , 0. If β = g1α = g2α for g1, g2 ∈ CO(n,Q), then g1g−1

2 β = β. Taking
the norm, we see that |det(g1g−1

2 )| = 1 because g1g−1
2 ∈ CO(n,Q). Therefore, we have

|det g1|
να = |det g2|

να and thus mβ(α) is well defined.
Let us verify that mβ satisfies (3.4.1). Suppose that g ∈ CO(n,Z). For α such that

α / β, we also have gα / β. Hence, mβ(α) = mβ(gα) = 0 and (3.4.1) holds. For α such
that α ∼ β, we take g′ ∈ CO(n,Q) such that α = g′β. By definition,

mβ(α) = |det g′|να,
mβ(gα) = |det (gg′)|νgα.

Hence, mβ(gα) = |det g|νgmβ(α) and therefore (3.4.1) holds. Thus, Lemma 3.16 is
proved. �

Lemma 3.17. Retain the notation of Lemma 3.16. Suppose that γ j ∈ Z
n ( j = 1, 2, . . .)

satisfies γi / γ j for any i , j. Then mγ j ( j = 1, 2, . . .) are linearly independent.

Proof. The supports of the mγ j are disjoint for j = 1, 2, . . . by (3.4.2). It then follows
that mγ j ( j > 1, 2, . . .) are linearly independent. �

Proof of Theorem B. This is clear from Lemma 3.17 and from the equivalence (i)⇔
(iv) in Proposition 3.8. �
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4. Translation invariant operators on Zn

So far, we have discussed the maximal semigroup symmetry for the Riesz
transforms on Tn. In this section, we consider an analogous question for the Zn case.

4.1. One-dimensional case. In this subsection, we review the characterization
results for the Hilbert transform on Z obtained by Edwards and Gaudry in [3].

Let

κ(α) =

0 if α = 0,
1
πα

if α , 0.

Then the Hilbert transform H for Z is defined to be the operator on l2(Z) as the
convolution with h, that is, H f = κ ∗ f . Then H : l2(Z)→ l2(Z) is a translation invariant
bounded linear operator.

Remark 4.1. Here we follow the definition given in [3]. Note that κ(α) is the natural
correspondent to the Hilbert kernel on R. This kernel differs slightly from the Fourier
transform of −i sgn θ, whose kernel can be written as (((−1)α − 1)/2)κ(α).

We recall from (2.1.1) that Da : l2(Z)→ l2(Z) is a dilation for a ∈ Z\{0}.
Edwards and Gaudry proved the following characterization of the Hilbert transform

on Z.

Fact 4.2 [3, Theorem 6.8.5]. Let T be a translation invariant operator on l2(Z), which,
for every a ∈ Z\{0}, satisfies the relation

T (Da f ) = a DaT ( f )

for all functions f ∈ l2(Z) with support in aZ. Then T is a constant multiple of the
Hilbert transform.

The restriction of the invariance condition to functions with support in aZ did
not appear in the characterization theorem for the Rn case (Fact 1.3) or the Tn case
(Fact 2.1). However, it cannot be relaxed in the Z case, as the next fact shows.

Fact 4.3 [3, Lemma 6.8.4]. If T is a translation invariant operator on l2(Z) such that

T ◦ Da = σ(a)Da ◦ T

for all a ∈ Z\{0}, where σ(a) is a nonzero complex-valued function on Z\{0}, then
σ ≡ 1 and T is a constant multiple of the identity.

We shall analyze Fact 4.3 for the higher dimensional case in Section 4.2.
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4.2. Maximal semigroup symmetry. For β ∈ Zn, we define the translation operator
τβ : l2(Zn)→ l2(Zn) by (τβ f )(α) = f (α − β). For g ∈M(n,Z), let Lg : l2(Zn)→ l2(Zn)
be the linear map defined by Lg f (α) = f (tgα). Let V be a finite-dimensional complex
vector space.

Definition 4.4. A bounded linear operator T : l2(Zn)→ V ⊗ l2(Zn) is said to be:

(1) translation invariant if T ◦ τβ = (id⊗ τβ) ◦ T for all β ∈ Zn;
(2) nondegenerate if C- span{T f (α) : f ∈ l2(Zn), α ∈ Zn} is equal to V .

Any translation invariant operator, T : l2(Zn)→ V ⊗ l2(Zn), can be obtained as the
convolution with some kernel κ : Zn → V:

T f (α) = κ ∗ f (α) =
∑
β∈Zn

f (β)κ(α − β), f ∈ l2(Zn).

Then T is nondegenerate if and only if κ(Zn) spans the vector space V over C. From
now on, we assume that T is translation invariant and nondegenerate.

We will make frequent use of Kronecker’s delta function

δγ(α) =

1 if α = γ,

0 if α , γ

in the present section.
For g ∈M(n,Z) and A ∈ GLC(V), we consider the following conditions on the pair

(g, A):

(C0) (A ⊗ Lg) ◦ T f = T ◦ Lg f for all f ∈ l2(Zn);
(C1) (A ⊗ Lg) ◦ T f = T ◦ Lg f for all f ∈ l2(Zn) with Supp f ⊂ tgZn;
(C2) (A ⊗ Lg) ◦ Tδ0 = T ◦ Lgδ0;
(C3) Aκ(tgα) = κ(α) for all α ∈ Zn.

Obviously, (C0) implies (C1).

Lemma 4.5. The three conditions (C1), (C2) and (C3) are equivalent.

Proof. First it is obvious that (C1) implies (C2).
(C2) ⇒ (C3): Since Lgδ0 = δ0 for any g ∈ M(n, Z), the implication is clear from

Tδ0 = κ.
(C3)⇒ (C1): Take any f ∈ l2(Z) such that Supp f ⊂ tgZn. Then

(A ⊗ Lg)T f (α) = A
∑
β∈Zn

f (β)κ(tgα − β).

Since the support of f is contained in tgZn, the right-hand side is equal to

A
∑
γ∈Zn

f (tgγ)κ(tg(α − γ))
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and, by the condition (C3), this is

=
∑
γ∈Zn

f (tgγ)κ(α − γ) = T (Lg f )(α),

which gives the condition (C1). �

Lemma 4.6. Assume that T is nondegenerate and satisfies the condition (C3) for the
two pairs (g, A) and (g, A′) with A, A′ ∈ GLC(V). Then A = A′.

Proof. Since A is invertible, we have by the condition (C3) that A−1κ(α) = κ(tgα).
Since κ(Zn) spans V , A−1 is uniquely determined by g. �

The characterization theorem of Edwards and Gaudry (Fact 4.2) leads us to the
following definition.

Definition 4.7 (Semigroup symmetry). Let T : l2(Zn)→ V ⊗ l2(Zn) be a translation
invariant bounded operator. A semigroup symmetry for T is a pair (G, π), where G is a
subsemigroup of Mreg(n,Z) and π : G→ GLC(V) is a semigroup homomorphism such
that T satisfies the equivalent conditions (C1), (C2) and (C3) for (g, π(g)), g ∈ G.

Among the semigroup symmetries for T , we define a partial order (G′, σ) ≺ (G, π)
if G′ ⊂ G and σ(g) = π(g) for g ∈ G′.

The following proposition assures the existence of the unique maximal semigroup
symmetry for a nondegenerate translation invariant operator.

Proposition 4.8 (Maximal semigroup symmetry). Given a translation invariant and
nondegenerate bounded linear V-valued operator T : l2(Zn)→ V ⊗ l2(Zn), we define
G to be a subset of Mreg(n, Z) consisting of g for which there exists A ∈ GLC(V)
such that (g, A) satisfies one of the equivalent conditions (C1)–(C3). Then G is a
semigroup. Further, A is unique for each g ∈ G. The correspondence g 7→ A defines
a semigroup homomorphism π : G → GLC(V). The pair (G, π) gives the maximal
semigroup symmetry for T .

Proof. The uniqueness for A follows directly from Lemma 4.6 because T is
nondegenerate. The remaining statement is clear. �

We end this subsection with some comments on the semigroup symmetry, namely,
the reason why we have adopted (C1) but not (C0). In fact, the equivalence of (C1)–
(C3) in Lemma 4.5 asserts that (G, π) is a maximal semigroup symmetry for the
translation invariant bounded operator T : l2(Zn)→ V ⊗ l2(Zn) in the sense of condition
(C1) if and only if (G, π) is a maximal pair with the following algebraic condition:
π(g)κ(tgα) = κ(α) for all α ∈ Zn and g ∈ G. On the other hand, it turns out that the
condition (C0) is too strong, as Fact 4.3 already suggests in the one-dimensional
case. In fact, we have the following proposition asserting that there does not exist an
interesting operator T satisfying (C0) if g runs over a ‘sufficiently large’ subsemigroup
H.
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Proposition 4.9. Let T be a translation invariant bounded operator from l2(Zn) to
V ⊗ l2(Zn) such that the following diagram

l2(Zn)

Lg

��

T // V ⊗ l2(Zn)

π(g)⊗ Lg

��
l2(Zn) T // V ⊗ l2(Zn)

commutes for all g ∈ H, that is, the condition (C0) holds for (g, π(g)) for all g ∈ H. If
H satisfies

⋂
g∈H

tgZn = {0}, then T F = v ⊗ F for some element v ∈ V.

For the proof, we use the following result.

Lemma 4.10. Suppose that T : l2(Zn)→ V ⊗ l2(Zn) is a translation invariant bounded
linear operator with kernel κ : Zn → V. If the condition (C0) holds for (g, A) for some
A ∈ GLC(V), then Supp κ ⊂ tgZn.

Proof of Lemma 4.10. Take γ < tgZn. Then Lgδγ = 0 and therefore ATδγ(tgα) = 0 for
all α ∈ Zn by (C0). Since A ∈ GLC(V), we obtain Tδγ(tgα) = 0, which is equivalent to
κ(tgα − γ) = 0 for all α ∈ Zn. This implies that

Supp κ ⊂
⋂
γ<tgZn

(Zn\(tgZn − γ)) = Zn
∖ ⋃
γ∈tgZn

(tgZn − γ) = tgZn. �

Proof of Proposition 4.9. By Lemma 4.10, the support of the kernel κ must be
contained in the set tgZn. Therefore, Supp κ ⊂

⋂
g∈H

tgZn = {0}. Hence, T must be
of the form in the statement of the proposition. �

4.3. Maximal semigroup symmetry of Riesz transform for Zn. The results
obtained in this section are similar to the ones obtained for Tn, but there is a new
feature to take into account; see Facts 4.2 and 4.3.

Definition 4.11. The Riesz transforms for Zn are defined by convolving with the
kernels K j (1 ≤ j ≤ n),

K j(α) =


Γ( n+1

2 )

π
n+1

2

α j

‖α‖n+1 if α , 0,

0 if α = 0.

This is the discrete version of the corresponding kernel for the Riesz transforms on Rn;
see Definition 1.2.

For j = 1, this coincides with the Hilbert transform of Edwards and Gaudry; see
Section 4.1.

Proposition 4.12. The maximal semigroup symmetry of the Riesz transform on Zn is
given by (CO(n,Z), ρ), where

ρ : CO(n,Z)→ GL(n,C), g 7→ |det g|(n+1)/n tg−1.
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Proof. Clearly, (CO(n,Z), ρ) is a semigroup symmetry for κ = (K1, . . . ,Kn). Thus, the
proposition follows directly from the following lemma. �

Lemma 4.13. Let κ = (K1, . . . , Kn) be the kernel of the Riesz transform. Assume that
there exist A ∈ GLC(V) and g ∈Mreg(n,Z) such that

Aκ(α) = κ(tgα) for all α ∈ Zn.

Then g ∈ CO(n,Z) and A = |det g|−(n+1)/n tg.

Proof. Since κ(α) = Cn(α/‖α‖n+1), where Cn is a nonzero constant depending only on
the dimension n, Aκ(α) = κ(tgα) implies that

A
α

‖α‖n+1 =
tgα

‖tgα‖n+1 . (4.3.1)

For 1 ≤ i ≤ n, we denote by tgi the ith column vector of tg. Applying Equation (4.3.1)
to α = ei, the ith unit vector, we get Aei = (tg)i/‖(tg)i‖

n+1. For n = 1, this is what we
wanted to prove, so let n > 1. Then

A
(ei + e j
√

2

)
=

( tgi

‖tgi‖
n+1 +

tg j

‖tg j‖
n+1

) 1
√

2
,

whereas Equation (4.3.1) with α = ei + e j gives

A
(ei + e j
√

2

)
=

(√
2
)n+1

√
2

tgi + tg j

‖tgi + tg j‖
n+1 .

Since g ∈Mreg(n,Z), tgi and tg j are linearly independent. Comparing the coefficients
of tgi and tg j in the two expressions, we obtain ‖tgi + tg j‖ =

√
2‖tgi‖ =

√
2‖tg j‖. Then

we have ‖tgi + tg j‖
2 = ‖tgi‖

2 + ‖tg j‖
2, which implies that (gi, g j) = 0. Hence, g ∈

CO(n, Z). Then |det g| = ‖gi‖
n for all i. Since Aei = tgi/‖

tgi‖
n+1 (1 ≤ i ≤ n), we get

A = |det g|−(n+1)/n tg. �

Proof of Theorems A and B in the Zn case. The maximal semigroup symmetry for
the Riesz transform on Zn imposes the invariance condition on the convolution kernel
κ : Zn → V (see (C3))

|det g|(n+1)/ntg−1κ(tgα) = κ(α)

for all α ∈ Zn and g ∈ CO(n,Z) by Proposition 4.12. This is equivalent to

κ(gα) = |det g|−(n+1)/ngκ(α) (4.3.2)

for all α ∈ Zn and g ∈ CO(n, Z). By Lemma 3.7 with ν = −(n + 1)/n and
Proposition 3.8, any κ satisfying (4.3.2) must be a scalar multiple of the convolution
kernel of the Riesz transform if n = 1, 2 or n ≡ 0 mod 4. Hence, Theorem A for Zn is
proved.

Suppose that n > 2 and n . 0 mod 4. By Lemma 3.17 with ν = −(n + 1)/n and
the equivalence (i)⇔ (iv) in Proposition 3.8, there exists infinitely many linearly
independent κ satisfying (4.3.2). Then the corresponding translation invariant
operators are linearly independent because the convolution kernel determines uniquely
the operators (to see this, one may apply δγ ∈ l2(Zn)). �

https://doi.org/10.1017/S144678871500049X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871500049X


238 T. Kobayashi, A. Nilsson and F. Sato [23]

5. Saturated semigroup symmetry

For n > 2 and n . 0 mod 4, we have seen in Theorem B that there are infinitely many
linearly independent translation invariant operators that satisfy the maximal semigroup
symmetry of the Riesz transforms for Tn and Zn. We may ask what are other invariance
conditions that can single out the Riesz transforms on Tn and Zn. In this section,
we introduce a little more technical condition (saturated semigroup symmetry), which
characterizes the Riesz transforms on Tn and Zn (up to a scalar) for all dimensions n.

5.1. Characterization of the Riesz transform on Tn. We define the following set:

Ξ := {(g, α) ∈ CO(n) × Zn : gα ∈ Zn}.

Let fα(x) := e2πi〈α,x〉 for α ∈ Zn. For any (g, α) ∈ Ξ, the function Ltg fα is well defined
as a function on Tn by

(Ltg fα)(x) := e2πi〈α,tgx〉 = e2πi〈gα,x〉.

We say that a bounded translation invariant operator T : L2(Tn)→ Cn ⊗ L2(Tn) satisfies
a saturated semigroup symmetry for Ξ if it satisfies the identity

(T fα)(0) = |det g|−1/ng(T (Ltg fα)(0)) (5.1.1)

for all pairs (g, α) ∈ Ξ.
We recall from Proposition 3.1 and Example 3.2 that the invariance condition

m(gα) = |det g|−1/ng(m(α)) extends to invariance under the set

Y := {(g, α) ∈ CO(n,Q) × Zn : gα ∈ Zn}.

We note that Y ( Ξ. We shall characterize the Riesz transforms on Tn and Zn by using
the larger set Ξ.

Then the Riesz transform on Tn can be recovered from the saturated semigroup
symmetry for Ξ for any dimension n.

Theorem 5.1. If T : L2(Tn)→ Cn ⊗ L2(Tn) is a bounded translation invariant operator
satisfying the identity (5.1.1) for all pairs (g, α) ∈ Ξ, then T = cR for some c ∈ C, where
R = (R1, . . . ,Rn) is the Riesz transform on Tn.

Proof. As in the proof of Proposition 2.2, the multiplier m : Zn → Cn for the operator
T satisfies

m(α) = |det g|−1/ngm(tgα).

The result then follows from Lemma 5.2 below. �

Lemma 5.2. Fix ν ∈ R. If a function F : Zn → Cn satisfies the condition

F(gα) = |det g|νgF(α) for all pairs (g, α) ∈ Ξ,

then F is unique up to multiplication with a scalar.

Proof. Since for any α ∈ Zn there exists an element g ∈ CO(n) such that (g, e1) ∈ Ξ and
α = ge1, the proof follows in the same way as in the proof of Lemma 3.7. �
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5.2. Characterization of the Riesz transform on Zn. In a similar way as in
the previous subsection, the Riesz transform on Zn is recovered from the saturated
semigroup symmetry for Ξ for all dimensions n.

Theorem 5.3. Let T : l2(Zn)→ Cn ⊗ l2(Zn) be a bounded translation invariant operator
satisfying the identity

Ltg(Tδ0)(α) = |det g|−((n−1)/n)g(Tδ0(α)) (5.2.1)

for all pairs (g, α) ∈ Ξ. Then T = cR for some c ∈ C, where R = (R1, . . . ,Rn) denotes
the Riesz transform on Zn.

Proof. The condition (5.2.1) is equivalent to that of the corresponding kernel κ : Zn →

Cn of T , namely,
κ(gα) = |det g|−((n−1)/n)gκ(α).

Then Lemma 5.2 implies that κ must be a constant multiple of the Riesz transform on
Zn. �
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398–408; reproduced in Choix d’oevres mathématiques, Tome II (Hermann, Paris, 1981), 408–
418 (in French).

[3] R. E. Edwards and G. I. Gaudry, Littlewood–Paley and Multiplier Theory, Ergebnisse der
Mathematik und ihrer Grenzgebiete (2), 90 (Springer, Berlin–Heidelberg, 1977).

[4] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in
Mathematics, 84 (Springer, New York, 1990).

[5] T. Kobayashi and A. Nilsson, ‘Group invariance and Lp-bounded operators’, Math. Z. 260 (2008),
335–354.

[6] T. Kobayashi and A. Nilsson, ‘Indefinite higher Riesz transforms’, Ark. Mat. 47 (2009), 331–344.
[7] M. Sato, ‘Theory of prehomogeneous vector spaces (algebraic part)—the English translation of

Sato’s lecture from Shintani’s note’, Nagoya Math. J. 120 (1990), 1–34; English translation of
Sugaku-no-Ayumi 15 (1970), 83–157 (translated by M. Muro).

[8] E. Schmutz, ‘Rational points on the unit sphere’, Cent. Eur. J. Math. 6 (2008), 482–487.
[9] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, 7 (Springer, New York, 1996).

[10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
Mathematical Series, 30 (Princeton University Press, Princeton, NJ, 1970).

[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton
Mathematical Series, 32 (Princeton University Press, Princeton, NJ, 1971).

TOSHIYUKI KOBAYASHI, Kavli IPMU, Japan
and
Graduate School of Mathematical Sciences, The University of Tokyo,
3-8-1 Komaba Meguro-ku, Tokyo 153-8914, Japan
e-mail: toshi@ms.u-tokyo.ac.jp

https://doi.org/10.1017/S144678871500049X Published online by Cambridge University Press

mailto:toshi@ms.u-tokyo.ac.jp
https://doi.org/10.1017/S144678871500049X


240 T. Kobayashi, A. Nilsson and F. Sato [25]

ANDREAS NILSSON, SAAB AB, Bröderna Ugglas gata,
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