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Abstract

We find all real-valued general solutions f : S → R of the d’Alembert functional equation with involution

f (x + y) + f (x + σy) = 2 f (x) f (y)

for all x, y ∈ S , where S is a commutative semigroup and σ : S → S is an involution. Also, we find
the Lebesgue measurable solutions f : Rn → R of the above functional equation, where σ : Rn → Rn is a
Lebesgue measurable involution. As a direct consequence, we obtain the Lebesgue measurable solutions
f : Rn → R of the classical d’Alembert functional equation

f (x + y) + f (x − y) = 2 f (x) f (y)

for all x, y ∈ Rn. We also exhibit the locally bounded solutions f : Rn → R of the above equations.
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1. Introduction

Throughout this paper we denote by S a commutative semigroup, G a commutative
group, F a field and R, C and Rn the sets of real numbers and complex numbers and
the n-dimensional Euclidean space, respectively. A function A : S → F is called an
additive function provided that A(x + y) = A(x) + A(y) for all x, y ∈ S , m : S → F is
called an exponential function provided that m(x + y) = m(x)m(y) for all x, y ∈ S and
σ : S → S is called an involution provided thatσ(x + y) = σ(x) +σ(y) andσ(σ(x)) = x
for all x, y ∈ S . For simplicity, we denote σ(x) by σx.

The functional equation

f (x + y) + f (x − y) = 2 f (x) f (y) (1.1)
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is known as the d’Alembert functional equation. It has a long history going back to
d’Alembert [6]. This functional equation was introduced by d’Alembert in connection
with the composition of forces and plays a central role in determining the sum
of two vectors in Euclidean and non-Euclidean geometries [7, 8]. As remarkable
results on the d’Alembert functional equation, Cauchy [3] found all the continuous
solutions f : R→ R of the equation (1.1) (see also [1, page 103]) and Baker [2]
found all general solutions f : R→ C of the equation (see also [1, page 220]). The
general solutions f : R→ R of (1.1) are not yet known. Generalising the d’Alembert
functional equation, several authors have studied the d’Alembert functional equation
with involution

f (x + y) + f (x + σy) = 2 f (x) f (y) (1.2)

for all x, y ∈ S . Sinopoulos [9] determined the general solutions f : S → F of (1.2)
when S is a commutative semigroup and F is a quadratically closed commutative
field of characteristic different from 2. Stetkær [10] studied (1.2) when F = C, S is
a commutative topological group and f and σ are continuous. Recently, Chung [5]
found the locally integrable solutions f : Rn → C of the equation (1.2) defined in an
almost everywhere sense. However, in all the previous results, the authors assumed
that the target space of f is a quadratically closed commutative field; therefore, it
is not possible to exhibit the real-valued general solutions of the equations (1.1) and
(1.2). The author is not aware of any results on the real-valued general solutions of
the d’Alembert functional equation (1.1) and its generalisation (1.2). In this paper we
exhibit all real-valued general solutions of the d’Alembert functional equation with
involution (1.2) and obtain those of (1.1) as a direct consequence. Based on the result,
we also prove that all Lebesgue measurable solutions f : Rn → R of the equation (1.2)
with measurable involutionσ are given by f (x) = 1

2 (ea·x + ea·σx) or f (x) = ec·x cos(b · x)
for some a, b, c ∈ Rn with cσ = c, bσ = −b. As a direct consequence, we obtain the
Lebesgue measurable solutions f : Rn → R of the equation (1.1). This appears to be
the first direct method to find the Lebesgue measurable solutions of the equations (1.1)
and (1.2) (see, for example, [4] for the locally integrable solutions of the d’Alembert
equation).

2. Main results

We first find the real-valued general solutions of the d’Alembert equation with
involution (1.2).

Theorem 2.1. A nonzero function f : S → R satisfies d’Alembert’s functional equation
with involution (1.2) for all x, y in S if and only if f has one of the following forms:

f (x) =
m(x) + m(σx)

2
, f (x) = E(x) cos B(x) (2.1)

for all x ∈ S , where m, E : S → R are exponential functions and E and B : S → R
satisfy E(σx) = E(x) for all x ∈ S , B(x + y) ≡ B(x) + B(y) (mod 2π) for all x, y ∈ S \ K
and B(σx) ≡ −B(x) (mod 2π) for all x ∈ S \ K with K = {x ∈ S : E(x) = 0}.
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Proof. Replacing y by σy in (1.2) and equating the right-hand sides of the result and
(1.2) yields

f (x) = f (σx) (2.2)

for all x ∈ S . Now we divide the equation into two cases.

Case 1. Suppose that f (x + σy) = f (x + y) for all x, y ∈ S . Then the equation (1.2)
reduces to the exponential functional equation f (x + y) = f (x) f (y). Let f (x) = m(x)
for some exponential function m. By (2.2), m(σx) = m(x) for all x ∈ S and f has the
first form of (2.1).

Case 2. Suppose that f (x0 + σy0) , f (x0 + y0) for some x0, y0 ∈ S . Let

g(x) = f (x + y0) − f (x + σy0) (2.3)

for all x ∈ S . Then g(x0) , 0 and, by (2.2),

g(σx) = −g(x) (2.4)

for all x ∈ S . From (1.2) and (2.3),

g(x + y) + g(x + σy) = f (x + y + y0) − f (x + y + σy0)
+ f (x + σy + y0) − f (x + σy + σy0)

= 2 f (x + y0) f (y) − 2 f (x + σy0) f (y)
= 2g(x) f (y) (2.5)

for all x, y ∈ S . Replacing (x, y) by (y, x) in (2.5), adding the result and (2.5) and using
(2.4) yields

g(x + y) = g(x) f (y) + f (x)g(y) (2.6)

for all x, y ∈ S . Replacing y by y + z in (2.6) and then using (2.6),

g(x + y + z) = g(x) f (y + z) + f (x)g(y + z)
= g(x) f (y + z) + f (x)g(y) f (z) + f (x) f (y)g(z) (2.7)

for all x, y, z ∈ S . Again replacing (x, y) by (x + y, z) in (2.6) and using (2.6),

g(x + y + z) = g(x + y) f (z) + f (x + y)g(z)
= g(x) f (y) f (z) + f (x)g(y) f (z) + f (x + y)g(z) (2.8)

for all x, y, z ∈ S . From (2.7) and (2.8),

g(x) [ f (y + z) − f (y) f (z)] = g(z)[ f (x + y) − f (y) f (x)] (2.9)

for all x, y, z ∈ S . Inserting z = x0 in (2.9) yields

g(x) [ f (y + x0) − f (y) f (x0)] = g(x0)[ f (x + y) − f (y) f (x)],

which reduces to
f (x + y) − f (y) f (x) = g(x)h(y), (2.10)
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where
h(y) =

f (y + x0) − f (y) f (x0)
g(x0)

(2.11)

for all y ∈ S . If we interchange x and y in (2.10),

f (y + x) − f (x) f (y) = g(y)h(x)

and, by comparing this equation to (2.10),

g(x) h(y) = g(y) h(x)

for all x, y ∈ S . Therefore,
h(x) = α2g(x) (2.12)

for all x ∈ S and for some constant

α ∈ R, or α = iβ with β ∈ R.

Substituting (2.12) in (2.10) yields

f (x + y) = f (x) f (y) + α2g(x)g(y) (2.13)

for all x, y ∈ S . If α = 0, then (2.13) becomes

f (x + y) = f (x) f (y)

for all x, y ∈ S and we return to the first case. Thus, it remains to consider the case
α , 0. Multiplying (2.6) by α yields

αg(x + y) = αg(x) f (y) + α f (x)g(y). (2.14)

Adding (2.14) to (2.13) and simplifying the resulting equation gives

f (x + y) + αg(x + y) = [ f (x) + αg(x)][ f (y) + αg(y)] (2.15)

for all x, y ∈ S . Similarly, subtracting (2.14) from (2.13) yields

f (x + y) − αg(x + y) = [ f (x) − αg(x)][ f (y) − αg(y)] (2.16)

for all x, y ∈ S .

Subcase 2.1. Suppose that α ∈ R. From (2.15) and (2.16), both m1 := f + αg and
m2 := f − αg are real-valued exponential functions. Since f is σ-even and g is σ-odd,
m1(σx) = f (σx) + αg(σx) = f (x) − αg(x) = m2(x). Letting m1 := m,

f (x) =
m(x) + m(σx)

2
(2.17)

for all x ∈ S . Thus, we get the first solution of (2.1).

Subcase 2.2. Suppose that α = iβ with β ∈ R. Let

m∗(x) = f (x) + iβg(x) (2.18)
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for all x ∈ S . Then, from (2.15), m∗ is a complex-valued exponential function. Let
E(x) = |m∗(x)| for all x ∈ S and K = {x ∈ S : E(x) = 0}. Then E is a real-valued
exponential function and m∗ can be written in the form

m∗(x) = E(x)eiB(x), (2.19)

where B : S → R takes a value of arg m∗(x) for each x < K and B(x) takes arbitrary
values for all x ∈ K. Since m∗ and E are exponential functions, it follows from (2.19)
that B(x + y) ≡ B(x) + B(y) (mod 2π) for all x, y ∈ S \ K (see [1, page 54] for S = R).
Then, from (2.18) and (2.19),

f (x) =<(m∗(x)) = E(x) cos B(x) (2.20)

for all x ∈ S . On the other hand, since

m∗(σx) = f (σx) + iβg(σx) = f (x) − iβg(x) (2.21)

for all x ∈ S , from (2.18), (2.19) and (2.21),

f (x) =
m∗(x) + m∗(σx)

2
=

1
2

(E(x)eiB(x) + E(σx)eiB(σx))

=
1
2

(E(x) cos B(x) + E(σx) cos B(σx))

+
i
2

(E(x) sin B(x) + E(σx) sin B(σx)) (2.22)

for all x ∈ S . Equating (2.20) and (2.22),

E(x) cos B(x) = E(σx) cos B(σx), (2.23)
E(x) sin B(x) = −E(σx) sin B(σx) (2.24)

for all x ∈ S . Using (2.23) and (2.24),

E(x)2 = E(x)2 cos2 B(x) + E(x)2 sin2 B(x)

= E(σx)2 cos2 B(σx) + E(σx)2 sin2 B(σx) = E(σx)2

for all x ∈ S , which implies that E(x) = E(σx) for all x ∈ S . Thus, from (2.23) and
(2.24),

cos B(x) = cos B(σx) = cos(−B(σx)), (2.25)
sin B(x) = − sin B(σx) = sin(−B(σx)) (2.26)

for all x ∈ S \ K. From (2.25) and (2.26), it follows that B(σx) = −B(x) (mod 2π) for
all x ∈ S \ K. Thus, we get the second solution of (2.1). The proof is complete. �

Let S = G in Theorem 2.1. The nonzero exponential functions m, E : G → R in
Theorem 2.1 can be written in the form m(x) = eA(x), E(x) = eC(x) for some additive
functions A,C : G → R and K := ker E = ∅. Thus, as a direct consequence of
Theorem 2.1, we obtain the following corollary.
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Corollary 2.2. A nonzero function f : G → R satisfies the d’Alembert functional
equation with involution (1.2) for all x, y in G if and only if f has one of the following
forms:

f (x) =
eA(x) + eA(σx)

2
, f (x) = eC(x) cos B(x) (2.27)

for all x ∈ G, where A, C : G→ R are additive functions and C and B : G→ R satisfy
C(σx) = C(x) for all x ∈ G, B(x + y) ≡ B(x) + B(y) (mod 2π) for all x, y ∈ G and
B(σx) ≡ −B(x) (mod 2π) for all x ∈ G.

Remark 2.3. In general, if S satisfies the property that for any x, y ∈ S , there exist a
positive integer k and z ∈ S such that

x + z = ky, (2.28)

then the solutions f : S → R in (2.1) can be written in the form (2.27). Note that most
well-known semigroups such as S = 〈(0, 1),×〉 and 〈(0,∞),+〉 satisfy the condition
(2.28).

Corollary 2.4. A nonzero function f : G → R satisfies the d’Alembert functional
equation (1.1) for all x, y ∈ G if and only if f has one of the following forms:

f (x) = cosh A(x), f (x) = cos B(x) (2.29)

for all x ∈ G, where A : G → R is an additive function and B : G → R satisfies
B(x + y) ≡ B(x) + B(y) (mod 2π) for all x, y ∈ G.

Proof. Let σ(x) = −x for all x ∈ G in Corollary 2.2. Then the condition C(σx) = C(x)
for all x ∈ G implies that C = 0, and the condition B(x + y) ≡ B(x) + B(y) (mod 2π)
for all x, y ∈ G implies that B(−x) ≡ −B(x) (mod 2π) for all x ∈ G. Thus, we get the
solutions (2.29). The proof is complete. �

Now we find the Lebesgue measurable solutions of the equation (1.2).

Corollary 2.5. Let σ : Rn → Rn be a Lebesgue measurable involution. Then a
nonzero Lebesgue measurable function f : Rn → R satisfies the d’Alembert functional
equation (1.2) for all x, y ∈ Rn if and only if f has one of the following forms:

f (x) =
ea·x + ea·σx

2
, f (x) = ec·x cos(b · x) (2.30)

for all x ∈ Rn, where a, b, c ∈ Rn with c · σx = c · x and b · σx = −b · x for all x ∈ Rn.

Proof. Let G = Rn in Corollary 2.2 and consider the first solution of (2.27). If
A(x) = A(σx) for all x ∈ Rn, then we get f (x) = eA(x) and hence A is Lebesgue
measurable. If A(x0) , A(σx0) for some x0 ∈ R

n, then we can choose α ∈ R such that
α(eA(x0) − eA(σx0)) = 1. Then it follows from f (x) = 1

2 (eA(x) + eA(σx)) that

f (x) + α( f (x + x0) − f (x + σx0)) = eA(x) (2.31)
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for all x ∈ Rn and hence A is Lebesgue measurable. Thus, in both cases we have
A(x) = a · x for some a ∈ Rn. Thus, we obtain the first solution of (2.30).

Now we consider the second solution of (2.28). Let g(x) = eC(x)+iB(x). If sin B(x) = 0
for all x ∈ Rn, then g(x) = eC(x) cos B(x) = f (x) and g is Lebesgue measurable. If
sin B(x0) , 0 for some x0 ∈ R

n, choose α ∈ R such that −2αeC(x0) sin B(x0) = 1. Then
it follows from f (x) = eC(x) cos B(x) that

f (x) + iα( f (x + x0) − f (x + σx0)) = eC(x)+iB(x) (2.32)

for all x ∈ Rn. Thus, g is Lebesgue measurable and |g(x)| = eC(x) is also Lebesgue
measurable and hence C(x) = c · x for all x ∈ Rn and for some c ∈ R with c · x = c · σx
for all x ∈ Rn. Now let h(x) := e−c·xg(x) = eiB(x) for all x ∈ Rn. Then h is Lebesgue
measurable, satisfying |h(x)| = 1 and

h(x + y) = h(x)h(y) (2.33)

for all x, y ∈ Rn. Choosing an infinitely differentiable function φ with compact support
and convolving it on both sides of (2.33) as a function of y,

(h ∗ φ)(x + z) =

∫
Rn

h(x + z − y)φ(y) dy

= h(x)
∫
Rn

h(z − y)φ(y) dy = h(x)(h ∗ φ)(z) (2.34)

for all x, z ∈ Rn. From the condition |h(x)| = 1 for all x ∈ Rn, we can choose φ so that
h ∗ φ , 0, otherwise we must have h = 0 almost everywhere. Since h ∗ φ is infinitely
differentiable, fixing z = z0 with (h ∗ φ)(z0) , 0 in (2.34), we see that h is infinitely
differentiable. Letting y = (y1, . . . , yn) and differentiating (2.33) with respect to y1 and
putting y = 0,

∂1h(x) = c1h(x), (2.35)

where c1 = ∂1h(0). The solutions of the differential equation (2.35) are given by

h(x1, . . . , xn) = h1(x2, . . . , xn)ec1 x1 . (2.36)

Putting (2.36) in (2.33),
h1(x′ + y′) = h1(x′)h1(y′) (2.37)

for all x′ = (x2, . . . , xn), y′ = (y2, . . . , xn). Differentiating (2.37) with respect to y2 and
putting y′ = 0, we get ∂2h1(x′) = c2h1(x′) with c2 = ∂2h(0) and

h(x1, . . . , xn) = h1(x2, . . . , xn)ec1 x1 = h2(x3, . . . , xn)ec2 x2+c1 x1 .

Continuing the above process, we arrive at h(x) = kec1 x1+···+cn xn for some k ∈ C. Since
|h(x)| = 1 for all x ∈ Rn, we have c j = ib j for some b j ∈ R, j = 1, 2, . . . , n. Using
h(0) = 1, we get k = 1. Thus, it follows from (2.32) that

f (x) =<g(x) = ec·x<h(x) = ec·x cos(b · x)
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with b = (b1, . . . , bn). Finally, we prove that b · σx = −b · x for all x ∈ Rn. Let
B(x) = (b · σx + b · x)/(2π) for all x ∈ Rn. Then, by Corollary 2.2, B(x) ∈ Z, the set
of integers, for all x ∈ Rn. Thus, for each x0 ∈ R

n, we have B(2−nx0) = 2−nB(x0) ∈ Z
for all positive integers n, which implies that B(x0) = 0. Therefore, B(x) = 0 for all
x ∈ Rn. The proof is complete. �

Remark 2.6. Note that every measurable involution σ : Rn → Rn is given by an n × n
matrix. It follows directly from Corollary 2.5 that all continuous real-valued solutions
f : Rn→ R of the equation (1.2) are given by (2.30). Note that all locally bounded real-
valued solutions of the most well known functional equations are regular. For example,
all locally bounded solutions f , g : Rn → R, h : R \ {0} → R and k : (0,∞)→ R of the
Cauchy functional equation f (x + y) = f (x) + f (y), the exponential functional equation
g(x + y) = g(x)g(y), the logarithmic functional equation h(xy) = h(x) + h(y) and the
multiplicative functional equation k(xy) = k(x)k(y) are given by the regular functions,

f (x) = a · x, g(x) = ea·x, h(x) = p ln x, k(x) = xp

for some a ∈ Rn and p ∈ R. However, not every locally bounded real-valued solution
of the equation (1.2) is of the regular form (2.30). Indeed, we have the following result.

Corollary 2.7. Let σ : Rn → Rn be a Lebesgue measurable involution. Then a
nonzero locally bounded function f : Rn → R satisfies the d’Alembert functional
equation (1.2) for all x, y ∈ Rn if and only if f has one of the following forms:

f (x) =
ea·x + ea·σx

2
, f (x) = ec·x cos B(x) (2.38)

for all x ∈ Rn, where a, c ∈ Rn with c · σx = c · x, B(x + y) ≡ B(x) + B(y) (mod 2π) for
all x, y ∈ Rn and B(σx) ≡ −B(x) (mod 2π) for all x ∈ Rn.

Proof. It follows from (2.31) and (2.32) that eA(x) and eC(x) are locally bounded, which
implies that A and C are bounded above. Thus, A, C are of the form A(x) = a · x,
C(x) = c · x for some a, c ∈ R and we get the solutions (2.38). �

As a direct consequence of Corollaries 2.4 and 2.7, we obtain the following result.

Corollary 2.8. A nonzero locally bounded function f : Rn → R satisfies the
d’Alembert functional equation (1.1) for all x, y ∈ Rn if and only if f has one of the
following forms:

f (x) = cosh(a · x), f (x) = cos B(x) (2.39)

for all x ∈ Rn, where a ∈ Rn and B(x + y) ≡ B(x) + B(y) (mod 2π) for all x, y ∈ Rn.

As a direct consequence of Corollary 2.5, we obtain the following result.

Corollary 2.9. A nonzero measurable function f : Rn → R satisfies the d’Alembert
functional equation (1.1) for all x, y ∈ Rn if and only if f has one of the following
forms:

f (x) = cosh(a · x), f (x) = cos(b · x) (2.40)

for all x ∈ Rn and for some a, b ∈ Rn.
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Proof. Let σ(x) = −x for all x ∈ Rn in Corollary 2.5. Then the condition c · σx = c · x
for all x ∈ Rn implies that c = 0. Thus, we get the solution (2.40). �
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