PROPERTIES OF SOLUTIONS OF PARABOLIC EQUATIONS AND INEQUALITIES

M. H. PROTTER

1. Introduction. In this paper we shall be concerned with two problems: (i) the asymptotic behavior of solutions of parabolic inequalities and (ii) the uniqueness of the Cauchy problem for such inequalities when the data are prescribed on a portion of a time-like surface. The unifying feature of these rather separate problems is the employment of integral estimates of the same type in both cases.

We consider parabolic operators in self-adjoint form

$$
\begin{equation*}
L \equiv \frac{\partial}{\partial t}-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right), \quad a_{i j}=a_{j i} \tag{1}
\end{equation*}
$$

as well as the non-self-adjoint operator

$$
\begin{equation*}
M \equiv \frac{\partial}{\partial t}-\sum_{i, j=1}^{n} b_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}, \quad b_{i j}=b_{j i} \tag{2}
\end{equation*}
$$

where the coefficients $a_{i j}(x, t)=a_{i j}\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)$ are C^{1} functions of x and t and the $b_{i j}=b_{i j}(x, t)$ are C^{2} functions of x and t. The portions of the operators

$$
\begin{aligned}
& F \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right) \\
& G \equiv \sum_{i, j=1}^{n} b_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}
\end{aligned}
$$

are assumed to be uniformly elliptic throughout the domain of definition.
To study asymptotic behavior we consider a bounded domain D in n dimensional euclidean space E_{n} with boundary Γ. Denote by $I(T)$ the interval $0 \leqslant t \leqslant T$ and by I the half-infinite interval $0 \leqslant t<\infty$. The $(n+1)$-dimensional product domain $D \times I$ will be designated by R while S will be the portion of the boundary of R consisting of $\Gamma \times I$.

We are interested in the growth of functions $u(x, t)$ which satisfy in R differential inequalities of the form

$$
\begin{equation*}
(L u)^{2} \leqslant C_{1}(t) u^{2}+C_{2}(t) \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \tag{3}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
(M u)^{2} \leqslant d_{1}(t) u^{2}+d_{2}(t) \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \tag{4}
\end{equation*}
$$

\]

or more generally the same inequality in integrated form

$$
\begin{aligned}
& \int_{D}(L u)^{2} \leqslant C_{1}(t) \int_{D} u^{2}+C_{2}(t) \int_{D} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \\
& \int_{D}(M u)^{2} \leqslant d_{1}(t) \int_{D} u^{2}+d_{2}(t) \int_{D} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2}
\end{aligned}
$$

The further condition

$$
\begin{equation*}
u=0 \quad \text { on } \quad S \tag{5}
\end{equation*}
$$

will be assumed throughout § 2 . However the theorems of that section are applicable without change to the condition

$$
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad S
$$

where $\partial / \partial \nu$ is the co-normal derivative defined in the customary manner. In fact with suitable restrictions on $p(x, y), q(x, y)$ the results apply with the more general condition

$$
p(x, y) \frac{\partial u}{\partial \nu}+q(x, y) u=0 \quad \text { on } \quad S
$$

We define the functions

$$
\begin{aligned}
A_{0}(t)= & \sup _{x \in D}\left|\frac{\partial}{\partial t} a_{i j}(x, t)\right|, \\
& i, j=1,2, \ldots, n \\
B_{0}(t)= & \sup _{x \in D}\left|\frac{\partial}{\partial t} b_{i j}(x, t)\right| \\
& i, j=1,2, \ldots, n \\
B_{1}(t)= & \sup _{x \in D}\left|\frac{\partial}{\partial x_{j}}\left(b_{i j}\right)\right|^{2} \\
& i, j=1,2, \ldots, n
\end{aligned}
$$

The starting point of the investigation of asymptotic behaviour is the knowledge that solutions of the heat equation

$$
\frac{\partial u}{\partial t}=\Delta u
$$

which satisfy (5) decay as $e^{-\lambda t}$ for some positive λ as $t \rightarrow \infty$. This result was extended considerably by Lax (1), who showed that for abstract nonpositive operators N defined in a Hilbert space, and for functions u satisfying (5) and an inequality of the form

$$
\left|\left|\frac{\partial u}{\partial t}-N u\right|\right| \leqslant C_{1}(t)\|u\|
$$

the rate of decay is again as $e^{-\lambda t}$, provided certain auxiliary conditions on the nature of the spectrum of D and the function $C_{1}(t)$ are satisfied. Lees (3) also investigated the asymptotic behaviour of solutions of differential inequality (3) from the abstract point of view and his results apparently overlap with those given in § 2.

We shall show that under certain conditions on the functions $A_{0}(t), B_{0}(t)$, $B_{1}(t)$, as well as on the functions $C_{i}(t), d_{i}(t), i=1,2$, solutions of either (3) or (4) decay as $\exp \left(-\lambda t^{\eta}\right)$ for some positive λ and some $\eta \geqslant 1$ as $t \rightarrow \infty$. In case $u(x, t)$ satisfies the differential equation rather than the inequality, that is, if $C_{i}(t)=d_{i}(t)=0, i=1,2$, then under natural hypotheses on the coefficients the solutions decay as $\exp (-\lambda t)$ for some positive λ. The methods employ L_{2} estimates for functions with compact support in t and kernels depending on t, but which merely satisfy (5) as functions of x. The estimates are in terms of parabolic operators (3), (4). These inequalities are a more or less natural development of those given in (5), where the estimates are in terms of elliptic operators, and the subsequent ones derived in (2), where the estimates are in terms of parabolic operators; but the functions are assumed to have compact support in x and t.

In § 3 the problem of the uniqueness of the Cauchy problem for inequalities (3) or (4) is solved when the data are prescribed on a piece of a time-like surface. This question for parabolic equations was solved by Mizohata (4) using the Calderon-Zygmund method of singular integrals. Here the main tool consists of L_{2} estimates (with a kernel depending on x) for functions with compact support in x and t in terms of operators (3), (4).
2. Asymptotic behavior. Let $v(x, t) \equiv v\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)$ be a C^{2} function defined in R and satisfying the conditions

$$
\begin{align*}
v=0 & \text { on } \tag{6}\\
v(x, t) & =0 \tag{7}
\end{align*} \quad \text { for } \quad(x, t) \in D \times I\left(T_{0}\right) \text { }
$$

for some $T_{0}>0$. Further it is supposed that for fixed $\eta>1$, for every positive $\lambda>0$ and for all β the integral

$$
\begin{equation*}
\int_{D} t^{2 \beta} e^{2 \lambda t} \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \rightarrow 0 \text { as } t \rightarrow \infty . \tag{8}
\end{equation*}
$$

Functions v which satisfy (6), (7), and (8) are said to belong to class $C(\eta)$. We note that any function in $C(\eta)$ satisfies a fortior i the condition

$$
\lim _{t \rightarrow \infty} \int_{D} t^{2 \beta} e^{2 \lambda t^{\eta} v^{2}}=0
$$

We define the function

$$
K \equiv K(\beta, \lambda, \eta) \equiv t^{2 \beta} e^{2 \lambda t \eta}
$$

Generally we shall employ the letter m_{0} as a generic constant, depending only on n and the ellipticity constants in the operators F and G.

Lemma 1. If $v \in C(\eta)$ we have the inequality

$$
\begin{align*}
& \int_{R}\left[\lambda \eta(\eta-1) t^{\eta-2}-\frac{\beta}{t^{2}}\right] K(\beta, \lambda, \eta) v^{2} \tag{9}\\
& \leqslant \int_{R} K(\beta, \lambda, \eta)(L v)^{2}+m_{0} \int_{R} A_{0}(t) K(\beta, \lambda, \eta) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}
\end{align*}
$$

Proof. We define the function

$$
z=\mathrm{K}\left(\frac{1}{2} \beta, \frac{1}{2} \lambda, \eta\right) v_{.} .
$$

Then z also satisfies conditions (6), (7), and (8) and hence is in $C(\eta)$. We have

$$
\left(\frac{\partial v}{\partial t}-F v\right)^{2}=K(-\beta,-\lambda, \eta)\left\{F z-\left[z_{t}-\left(\beta t^{-1}+\lambda \eta t^{\eta-1}\right) z\right]\right\}^{2}
$$

and

$$
K(\beta, \lambda, \eta)(L v)^{2}=\left[F z-z_{t}+\left(\beta t^{-1}+\lambda \eta t^{\eta-1}\right) z\right]^{2} .
$$

From the elementary inequality

$$
(a+b+c)^{2} \geqslant 2 b(a+c)
$$

we obtain

$$
K(L v)^{2} \geqslant-2 z_{t} F z-2\left(\beta t^{-1}+\lambda \eta t^{\eta-1}\right) z z_{t} .
$$

Let $R(T)$ denote the domain $D \times I(T)$. Integrating this last inequality over the domain $R(T)$ we have

$$
-2 \int_{R(T)} z_{t} \sum_{i, j=1}^{n}-\frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial z}{\partial x_{j}}\right)-\int_{R(T)}\left(\beta t^{-1}+\lambda \eta t^{\eta-1}\right)\left(z^{2}\right)_{t} \leqslant \int_{R(T)} K(L v)^{2} .
$$

An integration by parts yields

$$
\begin{align*}
& \int_{R(T)}\left[\lambda \eta(\eta-1) t^{\eta-2}-\beta t^{-2}\right] z^{2} \leqslant \int_{R(T)} K(L v)^{2} \tag{10}\\
&+\int_{R(T)} \sum_{i, j} \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{j}} \frac{\partial}{\partial t}\left(a_{i j}\right)+J
\end{align*}
$$

where J consists of integrals taken over the boundary of $R(T)$. All such integrals vanish because of the boundary conditions except those taken over the portion where $t=T$. Since $z \in C(\eta)$ these integrals tend to zero as $t \rightarrow \infty$. Recalling the definition of $A_{0}(t)$ and noting that K is independent of x we have

$$
\left|\int_{R(T)} \sum \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{j}} \frac{\partial}{\partial t}\left(a_{i j}\right)\right| \leqslant m_{0} \int_{R(T)} A_{0}(t) K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} .
$$

Substituting this in (10), inserting z in terms of v, and letting $T \rightarrow \infty$ we obtain (9).

Lemma 2. If $v \in C(\eta)$ we have the inequality

$$
\begin{equation*}
\int_{R} K(\beta, \lambda, \eta) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R} t K(L v)^{2}+m_{0} \int_{R}\left(\lambda \eta t^{\eta-1}+|\beta| t^{-1}\right) K v^{2} \tag{11}
\end{equation*}
$$

Proof. We consider the identity

$$
\begin{align*}
\int_{R(T)} K v L v= & \frac{1}{2} \int_{R(T)}\left(K v^{2}\right)_{t}-\beta \int_{R(T)} t^{-1} K v^{2}-\lambda \eta \int_{R(T)} t^{\eta-1} K v^{2} \tag{12}\\
& -\int_{R(T)} \sum_{i, j}\left(K a_{i j} v \frac{\partial v}{\partial x_{j}}\right)+\int_{R_{T}} K \sum_{i, j} a_{i j} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}
\end{align*}
$$

The ellipticity of the operator F asserts that there exist constants α_{0}, α_{1} such that

$$
\alpha_{0} \sum_{i=1}^{n} \xi_{i}{ }^{2} \leqslant \sum_{i, j=1}^{n} \alpha_{i j} \xi_{i} \xi_{j} \leqslant \alpha_{1} \sum_{i=1}^{n} \xi_{i}{ }^{2}
$$

for all real n-dimensional vectors $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$. The uniform ellipticity simply means that α_{0}, α_{1} are independent of (x, t). Hence, integrating the identity (12) by parts and employing the above inequality, we find

$$
\begin{aligned}
\int_{R(T)} K \sum\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R(T)} K|v L v|+m_{0}|\beta| \int_{R(T)} & t^{-1} K v^{2} \\
& +m_{0} \lambda \eta \int_{R(T)} t^{\eta-1} K v^{2}+J
\end{aligned}
$$

Again J denotes surface integrals along $t=T$ which tend to zero as $T \rightarrow \infty$. We apply Cauchy's inequality to the first term on the right and obtain inequality (11) by letting T tend to infinity.

Similar inequalities are obtained with respect to the operator M.
Lemma 3. If $v \in C(\eta)$ we have the inequality

$$
\begin{align*}
\int_{R}\left[\lambda \eta(\eta-1) t^{\eta-2}-\right. & \left.\frac{\beta}{t^{2}}\right] K(\beta, \lambda, \eta) v^{2} \tag{13}\\
& \leqslant \int_{R} K(M v)^{2}+m_{0} \int_{R}\left[B_{0}(t)+B_{1}(t)\right] K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}
\end{align*}
$$

Proof. We define the function z as in Lemma 1 and obtain

$$
\left(\frac{\partial v}{\partial t}-G v\right)^{2}=K(-\beta,-\lambda, \eta)\left\{G z-z_{t}+\left(\beta t^{-1}+\lambda \eta t^{\eta-1}\right) z\right\}^{2}
$$

Using the elementary inequality

$$
(a+b+c)^{2} \geqslant b^{2}+2 b(a+c)
$$

we get

$$
K(M v)^{2} \geqslant-2 z_{t} G z-2\left(\beta t^{-1}+\lambda \eta t^{\eta-1}\right) z z_{t}+z_{t}{ }^{2}
$$

Hence integrating over $R(T)$ we find after integrating by parts

$$
\begin{aligned}
\int_{R(T)}\left(\frac{\partial z}{\partial t}\right)^{2}+ & \int_{R(T)}\left(\lambda \eta(\eta-1) t^{\eta-2}-\beta t^{-2}\right) z^{2}+2 \int_{R(T)} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(b_{i j}\right) \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial t} \\
& -\int_{R(T)} \sum_{i, j=1}^{n} \frac{\partial}{\partial t}\left(b_{i j}\right) \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial x_{j}} \leqslant \int_{R(T)} K(M v)^{2}+J
\end{aligned}
$$

where J has its usual meaning. The last integral on the left is dominated by

$$
m_{0} \int_{R(T)} B_{0}(t) K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}
$$

We also have the inequality

$$
2\left|\int \sum \frac{\partial}{\partial x_{i}}\left(b_{i j}\right) \frac{\partial z}{\partial x_{i}} \frac{\partial z}{\partial t}\right| \leqslant \frac{1}{2} \int\left(\frac{\partial z}{\partial t}\right)^{2}+m_{0} \int B_{1}(t) K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} .
$$

These inequalities combine to yield (13).
Lemma 4. If $v \in C(\eta)$ we have the inequality

$$
\begin{array}{rl}
\int_{R} K(\beta, \lambda, \eta) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R} & t K(M v)^{2} \tag{14}\\
& +m_{0} \int_{R}\left(\lambda \eta t^{\tau-1}+|\beta| t^{-1}+B_{1}(t)\right) K v^{2}
\end{array}
$$

Proof. We consider the identity

$$
\begin{aligned}
\int_{R(T)} K v M v=\frac{1}{2} \int_{R(T)}\left(K v^{2}\right)_{t}-\beta \int_{R(T)} t^{-1} K v^{2} & -\lambda \eta \int_{R(T)} t^{\eta-1} K v^{2} \\
-\int_{R(T)} \sum_{i, j} \frac{\partial}{\partial x_{i}}\left(K b_{i j} v \frac{\partial v}{\partial x_{j}}\right) & +\int_{R(T)} \sum_{i, j=1}^{n} K b_{i j} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} \\
& +\int_{R(T)} \sum_{i, j=1}^{n} K \frac{\partial}{\partial x_{i}}\left(b_{i j}\right) v \frac{\partial v}{\partial x_{j}} .
\end{aligned}
$$

From the ellipticity condition we have

$$
m_{0} \int_{R(T)} \sum K b_{i j} \frac{\partial v}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} \geqslant \int_{R(T)} K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}
$$

and from Cauchy's inequality

$$
\left|\int_{R(T)} K \sum \frac{\partial}{\partial x_{i}}\left(b_{i j}\right) v \frac{\partial v}{\partial x_{j}}\right| \leqslant \frac{1}{2} \int_{R(T)} K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}+m_{0} \int_{R(T)} K B_{1}(t) v^{2} .
$$

Hence, after an integration by parts, the above identity yields the inequality $\int_{R(T)} K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant \int_{R(T)} K|v M v|+m_{0} \int_{R(T)}\left(\lambda \eta t^{\eta-1}+|\beta| t^{-1}+B_{1}(t)\right) K v^{2}+J$.
Inequality (14) is obtained by letting $T \rightarrow \infty$.

Lemma 5. Let $v \in C(\eta), \eta>1$ and suppose $A_{0}(t)=0\left(t^{-1}\right)$. Let $v \equiv 0$ in $D \times I\left(T^{*}\right)$ where T^{*} depends on $A_{0}(t)$. Then for sufficiently large λ we have the inequality

$$
\begin{equation*}
\lambda \int_{R} t^{\eta-2} K(\beta, \lambda, \eta) v^{2}+\int_{R} t^{-1} K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R} K(L v)^{2} . \tag{15}
\end{equation*}
$$

Proof. From (9) for sufficiently large λ and for $\eta>1$, the expression on the left in (9) is dominated by

$$
\lambda m_{0} \int_{R} t^{\eta-2} K v^{2}
$$

and we have the inequality

$$
\begin{align*}
& \lambda \int_{R} t^{\eta-2} K(\beta, \lambda, \eta) v^{2} \leqslant m_{0} \int_{R} K(\beta, \lambda, \eta)(L v)^{2} \tag{16}\\
&+m_{0} \int_{R} A_{0}(t) K(\beta, \lambda, \eta) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}
\end{align*}
$$

Replacing β by $\beta+\frac{1}{2}$ in (16) we get

$$
\begin{align*}
& \lambda \int_{R} t^{\eta-1} K(\beta, \lambda, \eta) v^{2} \leqslant m_{0} \int_{R} t K(\beta, \lambda, \eta)(L v)^{2} \tag{17}\\
&+m_{0} \int_{R} t A_{0}(t) K(\beta, \lambda, \eta) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}
\end{align*}
$$

Similarly substituting $\beta-\frac{1}{2}(\eta-1)$ for β in (16) yields

$$
\begin{equation*}
\lambda \int t^{-1} K v^{2} \leqslant m_{0} \int_{R} t^{1-\eta} K(L v)^{2}+m_{0} \int_{R} t^{1-\eta} A_{0}(t) K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \tag{18}
\end{equation*}
$$

If (17) and (18) are inserted into the right side of (11) we find

$$
\begin{array}{rl}
\int_{R} K(\beta, \lambda, \eta) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R} & t K(\beta, \lambda, \eta)(L v)^{2} \tag{19}\\
& +m_{0} \int_{R} t A_{0}(t) K(\beta, \lambda, \eta) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}
\end{array}
$$

We now replace β by $\beta-\frac{1}{2}$ in (19) and add the result to (16). This gives

$$
\lambda \int_{R} t^{\eta-2} K v^{2}+\int_{R}\left[t^{-1}-2 m_{0} A_{0}(t)\right] K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R} K(L v)^{2} .
$$

Since by hypothesis we have $A_{0}(t)=0\left(t^{-1}\right)$ we may select T^{*} so large that $1-2 m_{0} A(t) \geqslant \frac{1}{2}$ for all $t \geqslant T^{*}$. With this choice of $T^{*}(15)$ follows at once.

Theorem 1. Let $u(x, t)$ satisfy inequality (3):

$$
(L u)^{2} \leqslant c_{1}(t) u^{2}+c_{2}(t) \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}
$$

in R. Let u vanish on S and suppose condition (8):

$$
\lim _{t \rightarrow \infty} \int_{D} t^{2 \beta} e^{2 \lambda t^{\eta}} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}=0
$$

holds* for some fixed $\eta>1$. If $c_{1}(t)=0\left(t^{\eta-2}\right), c_{2}(t)=0\left(t^{-1}\right)$, and $A_{0}(t)=0\left(t^{-1}\right)$ then $u \equiv 0$ in R.

Proof. We define $\zeta=\zeta(t)$ as a monotone increasing smooth function of t so that

$$
\zeta=\left\{\begin{array}{cc}
0, & 0 \leqslant t \leqslant T_{1} \\
0<\zeta<1, & T_{1} \leqslant t \leqslant T_{2} \\
1, & T_{2} \leqslant t<\infty
\end{array}\right.
$$

We select T_{1} to satisfy two conditions. First, T_{1} is selected larger than the quantity T^{*} determined in Lemma 5 . Second, T_{1} is increased, if necessary, so that $m_{0} t c_{2}(t) \leqslant \frac{1}{2}$ for $t \geqslant T_{1}$ where m_{0} is the constant in the right side of inequality (15). The function

$$
v(x, t)=\zeta(t) u(x, t)
$$

is in class $C(\eta)$ and inequality (15) is valid for v. We define $R\left(T_{2}-T_{1}\right)$ to be the domain $D \times\left(I\left(T_{2}\right)-I\left(T_{1}\right)\right)$ and $R\left(T_{2}\right)$ the domain $D \times\left(I-I\left(T_{2}\right)\right)$. We have from (15) applied to v :

$$
\begin{aligned}
& \lambda \int_{R\left(T_{2}\right)} t^{n-2} K u^{2}+\int_{R\left(T_{2}\right)} t^{-1} K \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R\left(T_{2}-T_{1}\right)} K(L v)^{2} \\
&+m_{0} \int_{R\left(T_{2}\right)} K(L u)^{2}
\end{aligned}
$$

since the left side is decreased by omission of the integrals taken over the domain $R\left(T_{2}-T_{1}\right)$. We substitute (3) into the last integral on the right and get

$$
\begin{aligned}
\int_{R\left(T_{2}\right)}\left[\lambda t^{\eta-2}-m_{0} c_{1}(t)\right] K u^{2}+\int_{R\left(T_{2}\right)}\left[t^{-1}-m_{0} c_{2}(t)\right] K & \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \\
& \leqslant m_{0} \int_{R\left(T_{2}-T_{1}\right)}(L v)^{2}
\end{aligned}
$$

Since $t^{2-\eta} c_{1}(t)$ is bounded we select λ so large that the coefficient of $K u^{2}$ is dominated by $\frac{1}{2} \lambda t^{\eta-2}$. Further the integrals on the left are decreased if the range of integration is diminished to $R\left(T_{3}\right)$ for some $T_{3}>T_{2}$. Hence

$$
\int_{R\left(T_{3}\right)} \lambda t^{\eta-2} K u^{2}+\int_{R\left(T_{3}\right)} t^{-1} K \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \leqslant 2 m_{0} \int_{R\left(T_{2}-T_{1}\right)} K(L u)^{2} .
$$

From the definition of K, we obtain

$$
T_{3}^{2 \beta} e^{2 \lambda T_{3} \eta}\left[\lambda \int_{R\left(T_{3}\right)} u^{2}+\int_{R\left(T_{3}\right)} t^{-1} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] \leqslant 2 m_{0} T_{2}^{2 \beta} e^{2 \lambda T_{2} \eta} \int(L v)^{2}
$$

[^1]Letting $\lambda \rightarrow \infty$ we see at once that $u \equiv 0$ for $t \geqslant T_{3}$. Thus u satisfies (3), vanishes on S, and vanishes for $t \geqslant T_{3}$. Theorem 1 of Lees and Protter (2) now applies, so we conclude that u vanishes identically in R.

To prove the theorem corresponding to Theorem 1 for operators which are not self-adjoint we first establish the inequality analogous to (15).

Lemma 6. Let $v \in C(\eta), n>1$ and suppose $B_{0}(t)=o\left(t^{-1}\right), B_{1}(t)=o\left(t^{-1}\right)$. Let $v \equiv 0$ in $D \times I\left(T^{*}\right)$ where T^{*} depends on B_{0}, B_{1}. Then for sufficiently large λ we have the inequality

$$
\begin{equation*}
\lambda \int_{\boldsymbol{R}} t^{\eta-2} K(\beta, \lambda, \eta) v^{2}+\int_{R} t^{-1} K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R} K(M v)^{2} \tag{20}
\end{equation*}
$$

Proof. The establishment of (20) follows from Lemmas 3 and 4 in the same way that (15) was obtained from Lemmas 1 and 2 . With the aid of Lemma 6 the proof of the following result parallels the proof of Theorem 1.

Theorem 2. Let $u(x, t)$ satisfy inequality (4):

$$
(M u)^{2} \leqslant d_{1}(t) u^{2}+d_{2}(t) \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}
$$

in R. Let u vanish on S and suppose condition (8):

$$
\lim _{t \rightarrow \infty} \int_{D} t^{2 \beta} e^{2 \lambda \iota} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}=0
$$

holds for some fixed $\eta>1$. If $d_{1}(t)=0\left(t^{\eta-2}\right), d_{2}(t)=0\left(t^{-1}\right), B_{0}(t)=o\left(t^{-1}\right)$, $B_{1}(t)=o\left(t^{-1}\right)$ then $u \equiv 0$ in R.

The basic inequalities of Lemmas 1 and 2 vary slightly for the case $\eta=1$, that is, for solutions which decay as $e^{-\lambda t}$ for some positive λ. For this purpose we state the following inequalities.

Lemma 7. If $v \in C(1)$ we have the inequality

$$
-\beta \int_{R} t^{-2} K(\beta, \lambda, 1) v^{2} \leqslant \int_{R} K(\beta, \lambda, 1)(L v)^{2}+m_{0} \int_{R} A_{0}(t) K(\beta, \lambda, 1) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2}
$$

valid for all β. This is obtained directly from Lemma 1 by setting $\eta \equiv 1$. For convenience we write $K(\beta, \lambda)$ for $K(\beta, \lambda, 1)$.

Lemma 8. If $v \in C(1)$ we have the inequality

$$
\int_{R} K(\beta, \lambda) \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R} t K(L v)^{2}+m_{0} \int_{R}\left(\lambda+|\beta| t^{-1}\right) K v^{2} .
$$

This follows from Lemma 2 by setting $\eta=1$. Combining Lemmas 7 and 8 we get:

Lemma 9. Let $v \in C(1)$ and suppose $A_{0}(t)=o\left(t^{-2}\right)$. Let $v \equiv 0$ in $D \times I\left(T^{*}\right)$ where T^{*} depends on $A_{0}(t)$. Then for sufficiently large λ and $-\beta$ we have the inequality

$$
\int_{R} t^{-2} K(\beta, \lambda) v^{2}+\int_{R} t^{-2} K \sum_{i=1}^{n}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \leqslant \frac{\lambda}{\beta} m_{0} \int_{R} K(L v)^{2}
$$

This lemma is a consequence of Lemmas 7 and 8 in the same manner that Lemma 5 is derived from Lemmas 1 and 2. We thus obtain:

Theorem 3. Let $u(x, t)$ satisfy inequality (3) in R. Let u vanish on S and suppose condition (8) holds for $\eta=1$. If $c_{1}(t), c_{2}(t)$, and $A_{0}(t)$ are all o $\left(t^{-2}\right)$ as $t \rightarrow \infty$ then $u \equiv 0$ in R. A similar result holds for inequality (4) pertaining to operators not in self-adjoint form.

The results of this section are easily extended to operators of the form

$$
M_{1} \equiv \frac{\partial}{\partial t}-\sum_{i, j=1}^{n} b_{i j}(x, t) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+e(x, t)
$$

and the corresponding differential inequality

$$
\left(M_{1} u\right)^{2} \leqslant d_{1}(t) u^{2}+d_{2}(t) \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}
$$

If the function $e(x, t)$ is bounded and satisfies the condition

$$
\frac{\partial e}{\partial t}=0\left(t^{\eta-2}\right), \quad t \rightarrow \infty
$$

then Theorem 2 is valid for operators M_{1} with the proof unchanged. Similarly Theorem 1 holds for operators L_{1} containing a zero order term. In particular if e is independent of t the above condition is automatically satisfied and merely boundedness suffices.
3. Cauchy problem with data on a time-like surface. In this section we shall be concerned with the uniqueness of the Cauchy problem for the general inequality (4) with data given on a piece of time-like surface. In other words, we shall suppose that on a portion of the boundary surface S, say S_{0}, we prescribe

$$
u=\frac{\partial u}{\partial n}=0
$$

where $\partial / \partial n$ is the derivative taken in a direction normal to S. From this we shall conclude that u vanishes in the subregion of R contained in the strip $T_{1} \leqslant t \leqslant T_{2}$, where T_{1} is the minimum value of t in S_{0} and T_{2} is the maximum value of t in S_{0}. The extension to the case where S_{0} is any timelike surface is easily made. For this purpose we need two lemmas similar to ones established in (2). We introduce Euclidean distance r in E_{n}, that is,

$$
r^{2}=\sum_{i=1}^{n} x_{i}^{2} .
$$

Lemma 10. Let $u \in C^{2}$ vanish outside the cylindrical domain $R(T): r_{0} \leqslant r \leqslant r_{1}$, $0 \leqslant t \leqslant T$. Then for r_{1} sufficiently small and for all sufficiently large β we have

$$
\begin{equation*}
\beta^{4} \int_{R(T)} r^{-2 \beta-2} e^{2 r^{-\beta}} u^{2}-m \beta r_{0} \int_{R(T)} e^{2 r^{-\beta}} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int_{R(T)} r^{\beta+2}(M u)^{2} \tag{21}
\end{equation*}
$$

Proof. We select r_{1} so small that

$$
b_{i j}(0, t)=\delta_{i j}+b_{i j}^{0}
$$

where

$$
\left|b_{i j}^{0}\right| \leqslant m_{0} r_{1}
$$

This can always be done by a change of independent variable. As before, we define

$$
z=e^{r-\beta} u
$$

and consider the expression

$$
r^{\beta+2} e^{2 r^{-\beta}}(M u)^{2} .
$$

We have

$$
\begin{align*}
& r^{\beta+2} e^{2 r^{-\beta}}\left(G u-u_{t}\right)^{2}=r^{\beta+2}\left[G z+2 e^{\tau^{-\beta}} \sum_{i, j} b_{i j} \frac{\partial z}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\left(e^{-\tau^{-\beta}}\right)\right. \tag{22}\\
&\left.+z e^{\tau-\beta} G\left(e^{-\tau^{-\beta}}\right)-z_{t}\right]^{2}
\end{align*}
$$

We note that

$$
e^{r-\beta} \frac{\partial}{\partial x_{j}}\left(e^{-r^{-\beta}}\right)=\beta x_{j} r^{-\beta-2}
$$

and use the elementary inequality

$$
(a+b+c-d)^{2} \geqslant(b-d)^{2}+2(b-d)(a+c)
$$

Interpreting

$$
\begin{aligned}
& a=G z \\
& b=2 e^{r^{-\beta}} \sum b_{i j} \frac{\partial z}{\partial x_{i}} \frac{\partial}{\partial x_{j}}\left(e^{-r^{-\beta}}\right), \\
& c=z e^{r^{-\beta}} G\left(e^{-r^{-\beta}}\right), \\
& d=z_{t}
\end{aligned}
$$

we get from (22)

$$
r^{\beta+2} e^{2 r^{-\beta}}(M u)^{2} \geqslant b^{2}-2 b d+d^{2}+2 a b+2 b c-2 a d-2 c d .
$$

We now integrate throughout (x, t) space. Each integral which contains $b_{i j}$ is further decomposed into integrals with $\delta_{i j}$, the principal part and $b_{i j}{ }^{0}$, the residual part. Thus, for example, the principal part of $2 a b$ is

$$
2 \beta \int \sum_{i=1}^{n} x_{i} \frac{\partial z}{\partial x_{i}} \Delta z
$$

and this integral is non-negative. The residual part leads to an integral of the form

$$
\beta m_{0} r_{1} \int e^{2 \tau^{-\beta}} \sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} .
$$

The integrals $b^{2}-2 b d+d^{2}-2 a d$ yield a positive definite quadratic form for sufficiently large β. The principal part of the integral $2 c d$ vanishes. The integral $2 b c$ yields the term

$$
\beta^{4} \int r^{-2 \beta-2} e^{2 r^{-\beta}} u^{2} .
$$

These combine to give (21).
Lemma 11. Under the hypotheses of Lemma 10 we have

$$
\begin{equation*}
\beta^{4} \int r^{-2 \beta-2} e^{2 \tau^{-\beta}} u^{2}+\beta m_{0} \int e^{2 \tau^{-\beta}} \sum\left(\frac{\partial u}{\partial x_{1}}\right)^{2} \leqslant m_{0} \int r^{\beta+2} e^{2 \tau^{-\beta}}(M u)^{2} \tag{23}
\end{equation*}
$$

Proof. For functions u with compact support and an arbitrary C^{2} function, $a(x)$, independent of t, we have the identity

$$
\begin{aligned}
\int a u\left(u_{t}\right. & -G u)=-\int a u G u \\
& =\int a \sum b_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-\frac{1}{2} \int u^{2}\left[G u+\sum a \frac{\partial^{2} b_{i j}}{\partial x_{i} \partial x_{j}}+2 \frac{\partial a}{\partial x_{i}} \frac{\partial b_{i j}}{\partial x_{j}}\right] .
\end{aligned}
$$

Since G is uniformly elliptic, when we select

$$
a=e^{2 \tau^{-\beta}}
$$

we get

$$
\int e^{2 r-\beta} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \leqslant m_{0} \int e^{2 \tau-\beta}|u M u|+m_{0} \beta^{2} \int r^{-2 \beta-2} e^{2 r^{-\beta}} u^{2} .
$$

We apply Cauchy's inequality to the first term on the right and obtain

$$
\int e^{2 r^{-\beta}} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \leqslant m_{0} r^{\beta} \int r^{\beta+2} e^{2 \tau^{-\beta}}(M u)^{2}+m_{0} \beta^{2} \int r^{-2 \beta-2} e^{2 r^{-\beta}} u^{2}
$$

We multiply this inequality by β and add to (21). For β sufficiently large and r_{1} sufficiently small we deduce (23).

Theorem 4. Let u satisfy inequality (4) in a region $R(T)$ and suppose that on a portion S_{0} of the boundary S the condition

$$
u=\frac{\partial u}{\partial n}=0
$$

holds. Then $u \equiv 0$ in the subregion of $R(T): T_{1} \leqslant t \leqslant T_{2}$ where T_{1} is the minimum and T_{2} the maximum value of t in S_{0}.

Proof. We select the origin of our co-ordinate system outside of $R+S$ but so close to a point of S_{0} that the distance r_{0} of Lemma 10 is exterior to $R+S$ while the distance r_{1} is interior to $R+S$.

We define the functions $\zeta_{1}(r), \zeta_{2}(t)$ so that

$$
\zeta_{1}(r)=\left\{\begin{array}{cl}
1 & , \quad 0 \leqslant r \leqslant r_{1} \\
0<\zeta_{1}<1 & , \quad r_{1} \leqslant r \leqslant r_{2} \\
0 & , \quad r \geqslant r_{2}
\end{array}\right.
$$

and

$$
\zeta_{2}(t)=\left\{\begin{array}{ccc}
0 & , & t \geqslant T_{3} \\
0<\zeta_{2}<1 & , & T_{4} \leqslant t \leqslant T_{3} \\
1 & , & T_{5} \leqslant t \leqslant T_{4} \\
0<\zeta_{2}<1 & , & T_{6} \leqslant t \leqslant T_{5} \\
0 & , & t \leqslant T_{6}
\end{array}\right.
$$

where $T_{3}<T_{2}$ and $T_{6}>T_{1}$ and the functions ζ_{1}, ζ_{2} are in C^{2}. In general we denote by $E\left(r_{i}, T_{j}, T_{k}\right)$ the region $0 \leqslant r \leqslant r_{i}, T_{j} \leqslant t \leqslant T_{R}$. We now define the function

$$
v=\zeta_{1}(r) \zeta_{2}(t) u
$$

Then v satisfies the conditions of Lemmas 10 and 11 so that (23) applied to v yields

$$
\begin{aligned}
\beta^{4} \int_{E\left(r_{1}, T_{6}, T_{3}\right)} r^{-2 \beta-2} e^{2 r^{-\beta}} v^{2}+\beta m_{0} \int_{E\left(r_{1}, T_{6}, T_{3}\right)} e^{2 r^{2-\beta}} & \sum\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \\
& \leqslant m_{0} \int_{E\left(r_{2}, T_{6}, T_{3}\right)}^{r^{\beta+2} e^{2 r^{-\beta}}(M v)^{2}}
\end{aligned}
$$

Taking into account the fact that ζ_{1} and ζ_{2} are identically 1 in certain ranges of the variables we have

$$
\begin{aligned}
& \beta^{4} \int_{E\left(r_{1}, T_{5}, T_{4}\right)} r^{-2 \beta-2} e^{2 r^{-\beta}} u^{2}+ \beta m_{0} \int_{E\left(r_{1}, T_{5}, T_{4}\right)} e^{2 r^{-\beta}} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \\
&+\beta^{4} \int_{E\left(r_{1}, T_{4}, T_{3}\right)+E\left(r_{1}, T_{6}, T_{5}\right)} r^{-2 \beta-2} e^{2 r^{-\beta}} \zeta_{2} u^{2} \\
&+\beta m_{0} \int_{E\left(r_{1}, T_{4}, T_{3}\right)+E\left(r_{1} T_{6}, T_{5}\right)} e^{2 r^{-\beta}} \zeta_{2} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \\
& \leqslant m_{0} \int_{E\left(r_{1}, T_{6}, T_{3}\right)} r^{\beta+2} e^{2 r^{-\beta}}\left(M \zeta_{2} u\right)^{2}+m_{0} \int_{E\left(r_{2}, T_{6}, T_{3}\right)-E\left(r_{1}, T_{6}, T_{3}\right)} r^{\beta+2} e^{2 r^{-\beta}}(M v)^{2} .
\end{aligned}
$$

We note that $\left(M \zeta_{2} u\right)^{2}=\left(\zeta_{2}{ }^{\prime}(t) u+\zeta_{2}(M u)\right)^{2} \leqslant 2 \zeta_{2}{ }^{\prime 2} u^{2}+2 \zeta_{2}{ }^{2}(M u)^{2}$. Hence the first term on the right-hand side is dominated by

$$
\begin{aligned}
& m_{0} \int_{E\left(r_{1}, T_{5}, T_{4}\right)} r^{\beta+2} e^{2 \tau^{-\beta}}(M u)^{2} \\
&+2 m_{0} \int_{E\left(r_{1} T_{4} T_{3}\right)+E\left(r_{1}, T_{6}, T_{5}\right)} r^{\beta+2} e^{2 \tau^{-\beta}}\left[\zeta_{2}^{\prime 2} u^{2}+2 \zeta_{2}^{2}(M u)^{2}\right]
\end{aligned}
$$

In these integrals we replace $(M u)^{2}$ by larger quantities as given by (4) to obtain

$$
\begin{aligned}
& \int_{E\left(r_{1}, T_{5}, T_{4}\right)} \beta^{4} r^{-2 \beta-2} e^{2 r^{-\beta}} u^{2}+\beta m_{0} e^{2 r^{-\beta}} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \\
&+\int_{E\left(r_{1}, T_{4}, T_{3}\right)+E\left(r_{1}, T_{6}, T_{5}\right)} \beta^{4} r^{-2 \beta-2} e^{2 r^{-\beta}} \zeta_{2} u^{2}+\beta m_{0} e^{2 r^{-\beta}} \zeta_{2} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \\
& \leqslant m_{0} \int_{E\left(r_{1}, T_{5}, T_{4}\right)} r^{\beta+2} e^{2 r^{-\beta}}\left(u^{2}+\sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right) \\
&+ 2 m_{0} \int_{E\left(r_{1}, T_{4}, T_{3}\right)+E\left(r_{1}, T_{6}, T_{5}\right)} r^{\beta+2} e^{2 \tau^{-\beta}}\left[\zeta_{2}^{\prime 2} u^{2}+2 \zeta_{2}^{2} u^{2}+2 \zeta_{2} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] \\
&+m_{0} \int_{E\left(r_{2}, T_{6}, T_{3}\right)-E\left(r_{1}, T_{6}, T_{3}\right)}^{r^{\beta+2} e^{2 r^{-\beta}}(M v)^{2}}
\end{aligned}
$$

For β sufficiently large the first integral on the left dominates the first integral on the right and the second integral on the left dominates the second integral on the right. Thus we find

$$
\begin{aligned}
\int_{E\left(r_{1}, T_{5}, T_{4}\right)} \beta^{4} r^{-2 \beta-2} e^{2 r^{-\beta}} u^{2}+\beta m_{0} e^{2 r^{-\beta}} & \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \\
& \leqslant m_{0} \int_{E\left(r_{2}, T_{6}, T_{3}\right)-E\left(r_{1}, T_{6}, T_{3}\right)} r^{\beta+2} e^{2 r-\beta}(M v)^{2}
\end{aligned}
$$

We now select $r_{3}<r_{1}$ but sufficiently large so that the cylinder of radius r_{3}, axis along $x=0$, intersects R. Then the above inequality is strengthened if the domain of integration on the left is reduced to $E\left(r_{3}, T_{5}, T_{4}\right)$. The above inequality may now be replaced by

$$
\begin{aligned}
\beta^{4} r_{3}^{-2 \beta-2} e^{2 r_{3}-\beta} \int_{E\left(r_{3}, T_{5}, T_{4}\right)} u^{2}+\beta m_{0} e^{2 r_{3}-\beta} & \int_{E\left(r_{3}, T_{5}, T_{4}\right)} \sum\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \\
& \leqslant m_{0} r_{2}^{\beta+2} e^{2 \bar{\tau}-\beta} \int_{E\left(r_{2}, T_{6}, T_{3}\right)-E\left(r_{1}, T_{6}, T_{3}\right)}(M v)^{2}
\end{aligned}
$$

where \bar{r} is the minimum value of r in $E\left(r_{2}, T_{6}, T_{3}\right)-E\left(r_{1}, T_{6}, T_{3}\right)$. We note that from the manner in which the domains were determined the quantity \bar{r} is larger than r_{3}. Now letting $\beta \rightarrow \infty$ we easily conclude that $u \equiv 0$ in $E\left(r_{3}, T_{5}, T_{4}\right)$. Proceeding step by step we conclude that $u \equiv 0$ for $T_{1} \leqslant t \leqslant T_{2}$ and the proof is complete.

From the method of proof it is clear that the extension to zero Cauchy data given on a piece of an arbitrary time-like surface is immediate.

References

1. P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of elliptic equations, Comm. Pure and Applied Math., 9 (1956), 747-766.
2. M. Lees and M. H. Protter, Unique continuation for parabolic differential equations and inequalities, to appear.
3. M. Lees, Asymptotic behavior of solutions of parabolic differential inequalities, to appear.
4. S. Mizohata, Unicité du prolongement des solutions pour quelques opérateurs differentiels paraboliques, Mem. Coll. Sci. Univ. Kyoto, Ser. A1, 31 (1958), 219-239.
5. M. H. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960), 81-91.

University of California, Berkeley

[^0]: Received February 24, 1960. This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-398.

[^1]: ${ }^{*}$ If $c_{2}(t) \equiv 0$, the square of the gradient in (8) should be replaced by the square of the function u.

