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REGIONS CUT BY ARRANGEMENTS 
OF TOPOLOGICAL SPHERES 

LEWIS PAKULA 

ABSTRACT. We define an arrangement of pseudohyperplanes as an image of a topo
logical sphere arrangement with appropriate intersections, and prove that the comple
ment components are then homologically trivial. We apply this to extend a formula of 
Winder and Zaslavsky. 

1. Introduction and main results. The Winder-Zaslavsky formula (equation (1.1) 
below) gives a concise expression for the number of regions induced by an arrangement 
of hyperplanes in terms of intersection degeneracies. We place this formula in a more 
general topological setting by considering a version which applies to certain families of 
topological spheres. We then define an arrangement of pseudohyperplanes in terms of 
topological spheres, and show that equation (1.1) continues to hold by showing that the 
components of the complement of the arrangement are homologically trivial. 

Suppose A\,..., Ak are subsets of a topological «-sphere. We will say that Ai , . . . , A*. 
have spherical intersections if, for any nonempty / Ç {1, .. . ,&}, the set Aj := fl/e/^* 
is either a single point or homeomorphic to a sphere of some dimension. (The empty set 
is a sphere of dimension —1.) This condition obviously holds for Euclidean spheres. If 
instead each A/ is a closed set having the same Cech cohomology as a sphere of some 
dimension, or the same cohomology as a point, we will say that the collection has sphere
like intersections. If A/ has the cohomology of a sphere of dimension r > — 1 we will 
define the corresponding degeneracy index di to be r — (n — |/|) and if A/ has the coho
mology of a point we set d\ — oo. We set d$ — 0. 

A collection of hyperplanes in Rn can be regarded, via stereographic projection, as a 
collection of (n — l)-spheres Ai , . . . , Ak in S", having spherical intersections, and passing 
through the north pole N of S". The hyperplanes cut Rn into P regions; in our notation 
we have 

(1.1) P = J2 (~l)d' = H1 : &iis eyen} - #{/ : di is odd}. 
d\<OQ 

This is shown in [6] when the hyperplanes intersect in a point; [7] gives the general case. 
Let x(A) denote the Euler characteristic of A. 

THEOREM 1. Let A\,... ,A* be closed nonempty subsets ofSn having sphere-like 
intersections and suppose Sn \ UA; has path components C\,..., Cp. Then 

(1-2) x(s" \IM.-) = Ex(G-) = E (-i)*-
V 1 7 1 di<oo 
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This theorem, in a bit less topological generality, follows from Theorem 6.1 of [8], 

where dissection problems are treated comprehensively from a lattice theoretic view

point. We include a short direct proof in the next section. If each Ci has the homology of 

a point, i.e. Hq(C() = 0 for all q, where H* is reduced singular homology, then x (Q) = 1 

for each /, and (1.2) reduces to (1.1). 

DEFINITION 1. An arrangement of pseudohyperplanes in Rn is the image under 

stereographic projection of a collection of proper subsets A\,..., Ak of Sn having spher

ical intersections and such that 

i) each A, is a topological (n — l)-sphere which contains the pole N, 

ii) for / Ç {1, . . . , & } , / ^ 0, either A/ = {N} or A/ is a topological sphere of 

dimension > n — \I\ > 0. 

Clearly, k Euclidean hyperplanes form an arrangement of pseudohyperplanes. 

Our definition is more general than usual since nontransverse intersections are al

lowed. Note that not every arrangement of pseudohyperplanes is the image under a home-

omorphism of Rn of an arrangement of Euclidean hyperplanes, even if all intersections 

are transverse ([2]). 

The regions of Rn cut by a set of Euclidean hyperplanes are convex sets and hence 

have the homology of a point. Our main result gives a purely topological version of this 

fact for arrangements of pseudohyperplanes. 

THEOREM 2. Let A i , . . . , A* be closed subsets ofSn such that for some point Q G Sn, 

Q G Ai for all i and such that for I Ç {1, . . . , & } , / ^ 0, either A/ is a topological sphere 

of dimension at least n — \I\ > 0 or Aj = {Q}. IfSn\ UA, ^ 0 then each component of 

Sn \ UAi has the homology of a point. 

The hypothesis of this theorem corresponds to the geometric intersection property of 

[8]. Theorem 2 suggests that the assumption of cellular regions in [8, Theorem 3; 10, 

p. 70] is superfluous. 

Classical enumeration formulas for regions cut by lines and hyperplanes can be de

rived from (1.1). 

If A\,... ,Ak have spherical intersections in Sn, we say they are in general position 

if any I < n of them intersect in a topological sphere of dimension n — £, and the 

intersection of any I > n of them is empty. In this case, di — 0 for |/| < n and dj = 

— 1 — n + |/| for |/| > n. Using elementary binomial coefficient identities we get 

m I h _ 1 \ 

E ( - D d / = 2 E , )='.Mnj» m = min(k-hn). 
d,<oo t=0\ l J 

(Note that MnJk = 2* for k < n + 1.) 

Moreover, when the A, are in general position, all components of S" \ \j\ Ai have 

the homology of a point (see [4]) so Mn>k gives the number of components. Actually, 

by [4], Mn£ is an upper bound for the number of components of S" \ \j\Ai for any A/'s 

with spherical intersections, and this upper bound is achieved if and only if the A/'s are in 
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general position. To show that the upper bound is actually achieved it suffices to show that 
we can find k Euclidean spheres in general position. Take k large spheres whose centers 
are close together and in affine general position. By [1, Theorem 7] each I < n + 1 of 
them cut Sn into 2l regions. By [4] the t spheres are therefore in general position and 
hence all k spheres are in general position. 

2. Proofs. H* (resp. H*) will denote the (resp. reduced) Cech cohomology with 
rational coefficients. If K Ç Sn is closed, we compute the Euler characteristic \{K) 
from cohomology, i.e. \{K) — J2q(— l)qrankHq(K), and we compute \(Sn \ K) from 
singular homology. It is convenient for our purposes that the Cech cohomology Mayer-
Vietoris sequence for pairs of closed sets in Sw is exact without excisiveness assumptions 
(see [5, p. 291]). From this follows additivity of the Euler characteristic: If A, B are 
closed in S", with all cohomology groups of A, B and A H B finitely generated, then 
\(AU B) — x(A) + x ( 5 ) - x ( A H 5 ) . We will need the Alexander-Pontryagin duality 
theorem (see [3]): For K a closed proper subset of S", Hq(S

n \K)& Hn-q~l(K). 

PROOF OF THEOREM 1. Additivity of \ implies 

(2.1) x(Û^) = E(-i)|/|+1x(^/)-

If A/ is a (cohomology) sphere then x(Ai) = (— 1)^+Al-I7l + 1, and x(point) = 1. 
Alexander duality gives X(S" \ K) = (-l)n-{

X(K) + 1 + (-1)". Let K = \J[Ai and 
substitute in (2.1 ) to get ( 1.1 ) after some routine manipulations. • 

PROOF OF THEOREM 2. By Alexander duality, it suffices to show that Hq(\J\ A/) = 0 
for 0 < q < n — 1. We proceed by a double induction. The result is clear when n = 1, and 
for (&, n) such that k = l,n>2. For n — 2 and any k we need only show H°(\j\ At) — 0, 
for which we need only that [j\ Ai be connected. But if S2 \ (JÎ A/ ^ 0, each A, is a sphere 
of dimension 1, or is {Q}, so connectedness follows. Now suppose we have the result 
for all (£', ri) such that either 2 < ri < n, 1 < k' or 2 < ri = n, k' < k. Let X = Ax 

and Y — A2 U • • • U Ak. If S
n \ \j\ At ^ 0, we can assume that dim At = n — 1 for each 

/ = l,...,k since otherwise A, = {Q} and we could delete it. Let A- = A\ D AI+i for 
i = 1 it—1. ThenZHF = \J\~X A[. None of the setsA i or A- are homeomorphic to the 
two-point set S°, hence X, F, XH Y and XU Y are connected; in particular H°(XU Y) = 0. 
Also H°(X) = H°(Y) = 1 and by induction, HX(Y) = Hl (X) = 0. Consider the exact 
Mayer-Vietoris sequence 

0 -> H°(XU Y) -> H°(X)®H°(Y) -> fl°(Xn F) -* Hl(XU Y) -> H\X)®H\Y) -> • • •. 

Takingranks and using exactness we get l -2+l-rank//1(XUF) = O^oZ/H^UF) = 0. 
Now check that the theorem's hypotheses hold for A[,... ,Af

k_{ as subsets of A\ & Sn~l. 
Using the induction hypotheses we get Hq(X Pi Y) — 0 for 0 < q < n — 2. 
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Now suppose we have shown Hq(X U Y) — 0 for 1 < q < n — 2. By induction we 
have W+\X) = Hq+i(Y) = 0 and we have seen that Hq(Xn Y) = 0. By exactness of 

• • • -> Hq(xn Y) -> ^ ( x u y ) -> //«+1(X) e //^+1(>0 -^ • • • 

weget / /^+ 1 (^uy) = 0. • 
The author thanks the referee for many valuable suggestions. 
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